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Abstract: Consider distribution functions F and G and suppose that F is
more peaked about a than G is about b. The problem of estimating F or G, or
both, when F and G are symmetric, arises quite naturally in applications. The
empirical distribution functions Fn and Gm will not necessarily satisfy the or-
der constraint imposed by the experimental conditions. Rojo and Batun-Cutz
[Series in Biostatistics vol. 3, Advances in Statistical Modeling and Inference,
(2007) 649–670] proposed some estimators that are strongly uniformly con-
sistent when both m and n tend to infinity. However the estimators fail to
be consistent when only either m or n tend to infinity. Here estimators are
proposed that circumvent these problems and the asymptotic distribution of
the estimators is delineated. A simulation study compares these estimators in
terms of Mean Squared Error and Bias behavior with their competitors.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
2 New Estimators and Their Finite Sample Properties . . . . . . . . . . . . 151

2.1 Definition of the New Estimators . . . . . . . . . . . . . . . . . . . . 152
2.2 Bias Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
2.3 Estimators as Projections onto Appropriate Convex Spaces . . . . . 155
2.4 Peakedness Order of New and Previous Estimators . . . . . . . . . . 155

3 Asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
3.1 Strong Uniform Convergence . . . . . . . . . . . . . . . . . . . . . . 156
3.2 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4 Example with Sib-pair Data: An Illustration . . . . . . . . . . . . . . . . . 162
5 Simulation Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

1. Introduction

The concept of stochastic order was pioneered by Lehmann [16], and applications to
hypotheses testing were discussed in Lehmann [17], henceforth referred to as TSH-1.
Lehmann and Rojo [19] provided characterizations of stochastic ordering in terms
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of the maximal invariant with respect to the group of monotone transformations,
and connections with other partial orderings were provided. Since the publication
of TSH-1, there has been a large number of papers discussing various types of sto-
chastic orders and their properties. Thus, one finds a large literature on stochastic
orders in Economics (e.g. first-, second-, third-order stochastic dominance), relia-
bility (e.g. IFR, IFRA, NBU, etc.), and applied probability (e.g. Laplace transform
and dispersive orders). Marshall and Olkin [22] and Shaked and Shantikumar [40]
are excellent references to the literature on stochastic orders.

The attention to this area of statistics and applied probability is well deserved.
These concepts arise naturally in many applications in engineering, survival analy-
sis, biology, economics, etc.

In corrosion engineering, for example, the times until pitting of metals immersed
in a corrosive environment are measured under different solution corrosivities to
discern the impact of the solution acidity on the pitting corrosion times. Shibata
and Takeyama [41] present data which strongly supports the belief that the times
until pitting should be shorter in some sense, for the more corrosive environment. In
toxicity studies, cells are grown in environments containing different levels of toxic
materials (e.g. Arenaz et al. [1]). Invariably, the data supports the intuitive notion
that the stronger the toxic solution is, the shorter the lifetimes of the organisms.

Another set of examples arises from clinical trials. This is illustrated by a clinical
trial run to evaluate the efficiency of maintenance chemotherapy for acute myelon-
geneous leukemia (AML). The trial was conducted at Stanford University (Embury
et al. [12]). After reaching a state of remission through treatment by chemotherapy,
the patients who entered the study were randomized into two groups. The first
group received maintenance chemotherapy; the second group did not. One would
then expect that in this case, the survival times in the control group would be
stochastically smaller than those in the first group.

Stochastic ordering, together with failure rate ordering, and monotone likelihood
ratio ordering, are examples of location orderings. There are situations, however,
when the interest lies in comparing distributions based on their spread rather than
on their location.

Various concepts of spread, concentration, or dispersion have appeared in the
literature. For example, Brown and Tukey [7], Fraser [13], Bickel and Lehmann [5],
Lehmann [20], Doksum [8], and Shaked [38], define F to be more dispersive than
G, denoted as F >d G, if, for every u > v,

(1.1) F −1(u) − F −1(v) ≥ G−1(u) − G−1(v).

Shaked [39], Bartoszewicz [2–4], Oja [24], and Rojo and He [26], among others, have
discussed various characterizations and properties of the dispersive order. Doksum
[8] utilized this concept to study power properties of rank tests, and showed that
the power of certain rank tests is isotonic with respect to this order. Rojo [29, 32]
considered the problem of estimating the quantile function F −1 and the distribution
function F when F <d G, and the asymptotic theory of the resulting estimators
was delineated. Rojo and Wang [27] also showed that the power of tests based on
L-statistics is isotonic with respect to the dispersive order. For other properties of
the dispersive order, and connections with other partial orderings, see Bickel and
Lehmann [5], Proschan [25], Karlin [15], Shaked [38, 39], and Schweder [39]. When
F and G are assumed symmetric, (1.1) can be seen to be equivalent to

F −1(u) − F −1(1/2) ≥ (≤) G−1(u) − G−1(1/2)
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depending on whether u ≥ (≤) 1/2.
Birnbaum [6] proposed a different concept of dispersion based on the distribution

functions rather than on the quantile functions. According to Brinbaum, the distri-
bution function F is more peaked about the point a than the distribution function
G is about the point b if, for all x ≥ 0,

(1.2) F ((x + a)−) − F (−x + a) ≥ G((x + b)−) − G(−x + b),

where h(x−) = limε↓0 h(x − ε). We will write F >p G whenever (1.2) holds. It is
easy to see that the condition (1.2) is equivalent to

(1.3) F (x−) ≥ G(x−) for x ≥ 0,
F (x) ≤ G(x) for x < 0.

whenever F and G are symmetric about the point 0.
When F and G are continuous, it is easy to see that (1.2) is equivalent to

requiring that |X − a| be stochastically smaller than |Y − b|, and, although in
general F <d G �⇒ F >p G and F >p G �⇒ F <d G, it is easy to verify that
F <d G ⇒ F >p G, when F and G are symmetric and continuous. When a and
b in (1.2) are, respectively, the means of F and G, the condition (1.2) implies the
obvious order on the variances of F and G.

An interesting example from statistical genetics, discussed in Rojo et al. [35],
illustrates the importance of this concept in applications. Haseman-Elston [14] pro-
posed a regression model to assess the effect of a candidate gene on a phenotype
when using sib-paired data. There have been some modifications of the initial pro-
posal (see e.g. Elston et al. [11]). The original model, Haseman-Elston [14], repre-
sents the expected value of the squared phenotypic differences as a linear function of
the proportion of alleles shared identical-by-descent (IBD) at the locus of interest.
Let λi represent the proportion of alleles shared identical by descent (λi = 0, 1

2 , or
1). The Haseman and Elston [14] regression model may then be written as follows:
E(Xi|λi) = α + βλi, where Xi represents the squared sib-pair difference for the
ith sib-pair conditional on λi. Writing Z1i = θ + g1i + ε1i and Z2i = θ + g2i + ε2i

where Z1i and Z2i represent, respectively, the phenotype values for siblings one and
two, and where θ is the population mean, and gij and εij are the genetic and the
residual effects, respectively, the model is then represented as

E(Xj |λj) = η2
ε + 2(1 − λj)η2

g ,

where, η2
ε = E((ε1i − ε2i)2) and η2

g represents the variance in the trait due to allelic
variation at the locus of interest. As a consequence of linkage between the candidate
gene and the phenotype, siblings sharing two alleles IBD at the locus of interest will
tend to be more similar than siblings sharing one allele IBD, and siblings sharing
one allele IBD will in turn be more similar than siblings sharing no alleles IBD.
It is then clear that phenotypical similarity of sibs within the same pair is being
measured in terms of the spread of the distribution of the differences of the siblings’
phenotypical measurements.

Existing sib-paired data illustrates very clearly that the distribution functions of
sib-pair differences are symmetrically distributed. This will happen, for example, if
(X − μX , Y − μY ) has the same distribution as (μX − X, μY − Y ), as it happens
under the assumption of a bivariate normal distribution, and if the means μX and
μY are equal, then the sib-pair differences are symmetrically distributed. When the
candidate gene is linked to the phenotype of interest, the cumulative distributions
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Fig 1. Empirical distribution functions of phenotypic differences for the sib-pair data.

of the differences within sib-pairs are ordered by peakedness. This is illustrated
by sib-paired data on plasma Lipoprotein (a) data. Figure 1 shows the empirical
distribution functions for plasma Lipoprotein (a) differences within sib-pairs for a
sample of Caucasian individuals from the Dallas metroplex area. The pairs of sib-
lings were classified into groups according to the number of shared alleles identical
by descent.

Note that the assumptions of symmetry and peakedness are close to being satis-
fied, but the plots also show areas where these characteristics do not hold. We will
illustrate our estimators later in Section 4, by computing them for this example.

The points a and b about which peakedness of F and G will obtain, will be
assumed known throughout this work. In the linkage example to be considered in
Section 4, the assumption of known a and b can be justified under the assump-
tion of bivariate normality of the siblings’ phenotypes with equal means. This is
a common assumption in the literature. Thus, irrespective of whether a and b are
known or unknown, the difference of the phenotypes is always symmetric about
zero. Dropping the assumption of bivariate normality of the sib-pairs phenotypes,
existing models, see e.g. Liu [20] Table 15.7, yield a zero mean for the phenotypic
differences. We, therefore, will assume that a and b are zero.

The goals of this paper are to develop estimators for symmetric F and G, which
satisfy (1.2), and to delineate their asymptotic theory.

Under the assumption that F and G are discrete distributions satisfying (1.2),
El Barmi and Rojo [9] provided the nonparametric maximum likelihood estimators
of F and G and tests were given to test the hypothesis of homogeneity of F and
G against the alternative that F and G satisfy (1.2). Rojo, Batun, and Durazo
[35] proposed estimators for continuous F and G, when (1.2) holds and the case
of censored data was also considered, but without the symmetry assumption. Rojo
and Batun-Cutz [34] proposed estimators for symmetric F and G when (1.2) holds
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using results from Schuster [36], and the asymptotic theory was delineated for the
case when both n and m → ∞. El Barmi and Mukerjee [10], following the ideas in
Rojo [33] and Rojo and Batun [34], proposed estimators which are consistent for F
(G) and their asymptotic theory was developed. Unfortunately, the proofs of their
asymptotic results for the estimators of F and G depend on letting both n and m
increase to infinity. The purpose of this paper is to consider modifications of the
estimators proposed by Rojo and Batun-Cutz [34] that yield consistent estimators
for F (G) when only n (m) → ∞. The asymptotic distribution theory is considered
and a simulation study compares the estimators to the estimator of El Barmi and
Mukerjee [10].

The organization of this paper is as follows: Sections 2 proposes the estimators
and finite sample properties are discussed. Section 3 delineates the asymptotic the-
ory showing that the estimators are strongly and uniformly consistent and their
asymptotic theory is developed. Section 4 illustrates the new estimators using the
sib-pair data, and Section 5 discusses the results of computer simulations which
compare the bias and mean squared error of the new estimators with the bias and
mean squared error of the estimators of Rojo and Batun-Cutz [34] and El Barmi
and Mukerjee [10].

Although the estimators proposed in Rojo and Batun-Cutz [34] have larger ab-
solute bias than the estimators proposed here, the selection of the better estimators
based on Mean Squared Error (MSE) behavior is not as clear. Whereas the new
estimators have smaller MSE in a neighborhood of zero, the estimators of Rojo and
Batun-Cutz have smaller MSE in the tails of the distributions, and the region of
the support of the distribution where the latter estimators behave better seems to
increase as the tail-heaviness of the distributions increase.

2. New Estimators and Their Finite Sample Properties

Let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from the symmetric
distributions (about 0) F and G respectively, and let Fn and Gm be the empirical
distribution functions based on X1, . . . , Xn and Y1, . . . , Ym. Suppose than F >p G.
Rojo and Batun-Cutz [34] considered the problem of the estimation of F and G
under the peakedness restriction and proposed the following strongly uniformly
consistent estimators

F 1
n,m = Φ1(Φ2(Fn, Φ1(Gm))),(2.1)

F 2
n,m = Φ2(Φ1(Fn), Φ1(Gm)),(2.2)

where Φ1 and Φ2 are operators defined by

Φ1(f)(x) =
1
2
(f(x) + 1 − f(−x−)), and

Φ2(f, g)(x) =
{

max{f(x), g(x)} if x ≥ 0,
min{f(x), g(x)} if x < 0.

Note that the operator Φ1 symmetrizes the function f , Schuster [36], and the
operator Φ2 imposes the “stochastic order” restriction (see, e.g., Lo [21], Rojo and
Ma [30], and Rojo [33]). Unfortunately the estimators F i

n,m, for i = 1, 2 do not
converge to F when only n → ∞. This follows since, for example, for F 2

n,m when
x > 0 and ε > 0,

lim
n→∞

P [F 2
n,m(x) − F (x) > ε] ≥ P [Φ1(Gm(x)) − F (x) > ε] > 0.
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This is a drawback of F 2
n,m that is also shared by F 1

n,m and Gi
n,m for i = 1, 2,

where Gi
n,m are as defined in Rojo and Batun-Cutz [34], and the strong uniform

consistency of these estimators requires that both m and n tend to infinity. To
circumvent this problem, new estimators are proposed here.

2.1. Definition of the New Estimators

Let F̂n = Φ1(Fn) and Ĝm = Φ1(Gm) be the symmetrized empirical distribution
functions (Schuster [36]). Then the empirical distribution function, and the sym-
metrized empirical distribution function of the combined samples are defined as
follows:

Cn,m =
n

m + n
Fn +

m

n + m
Gm and

Ĉn,m = Φ1(Cn,m) =
n

m + n
F̂n +

m

n + m
Ĝm(2.3)

respectively. Then our new estimators for F and G are

(2.4) F̂ 1
n,m = Φ1(Φ2(Fn, Cn,m)),

(2.5) Ĝ1
n,m = Φ1(Φ∗

2(Gm, Cn,m)),

(2.6) F̂ 2
n,m = Φ2(Φ1(Fn), Φ1(Cn,m)), and

(2.7) Ĝ2
n,m = Φ∗

2(Ĝm, Ĉn,m),

where

Φ∗
2(f, g)(x) =

{
min{f(x), g(x)} if x ≥ 0,
max{f(x), g(x)} if x < 0.

Note that the estimators F̂ 1
n,m and Ĝ1

n,m first impose the constraint of “stochastic
order” by requiring that the estimator of F (G) be larger (smaller) than Cn,m

for x ≥ 0 and smaller (larger) than Cn,m for x < 0. The second requirement of
symmetry is then imposed by the operator Φ1. By contrast, the estimators F̂ 2

n,m

and Ĝ2
n,m, first impose the constraint of symmetry and then, through the operator

Φ2, the constraint of “stochastic order” is imposed.
El Barmi and Mukerjee [10] proposed estimators for F and G when F <p G.

In our notation and making the appropriate change for the case F >p G, their
estimator for F is given, for x ≥ 0, by

F ∗
nm(x) =

1
2
(1 + max

{
Fn(x) − Fn(−x−), Cnm(x) − Cnm(−x−)

}
).

This estimator is the same as our estimator F̂ 2
n,m since for x ≥ 0,

F̂ 2
n,m(x) = max

{
1
2
(1 + Fn(x) − Fn(−x−)),

1
2
(1 + Cnm(x) − Cnm(−x−))

}
=

1
2

+
1
2

max
{
Fn(x) − Fn(−x−), Cnm(x) − Cnm(−x−)

}
)

= F ∗
nm(x).

Therefore, by symmetry, F̂ 2
n,m = F ∗

nm.
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2.2. Bias Functions

The operator Φ1 does not introduce any bias in the “symmetrization” procedure.
In fact, it is well known that F̂n and Ĝm are unbiased estimators for F and G,
and have smaller variance than Fn and Gm respectively. However, the operators
Φ2 and Φ∗

2 do introduce bias when estimating F and G. The bias function of the
estimators are discussed next and compared to the estimator provided by El Barmi
and Mukerjee [10].

For x ≥ 0 define F+
n (x) = 1

n

∑n
i=1 I[−x≤Xi ≤x], F+∗

nm = max{F+
n ,

nF+
n +mG+

m

n+m }
and finally, let F ∗

nm = 1
2 (1 + F+∗

nm); G+
m, G+∗

n,m and G∗
n,m are defined similarly.

The estimator F ∗
nm is the estimator for F studied by El Barmi and Mukerjee [10]

following ideas of Rojo [33]. Note that for x ≥ 0,

E(F ∗
nm(x)) =

1
2

+
1
2
E(F+∗

nm(x))

=
1
2

+
1
2
E

{
F+

n (x) + max
{

0,
m

m + n
(G+

m(x) − F+
n (x))

}}
=

1
2

+
1
2
E(F+

n (x)) +
m

2(m + n)
E{max(0, G+

m(x) − F+
n (x))}

and since 1
2 + 1

2E(F+
n (x)) = F (x),

Bias(F ∗
nm(x)) =

m

2(m + n)
E{max(0, G+

m(x) − F+
n (x))}.(2.8)

Note that Bias(F ∗
nm(x)) → 0 as n

m → ∞. Since our estimator F̂ 2
nm defined by (2.6)

turns out to be equal F ∗
nm, then its bias function is also given by (2.8).

Now consider the estimator F̂ 1
nm given by (2.4). For x ≥ 0,

F̂ 1
n,m(x) = Φ1(max(Fn(x), Cnm(x)))

=
1
2

{1 + max(Fn(x), Cnm(x)) − min(Fn(−x−), Cnm(−x−))}

=
1
2

{
1 + Fn(x) − Fn(−x−) + max(0, Cnm(x) − Fn(x))

+ max(0, Fn(−x−) − Cnm(−x−))
}

.

Thus, E(F̂ 1
n,m(x)) = F (x)+ 1

2E(max(0, Cnm(x) − Fn(x)))+ 1
2E(max(0, Fn(−x−) −

Cnm(−x−))) and then, for x ≥ 0

Bias(F̂ 1
n,m(x)) =

1
2
E

(
max

(
0,

m

n + m
(Gm(x) − Fn(x))

))
+

1
2
E

(
m

n + m
max(0, Fn(−x−) − Gm(−x−))

)
=

m

2(m + n)
{E(max(0, Gm(x) − Fn(x)))

+E(max(0, Fn(−x−) − Gm(−x−)))
}

≥ m

2(m + n)
E(max(0, G+

m(x) − F+
n (x))) = Bias(F ∗

nm).
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This result will also follow from the fact that F̂ 1
nm >p F̂ 2

nm = F ∗
nm.

Next consider the estimator F 2
nm defined in equation (2.2) and in Rojo and

Batun-Cutz [34]:

F 2
nm(x) = max

{
1
2
(1 + Fn(x) − Fn((−x)−)),

1
2
(1 + Gm(x) − Gm((−x)−))

}
.

It follows easily that E(F 2
nm(x)) = F (x) + 1

2E(max(0, G+
m(x) − F+

n (x))) and hence
Bias(F 2

nm(x)) = 1
2E(max(0, G+

m(x) − F+
n (x))) > Bias(F ∗

nm), for x ≥ 0.
Finally, consider the estimator F 1

nm given in Rojo and Batun-Cutz [34]. For x ≥ 0

F 1
nm(x) =

1
2

{
1 + max

(
Fn(x),

1
2
(1 + Gm(x) − Gm((−x)−))

)
− min

(
Fn(−x),

1
2
(1 + Gm((−x)−) − Gm((x)))

)}
=

1
2
(1 + Fn(x) − Fn((−x)−)) +

1
2

max
(

0,
1
2
(1 − 2Fn(x) + G+

m(x))
)

+
1
2

max
(

0,
1
2
(−1 + 2Fn((−x)−) + G+

m(x))
)

.

Therefore,

E(F 1
nm(x)) = F (x) +

1
4
E(max(0, (1 − 2Fn(x) + G+

m(x))))

+
1
4
E(max(0, (−1 + 2Fn((−x)−) + G+

m(x)))).

Then, for x ≥ 0,

Bias(F 1
nm(x)) =

1
4
E

(
max{0, G+

m(x) − F+
n (x) − Fn((−x)−) − Fn(x) + 1}

)
+

1
4
E

(
max{0, G+

m(x) − F+
n (x) − 1 + Fn(x) + Fn((−x)−)}

)
.

The last expression is then seen to be equal to

1
4
E(max{ max(0, G+

m(x) − F+
n (x) − Fn((−x)−) − Fn(x) + 1),

max(G+
m(x)−F+

n (x)+Fn((−x)−)+Fn(x)−1, 2(G+
m − F+

n )})

≥ 1
4
E(max(0, 2(G+

m(x) − F+
n (x)))) = Bias(F ∗

n,m).

The corresponding inequalities for the case of x < 0 follow by symmetry. Similar
results may be obtained for the estimators G1

n,m = Φ1(Φ∗
2(Φ1(Fn), Gm)), G2

n,m =
Φ∗

2(Φ1(Fn), Φ1(Gm)), and Ĝ1
n,m and Ĝ2

n,m. It is easy to see that all the estimators
for F have positive (negative) bias for x > 0 (x < 0), while the estimators for G have
negative (positive) bias for x > 0 (x < 0). The following proposition summarizes
the results about the bias functions.

Proposition 1. Let F >p G be symmetric distribution functions, and let X1, . . . ,
Xn and Y1, . . . , Ym be independent random samples from F and G respectively. The
bias functions of the estimators for F and G given by (2.1), (2.2), (2.4), (2.5),
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(2.6), and (2.7), satisfy the following properties. For all x,

(i) |Bias(F̂ 1
n,m(x))| ≥ |Bias(F̂ 2

n,m(x))|

=
m

2(m + n)
E{max(0, G+

m(|x|) − F+
n (|x|)}

= |Bias(F ∗
n,m(x))|,

(ii) |Bias(F 1
n,m(x))| ≥ |Bias(F 2

n,m(x))| ≥ |Bias(F̂ 2
n,m(x))|,

(iii) |Bias(Ĝ1
n,m(x))| ≥ |Bias(Ĝ2

n,m(x))|

= − m

2(m + n)
E{min(0, F+

n (|x|) − G+
m(|x|))},

(iv) |Bias(G1
n,m(x))| ≥ |Bias(G2

n,m(x))| ≥ |Bias(Ĝ2
n,m(x))|.

2.3. Estimators as Projections onto Appropriate Convex Spaces

Recall the definitions of the new estimators given by (2.4) - (2.7). Schuster [36]
showed that the operator Φ1 projects its argument to its closest symmetric distri-
bution. That is, letting F be the convex set of symmetric distributions about zero,
then for an arbitrary distribution H, ‖ Φ1(H) − H ‖∞= infF ∈F ‖ H − F ‖ ∞. Rojo
and Ma [30], and Rojo and Batun-Cutz [34] have shown that the operator Φ2 has
the property that for arbitrary distributions H and G, |Φ2(H(x), G(x)) − H(x)| =
infF ∈F ∗ |F (x) − G(x)|, where F ∗ is the convex set of distributions F satisfying
(1.3). Thus, for F and G distribution functions let

F1 = {distribution functions F satisfying (1.3) with G replaced by Cn,m},

F ∗
1 = {symmetric distributions F satisfying (1.3) with G replaced by Φ1(Cn,m)}

and F ∗
2 = {all symmetric at 0 distribution functions}.

Thus the estimator F̂ 2
n,m first projects Fn onto F ∗

2 and then projects Φ1(Fn)
onto F ∗

1 . By contrast, the estimator F̂ 1
n,m first projects Fn onto F1 to obtain

Φ2(Fn, Cn,m) and then projects the latter onto F ∗
1 . With appropriate changes in

the above notation, similar comments hold for the estimators Ĝi
n,m for i = 1, 2.

2.4. Peakedness Order of New and Previous Estimators

By construction, the estimators F i
n,m and F̂ i

n,m, for i = 1, 2 are more peaked than
the estimators Gi

n,m and Ĝi
n,m, respectively. Rojo and Batun-Cutz [34] showed that

F 1
n,m >p F 2

n,m. The next theorem provides comparisons in terms of peakedness for
several of the estimators and provides a simple relationship between F 2

n,m and F̂ 2
n,m.

Lemma 1. Let F >p G be symmetric distribution functions, and let X1, . . . , Xn

and Y1, . . . , Ym be independent random samples from F and G respectively. Con-
sider the estimators for F and G given by (2.1), (2.2), (2.4), (2.5), (2.6), (2.7).
Then

(i) F̂ 2
n,m = n

n + mF̂n + m
n + mF 2

n,m,

(ii) F̂ 1
n,m >p F̂ 2

n,m >p Ĝ2
n,m >p Ĝ1

n,m,
(iii) F 1

n,m >p F 2
n,m >p F̂ 2

n,m, and G1
n,m <p G2

n,m <p Ĝ2
n,m.
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Proof. (i) For x ≥ 0,

F̂ 2
n,m(x) = max{F̂n(x), Ĉn,m(x)} =

n

n + m
F̂n(x) +

m

n + m
max{F̂n(x), Ĝm(x)}

=
n

n + m
F̂n(x) +

m

n + m
F 2

n,m(x).

The result then follows by symmetry.
(ii) First we prove that F̂ 1

n,m >p F̂ 2
n,m. Let x ≥ 0, then

F̂ 1
n,m(x) =

1
2

[
max{Fn(x), Cn,m(x)} + 1 − min{Fn((−x)−), Cn,m((−x)−)}

]
≥ 1

2
[
Cn,m(x) + 1 − Cn,m((−x)−)

]
= Ĉn,m(x).(2.9)

Using similar arguments it can be shown that F̂ 1
n,m(x) ≥ F̂n(x). Therefore,

combining the last inequality and (2.9) we obtain F̂ 1
n,m(x) ≥ F̂ 2

n,m(x). The result
follows from symmetry.

We now prove that F̂ 2
n,m >p Ĝ2

n,m. For x ≥ 0, F̂ 2
n,m(x) = max{F̂n(x), Ĉn,m(x)} ≥

Ĉn,m(x) ≥ Ĝ2
n,m(x). The result follows by symmetry.

Since for x ≥ 0, Ĝ1
n,m(x) ≤ Ĉn,m(x) and Ĝ1

n,m(x) ≤ Ĝm(x). Then Ĝ2
n,m >p Ĝ1

n,m

by symmetry.
Finally consider (iii). The result that F 1

n,m >p F 2
n,m follows from Rojo and

Batun-Cutz [34]. The result that F 2
n,m >p F̂ 2

n,m follows from the arguments used
to prove that Bias(F 2

n,m) ≥Bias(F̂ 2
n,m).

Note that (i) implies that for x ≥ 0, Bias(F 2
n,m(x)) = m+n

m Bias(F̂ 2
n,m(x)),

so that |Bias(F 2
n,m(x))| = m+n

m |Bias(F̂ 2
n,m(x))| for all x, thus providing a more

accurate description of the result about bias given in Proposition 1.

3. Asymptotics

This section discusses the strong uniform convergence of the estimators and their
asymptotic distribution theory. One important aspect of the asymptotic results for
the estimators F̂ i

n,m (Ĝi
n,m), i = 1, 2 discussed here is that they hold even when

only n (m) tends to infinity. This is in sharp contrast with the results of Rojo and
Batun-Cutz [34] and those of El Barmi and Mukerjee [10]. We discuss the strong
uniform convergence first.

3.1. Strong Uniform Convergence

The following theorem provides the strong uniform convergence of the estimators
F̂ i

n,m (Ĝi
n,m), i = 1, 2. The results use the strong uniform convergence of the sym-

metrized F̂n (Ĝm) to F (G) as n → ∞ (m → ∞), Schuster [36].

Theorem 3.1. Let F and G be symmetric distribution functions with F >p G,
and let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from F and G
respectively. Then,

(i) F̂ i
n,m, for i = 1, 2, converge uniformly with probability one to F as n → ∞.

(ii) Ĝi
n,m for i = 1, 2 converge uniformly with probability one to G as m → ∞.
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Proof. (i) Consider F̂ 2
n,m first. Then, for x ≥ 0,

F̂ 2
n,m(x) − F (x) = F̂n(x) − F (x) +

m

n + m
max{0, Ĝm(x) − F̂n(x)}.(3.1)

But, since F (x) ≥ G(x),

Ĝm(x) − F̂n(x) ≤ Ĝm(x) − G(x) + F (x) − F̂n(x).

Hence

max{0, Ĝm(x) − F̂n(x)} ≤ max{0, Ĝm(x) − G(x) + F (x) − F̂n(x)}
≤ |Ĝm(x) − G(x)| + |F̂n(x) − F (x)|(3.2)

and therefore, the left side of (3.1) is bounded above by

|F̂n(x) − F (x)| +
(

m

m + n

)
{ |Ĝm(x) − G(x)| + |F̂n(x) − F (x)| }.

Since F̂n, and Ĝm are strongly and uniformly consistent for F and G, then as
n → ∞, with probability one,

sup
x≥0

|F̂ 2
n,m(x) − F (x)| → 0,

regardless of whether m → ∞ or not. When x < 0 the result follows by symmetry.

Let us now consider the case of F̂ 1
n,m. For x ≥ 0

F̂ 1
n,m(x) − F (x) = F̂n(x) − F (x) +

1
2

m

n + m
[max{0, Gm(x) − Fn(x)}(3.3)

− min{0, Gm(−x−) − Fn(−x−)}
]
.

Since F (x) ≥ G(x) and F (−x) ≤ G(−x), then it follows that

max{0, Gm(x) − Fn(x)} − min{0, Gm(−x−) − Fn(−x−)}

is bounded above by

max{0, Gm(x) − G(x) + F (x) − Fn(x)}
− min{0, Gm(−x−) − G(−x) + F (−x) − Fn(−x−)}

and, therefore, the left side of (3.2) is bounded above by

|F̂n(x) − F (x)| +
1
2

m

m + n
(|Gm(x) − G(x)| + |F (x) − Fn(x)|

+ |Gm(−x−) − G(−x)| + |F (−x) − Fn(−x−)|).(3.4)

Taking the supremum over x in (3.4), and then letting n → ∞, the result follows,
whether m → ∞ or not, from the strong uniform convergence of F̂n, Gm, and Fn

to F , G, and F respectively. The result for x < 0 follows by symmetry.
(iii) The proof for the strong uniform convergence of Ĝ2

n,m to G, when only
m → ∞ is similar. We sketch the proof. For x < 0

Ĝ2
n,m(x) − G(x) = Ĝm(x) − G(x)) +

n

n + m
max{0, F̂n(x) − Ĝm(x)}.
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Therefore, since F (x) < G(x) for x < 0, max{0, F̂n(x) − Ĝm(x) is bounded above
by

max{0, F̂n(x) − F (x) + G(x) − Ĝm(x)} ≤ |F̂n(x) − F (x)| + |G(x) − Ĝm(x)|.

When m → ∞, the result follows, regardless of whether n → ∞ or not, from the
strong uniform convergence of F̂n and Ĝm and using a symmetry argument to
handle the case of x > 0.

(iv) This case is omitted as it follows from similar arguments.

3.2. Weak Convergence

Consider first the point-wise asymptotic distribution for F̂ i
n,m, i = 1, 2. Recall that

√
n(F̂n(x) − F (x)) W→ N

(
0,

F (−|x|)(2F (|x|) − 1)
2

)
.

Therefore, when n/m → ∞, and using (3.1)-(3.4), Slutsky’s theorem and the central
limit theorem for F̂n, we get the following result:

√
n(F̂ i

nm(x) − F (x)) W→ N

(
0,

F (−|x|)(2F (|x|) − 1)
2

)
.(3.5)

Thus, under these conditions, F̂ i
n,m, i = 1, 2, are

√
n-equivalent and have the

same asymptotic distribution as the symmetrized F̂n which happens to have the
same asymptotic limit as in the case when G is completely known. Note that this
result assumes only that n/m → ∞ and hence the result holds if m is fixed and
n → ∞. This is in sharp contrast with the results of El Barmi and Mukerjee [10] that
require that both n and m tend to infinity. Similar results hold for the estimators
Ĝi

n,m, i = 1, 2. These are summarized in the following theorem.

Theorem 3.2. Suppose that F >p G and let X1, . . . , Xn and Y1, . . . , Ym be random
samples from F and G respectively. Then for i = 1, 2,

(i) If n/m → ∞ then

√
n(F̂ i

nm(x) − F (x)) D→ N

(
0,

F (−|x|)(2F (|x|) − 1)
2

)
.

(ii) If m/n → ∞ then

√
n(Ĝi

nm(x) − G(x)) D→ N

(
0,

G(−|x|)(2G(|x|) − 1)
2

)
.

We now turn our attention to the weak convergence of the processes{√
n

(
F̂ i

nm(x) − F (x)
)

: −∞ < x < ∞
}

,

and {√
n

(
Ĝi

nm(x) − G(x)
)

: −∞ < x < ∞
}

,

for i = 1, 2. Only the results for F̂ i
n,m, i = 1, 2 will be discussed in detail as the

results for Ĝi
n,m, i = 1, 2 can be obtained by similar arguments. Although the



Estimation of Symmetric Distributions under Peakedness 159

processes {√
n(F̂ i

nm(x) − F (x)) : −∞ < x < ∞} for i = 1, 2 are correlated, we are
only interested in their marginal behavior. For that purpose let {W1(x) : −∞ <
x < ∞} denote a mean zero Gaussian process with covariance function

E(W1(x)W1(y)) =
{

1
2 (1 − F (y))(F (x) − F (−x)) if |y| > |x|,

1
2F (x)(F (−y) − F (y)) if |y| < |x|,(3.6)

and let {W2(x) : −∞ < x < ∞} denote a mean zero Gaussian process with
covariance function

E(W2(x)W2(y)) =
{

1
2 (1 − G(y))(G(x) − G(−x)) if |y| > |x|,

1
2G(x)(G(−y) − G(y)) if |y| < |x|.(3.7)

We have the following result:

Theorem 3.3. Under the conditions of the previous Theorem,

(i) If n/m → ∞, then

{
√

n(F̂ i
nm(x) − F (x)), −∞ < x < ∞} W→ {W1(x) : −∞ < x < ∞}, and

(ii) If m/n → ∞, then

{
√

n(Ĝi
nm(x) − G(x)), −∞ < x < ∞} W→ {W2(x) : −∞ < x < ∞}.

Proof. The proof follows easily by the continuous mapping Theorem after observing
that the weak limit of {√

n(F̂n(x) − F (x)), −∞ < x < ∞} is the process {W1(x) :
−∞ < x < ∞}, together with the fact that, using (3.1),

F̂ 2
n,m(x) − F (x) = F̂n(x) − F (x) +

m

n + m
max{0, Ĝm(x) − F̂n(x)},(3.8)

with ‖ √
n m

n+m {max 0, Ĝm − F̂n} ‖ ∞ → 0 with probability one, where ‖ · ‖ ∞ de-
notes the sup norm. Similar arguments yield the results for the other processes.

The asymptotic theory for F̂ 2
n,m was discussed by El Barmi et al. [10] for the

case that both n and m go to infinity and hence their result does not include our
result here when m is bounded and n → ∞. When n/m → c with 0 ≤ c < ∞,
and F (x) > G(x) for all x > 0 the weak limit of {√

n(F̂ i
nm(x) − F (x)), −∞ <

x < ∞} is {W1(x) : −∞ < x < ∞}, for i = 1, 2, which is the weak limit of the
process {√

n(Fn,2(x) − F (x)), −∞ < x < ∞} discussed in Rojo and Batun-Cutz
[34]. Let {Z(x), −∞ < x < ∞} represent the weak limit of the empirical process
{√

n(Fn(x) − F (x)), −∞ < x < ∞}. That is {Z(x), −∞ < x < ∞} is a mean zero
Gaussian process with covariance function E(Z(t)Z(s)) = F (s)(1 − F (t)) for s ≤ t.
When n/m → c with 0 ≤ c < ∞, and F (x) = G(x) for all x the weak limits of
{√

n(F̂ i
nm(x) − F (x)), −∞ < x < ∞} for i = 1, 2 follow from the results in Rojo

[33] as follows:

Theorem 3.4. Let F (x) = G(x) for all x and let n/m → c for 0 ≤ c < ∞.
Let {Wi(x), −∞ < x < ∞}, for i = 1, 2 be the mean zero Gaussian processes
with covariance functions given by (3.6) and (3.7), respectively. Let W ∗

i (x) =
Wi(|x|)sgn(x), for i = 1, 2. Then

(i) The process
√

n(F̂ 2
n,m − F (x)), −∞ < x < ∞} converges weakly to the process

{max(W ∗
1 (x),

√
cW ∗

2 (x)+cW ∗
1 (x)

1+c ), −∞ < x < ∞} with W ∗
1

D= W ∗
2 and independent.
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(ii) The process
√

n(F̂ 1
n,m − F (x)), −∞ < x < ∞} converges weakly to the

process {H(|x|)sgn(x), −∞ < x < ∞]} where H(x) = 1
2 {max{Z1(x), c

1+cZ1(x) +
√

c
1+cZ2(x)} − min{Z1(−x), c

1+cZ1(−x) +
√

c
1+cZ2(−x)}, and {Zi(x), −∞ < x < ∞},

i = 1, 2 are independent copies of the process {Z(x), −∞ < x < ∞}.

Proof. (i) Consider F̂ 2
n,m first. When F (x) = G(x) for all x, it follows from (3.8)

that, for x ≥ 0,

√
n(F̂ 2

n,m(x) − F (x)) = max
{√

n(F̂n(x) − F (x)),√
n/m

m

n + m

√
m(Ĝm(x) − G(x))(3.9)

+
n

n + m

√
n(F (x) − F̂n(x))

}
.

By the independence of F̂n and Ĝm and their weak convergence to W1 and W2, it
follows that the bivariate process{√

n/m
m

n + m

√
m(Ĝm(x) − G(x)),

n

n + m

√
n(F (x) − F̂n(x)), −∞ < x < ∞

}
converges weakly to the process {

√
c

1+cW2(x), c
1+cW1(x), −∞ < x < ∞}. Since

for x < 0, F̂ 2
n,m(x) − F (x) D= F (−x) − F̂ 2

n,m(−x), the result then follows for
0 < c < ∞ from the continuous mapping theorem after observing that the mapping
h(x, y) = (1+c

c y, x+y) is continuous, and then applying it to (3.9) to get the result.
The case of c = 0 follows immediately since it then follows that the second term on
the right side of (3.9) converges to zero in probability.

(ii) Note that for x > 0

F̂ 1
nm(x) − F (x) =

1
2

max
{
Fn(x) − F (x),

n

m + n
(Fn(x) − F (x)) +

m

n + m
(Gm(x) − F (x))

}
+

1
2

min
{

Fn(−x) − F (−x),

n

m + n
(Fn(−x) − F (−x)) +

m

n + m
(Gm(−x) − F (−x))

}
.

Since the function h(x, y, z, w) = 1
2 [max{x, x + z} − min{y, y + w}] is continuous,

by the continuous mapping theorem we obtain

√
n(F̂ 1

nm(x) − F (x)) W→ 1
2

[
max{Z1(x),

c

1 + c
Z1(x) +

√
c

1 + c
Z2(x)}

− min{Z1(−x),
c

1 + c
Z1(x) +

√
c

1 + c
Z2(−x)}

]
= H(x).(3.10)

The result then follows after considering the case x < 0 and following a similar
argument.

It has been observed, e.g. Rojo [28, 33], and Rojo and Batun-Cutz [34], that weak
convergence of the processes of interest fails to hold when the underlying distrib-
utions F and G coincide at some point x0 and are unequal in some neighborhood
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to the right of x0. That is the case here as well. Suppose that F (x0) = G(x0) for
x0 > 0 and F (x) > G(x) for x ∈ (x0, x0 + ν), ν > 0. If m

n → c, 0 < c ≤ ∞, as
m, n → ∞, it follows that

(3.11)
√

n(F̂ 1
nm(x0) − F (x0))

D→ H(|x0|)sgn(x0),

with H(x) defined as in (ii) of theorem 3.4 with (Z1(x0), Z2(x0)) a zero-mean bi-
variate normal distribution vector with covariance (1 − F (x0))F (x0).

However, for x ∈ (x0, x0 + ν) the sequence
√

n(F̂ 1
nm(x) − F (x)) converges in

distribution to the distribution given in (3.5). Then it can be seen, using arguments
as in Rojo [28], that the process {√

n(F̂ 1
nm(x) − F (x)) : −∞ < x < ∞} is not tight

and hence cannot converge weakly.
We finish this section with results that provide the weak convergence of the

processes {√
n(F i

n,m(x) − F (x)), −∞ < x < ∞} for i = 1, 2, in the case that
F (x) = G(x) for all x.

Theorem 3.5. Let n/m → c with 0 ≤ c < ∞, and F (x) = G(x) for all x.
(i) The process {√

n(F 2
n,m(x) − F (x)), −∞ < x < ∞} converges weakly to

{sgn(x) max{sgn(x)W1(x), sgn(x)
√

cW2(x), −∞ < x < ∞},

where W1 and W2 are independent copies of the mean zero Gaussian process with
covariance function defined by (3.6).

(ii) The process {√
n(F 1

n,m(x) − F (x)), −∞ < x < ∞} converges weakly to

1
2

{max {Z(xsgn(x)),
√

cW (xsgn(x)}

− sgn(x) min{Z(−xsgn(x)),
√

cW (−xsgn(x))}; −∞ < x < ∞},

where Z and W are independent mean zero Gaussian process with covariance func-
tions defined by E(Z(s)Z(t)) = F (s)(1 − F (t)) for s < t, and (3.6) respectively.

Proof. (i) The result follows from the independence of {√
n(F̂ ∗

n(x) − F (x)), −∞ <

x < ∞} and {√
m(Ĝ∗

m(x) − G(x)), −∞ < x < ∞}, their weak convergence to W1

and W2, and the continuous mapping theorem after observing that

√
n(F 2

n,m(x) − F (x)) = sgn(x) max

{
sgn(x)

√
n(F̂ ∗

n(x) − F (x)),

sgn(x)
√

n

m

√
m(Ĝ∗

m(x) − G(x))

}
.

(ii) Consider the case of x > 0 and write
√

n(F 1
n,m(x) − F (x))

=
√

n

2
{1 − 2F (x) + max(Fn(x), Ĝm(x)) − min(Fn(−x), Ĝm(−x))}

=
1
2

{
max

{
√

n(Fn(x) − F (x)),
√

n

m

√
m(Ĝm(x) − G(x))

}

− min

{
√

n(Fn(−x) − F (−x)),
√

n

m

√
m(Ĝm(−x) − G(−x))

}}
.
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Fig 2. Order restricted estimators for the sib-pair data incorporating peakedness.

For x < 0, a similar argument leads to
√

n(F 1
n,m(x) − F (x))

=
1
2

{
min

{
√

n(Fn(x) − F (x)),
√

n

m

√
m(Ĝm(x) − G(x))

}

− max

{
√

n(Fn(−x) − F (−x)),
√

n

m

√
m(Ĝm(−x) − G(−x))

}}
.

The result then follows by the continuous mapping theorem after letting n/m → c

with
√

n(Fn(x)−F (x)) and
√

m(Ĝm(x)−G(x)) independent and converging weakly
to Z and W respectively.

4. Example with Sib-pair Data: An Illustration

In this section the estimator F̂ 2
n,m is illustrated by using the sib-paired data for

the Caucasian population in the Dallas metroplex area. As can be observed from
Figure 2, the new estimated distribution functions now satisfy both the constraint
of symmetry and the constraint of peakedness. Thus, since siblings with two alleles
identical by descent are more similar than those siblings sharing only one allele
identical by descent, the distribution function denoted by IBD2 is more peaked
about zero than the other two distribution functions. Similar comments apply to
the other comparisons.

5. Simulation Work

Monte Carlo simulations were performed to study the finite-sample properties of
the estimators F̂ 1

nm and F̂ 2
nm defined by (2.4) and (2.6) respectively. We consider
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various examples of underlying distributions (Normal, Cauchy, Laplace, mixtures
of normals, and T), and sample sizes (n = 10, 20, 30 for F and m = 10, 20, 30 for
G). Each simulation consisted of 10,000 replications.

Figures 3 and 4 show the bias functions for the four estimators considered here.
Figure 3 considers F ∼ Cauchy(0, 1) and G ∼ Cauchy(0, 2), and Figure 4 considers
the case with F ∼ Laplace(0, 1) and G ∼ Laplace(0, 1.5). As shown in Proposi-
tion 1, the estimator F̂ 2

n,m has uniformly the smallest absolute bias. These figures
are representative of the results that we obtained. One result that holds in all of

Fig 3. Bias of the estimators when estimating F∼Cauchy(0,1) with G∼Cauchy(0,2).
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Fig 4. Bias of the estimators when estimating F∼Laplace(0,1) with G∼Laplace(0,2).

our simulations is that |Bias(F 1
n,m(x))| ≥ |Bias(F̂ 1

n,m(x))| for all x. Unfortunately,
we are unable to prove this conjecture.

Turning our attention to comparing the estimators in terms of the Mean Squared
Error (MSE) Figures 5 - 10 show the ratio of the MSE of the empirical distribu-
tion to the MSE of each of the four estimators considered here. These plots are
representative of all the examples considered. As it can be seen from the plots, the
empirical distribution function is dominated by the estimators in every case and
for all x. Whereas the estimators F̂ i

n,m behave better than the estimators F i
n,m,
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Fig 5. Mean Squared Error of the estimators when estimating F∼Normal(0,1) with
G∼Normal(0,1.1).

i = 1, 2 in a neighborhood of zero, the roles are reversed on the tails of the under-
lying distribution. What is observed is that the region of the support of F where
F̂ i

n,m dominate F i
n,m, i = 1, 2 shrinks as the tails of the distributions get heavier,

and when the distribution G is far from F . Thus, there is no clear choice among
the four estimators, unless the tail is of special interest, in which case the estimator
F 2

n,m seems to be the clear choice.
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Fig 6. Mean Squared Error of the estimators when estimating F∼Normal(0,1) with
G∼Normal(0,2).

6. Conclusions

Estimators were proposed for the distribution functions F and G when it is known
that F >p G, and F and G are symmetric about zero. The estimator for F (G) was
seen to be strongly uniformly consistent when only n (m) goes to infinity and the
asymptotic theory of the estimators was delineated without requiring that both n
and m go to infinity. Finite sample properties of the estimators were considered and
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Fig 7. Mean Squared Error of the estimators when estimating F∼Cauchy(0,1) with
G∼Cauchy(0,1.5).

it was shown that the estimator F̂ 2
n,m has the uniformly smaller absolute bias of

the four estimators considered here. The choice of which estimator is best in terms
of mean squared error (mse), however, is not clear. Although the estimators F̂ i

n,m

for i = 1, 2 have smaller mse than the estimators F i
n,m, i = 1, 2 in a neighborhood

of zero, the tails are problematic for F̂ i
n,m and the estimators F i

n,m tend to have
smaller mse as demonstrated by the simulation study.
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Fig 8. Mean Squared Error of the estimators when estimating F∼Cauchy(0,1) with
G∼Cauchy(0,2).
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Fig 9. Mean Squared Error of the estimators when estimating F∼Laplace(0,1) with
G∼Laplace(0,1.5).
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Fig 10. Mean Squared Error of the estimators when estimating F∼Laplace(0,1) with
G∼Laplace(0,2).
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potential of crown ethers in mammalian cells; induction of sister chromatid
exchanges. Mutation Research 280 109–115.

[2] Bartoszewicz, J. (1985). Moment inequalities for order statistics from or-
dered families of distributions. Metrika 32 383–389.

[3] Bartoszewicz, J. (1985). Dispersive ordering and monotone failure rate dis-
tributions. Adv. in Appl. Probab. 17 472–474.

[4] Bartoszewicz, J. (1986). Dispersive ordering and the total time on test
transformation. Statist. Probab. Lett. 4 285–288.

[5] Bickel, P. J. and Lehmann, E. L. (1979). Descriptive statistics for non-
parametric models. IV. Spread. In Contributions to Statistics, Jaroslav Hájek
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