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Asymptotic distribution of the most

powerful invariant test for invariant

families

Miguel A. Arcones1

Binghamton University

Abstract: We obtain the limit distribution of the test statistic of the most
powerful invariant test for location families of densities. As an application,
we obtain the consistency of this test. From these results similar results are
obtained for the test statistic of the most powerful invariant test for scale
families.
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1. Introduction

A statistical problem which has received some attention in the literature is that
of testing two separate composite hypothesis (for a bibliography on this topic see
Pereira [16] and Pereira [17]). The meaning of separate is that no member of the null
hypothesis can be obtained as a limit of a sequence of distributions in the alternative
hypothesis. A natural test for this problem is the likelihood ratio test. Cox [5, 6]
proposes a variation of likelihood ratio test for this problem. Lindley [13] using a
Bayesian approach proposes to use the ratio of the posterior likelihoods. Atkinson [3]
considers the case of discrimating between several separate families of distributions.
White [19] obtains the asymptotic distribution of the tests in Cox [5, 6]. Loh [14]
presents a modification of Cox’s which has asymptotically the correct level. Several
other methods have being proposed by different authors. Pace and Salvan [15] find
the best estimator based on a sufficient statistic of the null hypothesis.

For invariant separate families of distributions, it is possible to find the most
powerful invariant test. This test is based on the maximal invariant. In this paper,
we obtain the asymptotic distribution of the most powerful invariant test for sepa-
rate families of distributions, when the possible types of distributions are location
or scale families.
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First, we look at testing two location families of distributions. Let f0 and f1 be
two densities in �d. We consider the testing problem

H0 : the data comes from {f0(· − t) : t ∈ �d}

versus
Ha : the data comes from {f1(· − t) : t ∈ �d}.

In order that this problem makes sense, we assume that f1 �∈ {f0(· −t) : t ∈ �d}, i.e.
there exists no t ∈ �d such that f1(x) = f0(x − t) almost everywhere with respect
to Lebesgue measure. It is well known that the most powerful invariant test for this
problem rejects H0 for large values of the statistic

(1.1) Tn,loc :=

∫
�d

∏n
j=1 f1(Xj − t) dt∫

�d

∏n
j=1 f0(Xj − t) dt

(see Lehmann and Romano [12, Example 6.3.2]). In Theorem 2.2, we obtain the
asymptotic distribution of Tn,loc.

A variation of the previous problem consists in dealing with scale families. Let
f0 and f1 be two densities in (0, ∞). We analyze the testing problem

H0 : the data comes from {λ−1f0(λ−1·) : λ > 0}

versus
Ha : the data comes from {λ−1f1(λ−1·) : λ > 0}.

We assume that f1 �∈ {λ−1f0(λ−1·) : λ > 0}. The most powerful invariant test for
this problem rejects H0 for large values of the statistic

(1.2) Tn,scale :=

∫ ∞
0

(∏n
j=1 λ−1f1(λ−1Xj)

)
λ−1 dλ∫ ∞

0

(∏n
j=1 λ−1f0(λ−1Xj)

)
λ−1 dλ

(see Lehmann and Romano [12, Problem 6.12]).
The goal of this manuscript is to obtain the asymptotic distribution of the sta-

tistics in (1.1) and (1.2). The tests in (1.1) and (1.2) are a particular case of the
Bayesian tests in Lindley [13]. For these tests, Lindley [13, page 456] obtains the
asymptotic distribution without making explicit the required regularity conditions.
The goal of this article is to show that concavity and mild smooth conditions suffice
to give the expansion obtained in Lindley [13, page 456] for the test in (1.1) and
(1.2). Ducharme and Frichot [8, Theorem 1] claim that the expansion in Lindley [13]
holds under no conditions by using Theorem 6.2 in Barndorff–Nielsen and Cox [4].
However, the asymptotic result in Theorem 6.2 in Barndorff–Nielsen and Cox [4]
does not apply neither to Theorem 1 Ducharme and Frichot [8] nor to (1.1). Theo-
rem 6.2 in Barndorff–Nielsen and Cox [4] gives an expansion for

∫
D

g(x)(f(x))n dx,
where f and and g are nonstochastic fixed functions. This is not the situation in
(1.1) and (1.2).

In Section 2, we present the main results. We show that by using concavity,
only mild additional smoothness conditions are needed to obtain the aymptotic
expansions of certain integrals. This approach applies to location families as well
as scale families. This approach does not apply to location and scales families.
Concavity (or convexity) is an assumption used by many authors (see for example
Daniels [7]; Andersen and Gill [1], Haberman [9]; Hjort and Pollard, [11]; Arcones
[2]). Section 3 contains the proofs of the results in Section 2.
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In the proof of Theorem 2.1, we use concavity to bound certain stochastic
processes defined on �d. One of the properties of concave functions which we will
use is that a sequence of pointwise converging convex functions converges uniformly
on compact sets (see for example Rockafellar [18, Theorem 10.8]). We will use the
stochastic version of this theorem given by Andersen and Gill [1, Theorem II.1].
Andersen and Gill [1] show that if the finite dimensional distributions of sequence
of convex stochastic processes converge in probability, then the convergence holds
in probability uniformly over compact sets. We also use concavity in the proof of
Theorem 2.1 (see (3.6)) to bound a concave stochastic process outside a compact
set.

We will use the usual multivariate notation. For example, given u = (u1, . . . ,

ud)′ ∈ �d, |u| = (
∑d

j=1 u2
j )

1/2. Given a d × d matrix A, we denote

|A| := sup
|u|,|v|≤1

u′Av.

Id denotes the d × d identity matrix. cd denotes the Lebesgue measure of the unit
ball of �d. c will denote a constant which may vary from occurrence to occurrence.

2. Main results

We will derive our results from the following theorem, which is a kind of delta
method for integrals of empirical processes.

Theorem 2.1. Let {Xj } ∞
j=1 be a sequence of �d–valued i.i.d. r.v.’s with values in a

measurable space (S, S). Let X be a copy of X1. Let Θ be a Borel subset of �d. Let
g : S × Θ → � be a function such that g(·, θ) : S → � is measurable for each θ ∈ Θ.
Let φ : S → �d be a Borel measurable function. Let θ0 be a point in the interior
of Θ. Let {an} ∞

n=1 be a sequence of real numbers which converges to infinity. Let
{bn} ∞

n=1 be a sequence of real numbers. Suppose that:
(i) For each x ∈ S, g(x, ·) : Θ → � is a concave function.
(ii) There exists a d × d positive definite symmetric matrix W such that

E[g(X, θ) − g(X, θ0)] = −2−1(θ − θ0)′W (θ − θ0) + o(|θ − θ0|2),

as θ → θ0.
(iii) For each θ ∈ �d,

a2
nE

[
min

(
|r(X, a−1

n θ) − bn|, |r(X, a−1
n θ) − bn|2

)]
→ 0,

where
r(x, θ) := g(x, θ0 + θ) − g(x, θ0) − θ′φ(x).

(iv) ann−1
∑n

i=1(φ(Xi) − E[φ(Xi)]) = OPr(1).
Then,

ad
n

∫
Θ

exp
(
a2

nn−1
∑n

j=1(g(Xj , θ) − g(Xj , θ0))
)

dθ(2.1)

− e2−1Z′
nW −1Zndet(W −1/2)(2π)d/2

Pr−→ 0,

where Zn := ann−1
∑n

i=1(φ(Xi) − E[φ(Xi)]).
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If Θ is a convex set, conditions (i) and (ii) in Theorem 2.1 imply that E[g(X, θ)],
θ ∈ Θ, has a maximum at θ0.

If for almost all x θ �→ g(x; θ) is differentiable with respect to θ at θ0, then φ(x)
is the partial derivative ġ(x, θ0) of g(x; θ) with respect to θ at θ0.

Next two propositions show that differentiability conditions imply condition (iii)
in Theorem 2.1.

Proposition 2.1. Suppose that:
(i) an = n1/2.
(ii) For each x ∈ S, g(x, ·) is differentiable with respect to θ in a neighborhood

of θ0.
(iii)

lim
δ→0+

E

[
sup

|θ−θ0|≤δ

|ġ(X, θ) − ġ(X, θ0)|2
]

= 0

where ġ(x, θ) is the vector of partial derivatives of g(x, ·) at θ0.
Then, (iii) in Theorem 2.1 holds with φ(·) = ġ(·, θ0).

Proposition 2.2. Suppose that:
(i) an = n1/2.
(ii) For each x ∈ S, g(x, ·) is twice differentiable with respect to θ in a neighbor-

hood of θ0.
(iii)

lim
δ→0+

E

[
sup

|θ−θ0|≤δ

|g̈(X, θ) − g̈(X, θ0)|
]

= 0

where g̈(x, θ) is the d × d matrix of second partial derivatives of g(x, ·) at θ0.
(iv) E [|g̈(X, θ0)|] < ∞.
(v) E [ġ(X, θ0)] = 0.
Then, (ii) and (iii) in Theorem 2.1 hold with W = −E [g̈(X, θ)] and φ(·) =

ġ(·, θ0).

Out next theorem gives the asymptotic distribution of Tn,loc for an arbitrary
sampling distribution.

Theorem 2.2. Let f0 and f1 be two densities in �d such that f0(x), f1(x) > 0, for
each x ∈ �d. Let {Xn} ∞

n=1 be a sequence of �d–valued i.i.d. r.v.’s. Let X be a copy
of X1. Suppose that:

(i) There exists t0 ∈ �d such that

E[log f0(X − t0)] = sup
t∈�d

E[log f0(X − t)].

(ii) There are a measurable function φ0 : �d → � and a d × d matrix W0 such
that g0(x, θ) := log f0(x − θ), x, θ ∈ �d, such that the conditions in Theorem 2.1
are satisfied for g ≡ g0, θ0 ≡ t0, φ ≡ φ0, W ≡ W0 and an ≡ n1/2.

(iii) There exists t1 ∈ �d such that

E[log f1(X − t1)] = sup
t∈�d

E[log f1(X − t)].

(iv) There are a measurable function φ1 : �d → � and a d × d matrix W1 such
that g1(x, θ) := log f1(x − θ), x, θ ∈ �d, such that the conditions in Theorem 2.1
are satisfied for g ≡ g1, θ0 ≡ t1, φ ≡ φ1, W ≡ W1 and an ≡ n1/2.
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Then,

log(Tn,loc) −
∑n

j=1 log f1(Xj − t1) − log
(
det(W −1/2

1 )
)

− 2−1|W −1/2
1 Zn,1|2

+
∑n

j=1 log f0(Xj − t0) + log
(
det(W −1/2

0 )
)

+ 2−1|W −1/2
0 Zn,0|2(2.2)

Pr→ 0,

where

Zn,0 := n−1/2
n∑

i=1

(φ0(Xi) − E[φ0(Xi)])

and

Zn,1 := n−1/2
n∑

i=1

(φ1(Xi) − E[φ1(Xi)]).

Consequently,

n1/2
(
n−1 log(Tn,loc) − E[log(f1(X1 − t1)/f0(X1 − t0))]

)
(2.3)

d→ N(0, Var(log(f1(X1 − t1)/f0(X1 − t0)))).

If fj , j = 1, 2, is differentiable with derivative ḟj , then φj(x) = (fj(x − tj))−1 ×
ḟj(x − tj), x ∈ �d.

It is well known that by Jensen’s inequality, if a �d–valued r.v. X has density f ,
then for any other density g,

(2.4) E[log g(X)] ≤ E[log f(X)],

with equality only when f and g are equal almost everywhere with respect to the
Lebesgue measure. Notice that

K(P, Q) := E[log f(X)] − E[log g(X)] = E[log(f(X)/g(X))]

is the Kullback–Leibler divergence between the measures P and Q in �d having
respective densities f and g. Equation (2.4) implies that for each tj ∈ �d, j = 1, 2,

(2.5) Efj ,tj [log fj(X − tj)] = sup
t∈�d

Efj ,tj [log fj(X − t)],

where Efj ,tj is expectation with respect to the probability measure for which the
r.v. X have p.d.f. fj(· − tj).

Theorem 2.2 gives the limit in probability of n−1 log(Tn,loc) both under the null
and alternative hypothesis. Suppose that the conditions in Theorem 2.2 hold when
the sampling is distribution is either the null or alternative hypothesis. Then, for
each tj ∈ �d, j = 1, 2,

n−1 log(Tn,loc)
Pfj,tj−→ sup

t∈�d

Efj ,tj [log f1(X − t)] − sup
t∈�d

Efj ,tj [log f0(X − t)],

wherePfj ,tj is the probability measure when the r.v.’s X1, . . . , Xn have p.d.f. fj(· −
tj). By (2.5) and (2.4)

sup
t∈�d

Ef0,t0 [log f1(X − t)] − sup
t∈�d

Ef0,t0 [log f0(X − t)]

= sup
t∈�d

Ef0,t0 [log f1(X − t)] − Ef0,t0 [log f0(X − t0)]

= − inf
t∈�d

K(Pf0,t0 ,Pf1,t) < 0
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and

sup
t∈�d

Ef1,t1 [log f1(X − t)] − sup
t∈�d

Ef1,t1 [log f0(X − t)]

=Ef1,t1 [log f1(X − t1)] − sup
t∈�d

Ef1,t1 [log f0(X − t)]

= inf
t∈�d

K(Pf1,t1 ,Pf0,t) > 0.

A level α test is obtained as follows. Let

(2.6) an,α := inf{λ ≥ 0 :Pf0,t0 {n−1 log(Tn,loc) < λ} ≥ 1 − α}.

A level α test rejects the null hypothesis if n−1 log(Tn,loc) ≥ an,α. We have that
Pf0,t0 {n−1 log(Tn,loc) ≥ an,α} ≤ α, i.e. the type I error of the test is less or equal
than α.

If the conditions in Theorem 2.2 hold when the sampling is distribution is either
f0 or f1, then for each t1 ∈ �d,

lim
n→∞

an,α = − inf
t∈�d

K(Pf0,t0 ,Pf1,t) < 0

and
n−1 log(Tn,loc)

Pf1,t1−→ inf
t∈�d

K(Pf1,t1 ,Pf0,t) > 0.

Hence, the test is consistent:

Corollary 2.1. Suppose that the conditions in Theorem 2.2 hold when the sampling
is distribution is either f0 or f1. Then, for each 1 > α > 0 and each t1 ∈ �d,

lim
n→∞

Pf1,t1 {n−1 log(Tn,loc) ≥ an,α} = 1.

Another application of Theorem 2.2 is to obtain the asymptotic distribution of
Tn,loc under the null hypothesis. This can used to approach an,α by

Ef0,t0 [log(f1(X1 − t1)/f0(X1 − t0))]

+n−1/2zα (Varf0,t0(log(f1(X1 − t1)/f0(X1 − t0))))
1/2

,

where P {N(0, 1) ≥ zα} = α and t1 ∈ �d satisfies

Ef0,t0 [log f1(X − t1)] = sup
t∈�d

Ef0,t0 [log f1(X − t)].

By the lemma of Neyman–Pearson, the most powerful test for H0 : f0(· − t0)
versus Ha : f1(· − t), rejects for large values of the statistic

Tn,loc,t :=

∏n
j=1 f1(Xj − t)∏n
j=1 f0(Xj − t0)

.

Under regularity conditions, by the law of the large numbers,

n−1 log(Tn,loc,t)
Pf0,t0−→ Ef0,t0 [log f1(X1 − t) − log f0(X1 − t0)] = −K(Pf0,t0 ,Pf1,t).

By (2.4) −K(Pf0,t0 ,Pf1,t) < 0. The bigger −K(Pf0,t0 ,Pf1,t) becomes, the more dif-
ficult is to differentiate between the two distributions Pf0,t0 and Pf1,t. We have
that

sup
t∈�d

(−K(Pf0,t0 ,Pf1,t)) = −K(Pf0,t0 ,Pf1,t1).
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The value of t for which −K(Pf0,t0 ,Pf1,t) is biggest is t1. Theorem 2.2 shows that
under the null hypothesis Tn,loc behaves asymptotically as Tn,loc,t1 .

Next corollary shows an application of Theorem 2.2.

Corollary 2.2. Let {Xn} ∞
n=1 be a sequence of �d–valued i.i.d. r.v.’s with density

f0(· − t0), where t0 ∈ �d. Suppose that:
(i) f0(x) = γp0a

d
0e

−a
p0
0 |x|p0 , x ∈ �d, where a0 > 0, p0 ≥ 1 and

γp0 = (
∫

�d e− |x|p0
dx)−1.

(ii) f1(x) = γp1a
d
1e

−a
p1
1 |x|p1 , x ∈ �d, where a1 > 0, p1 ≥ 1 and

γp1 = (
∫

�d e− |x|p1
dx)−1.

(iii) (a0, p0) �= (a1, p1).
Then, (2.2) and (2.3) hold with θ0 = θ1 = t0.

Next, we consider the case of scale families. We have that if X has density
λ−1f(λ−1x), x ≥ 0, then Y = log X has density λ−1f(λ−1ey)ey = f(ey−log λ) ×
ey−log λ, y ∈ �. This transformation changes a scale family into a location family.

Theorem 2.3. Let f0 and f1 be two densities in (0, ∞) such that f0(x), f1(x) > 0,
for each x ∈ (0, ∞). Let {Xn} ∞

n=1 be a sequence of (0, ∞)–valued i.i.d. r.v.’s with
density λ−1

0 f(λ−1
0 ·), where λ−1

0 ∈ (0, ∞). Suppose that:
(i) There exists λ0 > 0 such that

E[log λ−1
0 f0(λ−1

0 X1)] = sup
λ>0

E[log λ−1f0(λ−1X1)].

(ii) There are a measurable function φ0 : � → � and W0 > 0 such that g0(x, θ) :=
log(f0(ex−θ)ex−θ) such that the conditions in Theorem 2.1 are satisfied for θ0 ≡
log λ0, φ ≡ φ0, W ≡ W0, an ≡ n1/2 and Xj ≡ log Xj.

(iii) There exists λ1 > 0 such that

E[log λ−1
1 f1(λ−1

1 X1)] = sup
λ>0

E[log λ−1f1(λ−1X1)].

(iv) There are a measurable function φ1 : � → � and W1 > 0 such that
g1(x, θ) := log(f1(ex−θ)ex−θ) such that the conditions in Theorem 2.1 are satis-
fied for θ0 ≡ log λ1, φ ≡ φ1, W ≡ W1, an ≡ n1/2 and Xj ≡ log Xj.

Then,

log(Tn,scale) −
∑n

j=1 log(λ−1
1 f1(λ−1

1 Xj)) − log
(
W

−1/2
1

)
− 2−1|W −1/2

g Zn,1|2

+
∑n

j=1 log(λ−1
0 f0(λ−1

0 Xj)) + log
(
W

−1/2
0

)
+ 2−1|W −1/2

0 Zn,0|2

Pr→ 0,(2.7)

where

Zn,0 := n−1/2
n∑

i=1

(φ0(log Xi) − E[φ0(log Xi)]),

and Zn,1 := n−1/2
n∑

i=1

(φ1(log Xi) − E[φ1(log Xi)]).

Consequently,

n1/2
(
n−1 log(Tn,scale) − E[log(λ−1

1 f1(λ−1
1 X1))/λ−1

0 f0(λ−1
0 X1))]

)
(2.8)

d→ N(0, Var(log((λ−1
1 f1(λ−1

1 X1))/λ−1
0 f0(λ−1

0 X1))).
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Corollary 2.3. Let {Xn} ∞
n=1 be a sequence of (0, ∞)–valued i.i.d. r.v.’s with den-

sity λ−1
0 f(λ−1

0 ·), where λ0 > 0. Suppose that:
(i) f0(x) = xα0−1e−x

Γ(α0)
, x > 0, where α0 > 0.

(ii) f1(x) = xα1−1e−x

Γ(α1)
, x > 0, where α1 > 0.

(iii) α0 �= α1.
Then, (2.7) and (2.8) hold with λ1 = λ0α0α

−1
1 .

3. Proofs

We will need the following lemmas:

Lemma 3.1. Let Yn,1, . . . , Yn,n be i.i.d. r.v.’s. Let {bn} ∞
n=1 be a sequence of real

numbers. If
lim

n→∞
nE[min(|Yn,1 − bn|, (Yn,1 − bn)2)] = 0,

then
n∑

j=1

(Yn,j − E[Yn,j ])
Pr−→ 0.

Proof. Without loss of generality, we may assume that bn = 0. The claim follows
noticing that∣∣∣E [∑n

j=1(Yn,jI(|Yn,j | ≤ 1) − E[Yn,jI(|Yn,j | ≤ 1)])
]∣∣∣ ≤ 2nE[|Yn,1|I(|Yn,1| ≤ 1)

≤ 2nE[min(|Yn,1|, Y 2
n,1)]

and

Var
(∑n

j=1 (Yn,jI(|Yn,j | > 1) − E[Yn,jI(|Yn,j | > 1)])
)

= nVar(Yn,1I(|Yn,1| > 1))

≤ nE[Y 2
n,1I(|Yn,1| > 1)] ≤ nE[min(|Yn,1|, Y 2

n,1)].

Proof of Theorem 2.1. By a change of variables, we have that

ad
n

∫
Θ

exp

⎛
⎝a2

nn−1
n∑

j=1

(g(Xj , θ) − g(Xj , θ0))

⎞
⎠ dθ

=
∫

θ0+a−1
n t∈Θ

exp

⎛
⎝a2

nn−1
n∑

j=1

(g(Xj , θ0 + a−1
n t) − g(Xj , θ0))

⎞
⎠ dt.

Hence, we would like to prove that

∫
θ0+a−1

n t∈Θ
eUn(t) dt −

∫
�d eVn(t) dt

Pr−→ 0,(3.1)

where Un(t) := a2
nn−1

∑n
j=1(g(Xj , θ0 + a−1

n t) − g(Xj , θ0)), t ∈ �d, and Vn(t) :=
t′Zn − 2−1t′Wt, t ∈ �d.

By Lemma 3.1 and hypothesis (v), for each t ∈ �d,

n∑
j=1

(r(Xj , a
−1
n t) − E[r(Xj , a

−1
n t)]) Pr−→ 0.
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By hypothesis (ii),

E

[
a2

nn−1
n∑

j=1

(g(Xj , θ0 + a−1
n t) − g(Xj , θ0))

]
= E[a2

n(g(X1, θ0 + a−1
n t) − g(X1, θ0))]

−→ −2−1t′Wt,

as n → ∞. Hence, for each t ∈ �d

Un(t) − Vn(t)(3.2)
=

∑n
j=1(r(Xj , a

−1
n t) − E[r(Xj , a

−1
n t)]) + E[a2

n(g(X1, θ0 + a−1
n t) − g(X1, θ0))]

+2−1t′Wt
Pr−→ 0.

Using the concavity of Un(·) − Vn(·), Theorem II.1 in Andersen and Gill [1], implies
that for each 0 < M < ∞,

sup
t∈�d,|t|≤M

|Un(t) − Vn(t)| Pr−→ 0.

Hence,

∣∣∣∣∣
∫

t∈�d,|t|≤M

(
eUn(t) − eVn(t)

)
dt

∣∣∣∣∣ ≤ cdM
d sup

t∈�d,|t|≤M

∣∣∣eUn(t) − eVn(t)
∣∣∣(3.3)

≤cdM
d sup

t∈�d,|t|≤M

eVn(t)
∣∣∣eUn(t)−Vn(t) − 1

∣∣∣
≤cdM

d sup
t∈�d,|t|≤M

eVn(t)|Un(t) − Vn(t)|e|Un(t)−Vn(t)| Pr−→ 0.

By (3.3) to show (3.1), we need to prove that for each ε > 0,

lim
M →∞

lim sup
n→∞

Pr

{∫
|t|>M,θ0+a−1

n t∈Θ

eUn(t) dt ≥ ε

}
= 0(3.4)

and

lim
M →∞

lim sup
n→∞

Pr

{∫
|t|>M

eVn(t) dt ≥ ε

}
= 0.(3.5)

Using that Un is concave, for each |t| ≥ M , we have that

Un(|t| −1Mt) = Un((1 − |t| −1M)0 + |t| −1Mt)
≥ (1 − |t| −1M)Un(0) + |t| −1MUn(t) = |t| −1MUn(t).

Hence, for each |t| ≥ M ,

Un(t) ≤ M −1|t|Un(|t| −1Mt) ≤ M −1|t| sup
|s|=M

Un(s).(3.6)
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Thus, for each ε > 0 and each 0 < M < ∞,

lim sup
n→∞

Pr

{∫
|t|>M,θ0+a−1

n t∈Θ

eUn(t) dt ≥ ε

}

≤ lim sup
n→∞

Pr

{∫
|t|>M,θ0+a−1

n t∈Θ

eM −1|t| sup|s|=M Un(s) dt ≥ ε

}

= lim sup
n→∞

Pr

{∫
|t|>M

eM −1|t| sup|s|=M Vn(s) dt ≥ ε

}

= Pr

{∫
|t|>M

eM −1|t| sup|s|=M U(s) dt ≥ ε

}
,

where U(t) = t′Z − 2−1t′Wt, t ∈ �d and Z is normal �d–valued r.v. with mean
zero and variance Var(ḣ(X1)). Since V and W are two positive definite matrices,

sup
|s|=M

U(s) = sup
|s|=M

(
s′V 1/2Zd − 2−1s′Ws

)
≤ aM |Zd| − 2−1bM2,

where a := sup|u|,|v|=1 u′W 1/2v and b := inf |u|=1 u′W 1/2u satisfy that 0 < a, b < ∞.
Hence, we get that

lim
M →0

lim sup
n→∞

Pr

{∫
|t|>M

eUn(t) dt ≥ ε

}

≤ lim
M →0

Pr

{∫
|t|>M

eM −1|t|(aM |Zd |−2−1bM2) dt ≥ ε

}
= 0.

and (3.4) follows.
Equation (3.5) follows by an argument similar to the one just done. Therefore,

(3.1) follows from (3.3)–(3.5).
We have that∫

�d

eVn(t) dt =
∫

�d

e−t′Zn −2−1t′Wt dt

=
∫

�d

e2−1Z′
nW −1Zn −2−1|W 1/2t+W −1/2Zn |2 dt = e2−1Z′

nW −1Zndet(W −1/2)(2π)d/2

The theorem follows from the previous expression and (3.1).

Proof of Proposition 2.1. We have that for each θ ∈ �d,

nE
[
min

(
|r(X, n−1/2θ)|, |r(X, n−1/2θ)|2

)]
≤nE[r(X, n−1/2θ)|2] ≤ E

[
sup

|t|≤|θ|n−1/2
|θ|2|ġ(X, θ0 + t) − ġ(X, θ0)|2

]
→ 0, as n → ∞.

Proof of Proposition 2.2. We have that

|E[g(X, θ) − g(X, θ0) − (θ − θ0)′ġ(X, θ0) − 2−1(θ − θ0)′g̈(X, θ0)(θ − θ0)]|

≤E
[

sup
|t|≤|θ−θ0|

|θ − θ0|2|g̈(X, θ0 + t) − g̈(X, θ0)|
]

= o(|θ − θ0|2), as θ → θ0,



Asymptotic distribution of the most powerful invariant test for invariant families 303

and for each θ ∈ �d,

nE
[
min

(
|r(X, n−1/2θ) − E[r(X, n−1/2θ)]|, |r(X, n−1/2θ) − E[r(X, n−1/2θ)]|2

)]
≤nE[|r(X, n−1/2θ) − E[r(X, n−1/2θ)]|]
≤nE[|r(X, n−1/2θ) − E[n−1θ′g̈(X, θ0)θ]|]

+ n|E[n−1θ′g̈(X, θ0)θ)] − E[r(X, n−1/2θ)]|
≤2nE[|r(X, n−1/2θ) − n−1θ′g̈(X, θ0)θ|]

≤2E
[

sup
|t|≤|θ|n−1/2

|θ|2|g̈(X, θ0 + t) − g̈(X, θ0)|
]

→ 0, as n → ∞.

Proof of Theorem 2.2. By the change of variables, t = t1 + n−1/2θ,∫
�d exp

(∑n
j=1 log(f1(Xj − t))

)
dt

= n−d/2
∫

�d exp
(∑n

j=1 log(f1(Xj − t1 − n−1/2θ))
)

dθ.

By the change of variables, t = t0 + n−1/2θ,∫
�d exp

(∑n
j=1 log(f0(Xj − t))

)
dt

= n−d/2
∫

�d exp
(∑n

j=1 log(f0(Xj − t0 − n−1/2θ))
)

dθ.

Hence, by Theorem 2.1

log(Tn,loc)

= log

⎛
⎝∫

�d

exp

⎛
⎝ n∑

j=1

log(f1(Xj − t1 − n−1/2θ)

⎞
⎠ dθ

⎞
⎠

− log

⎛
⎝∫

�d

exp

⎛
⎝ n∑

j=1

log(f0(Xj − t0 − n−1/2θ)

⎞
⎠ dθ

⎞
⎠

=
n∑

j=1

log f1(Xj − t1) + log
(
(2π)d/2det(W −1/2

1 )
)

+ 2−1|W −1/2
1 Zn,1|2

−
n∑

j=1

log f0(Xj − t0) − log
(
(2π)d/2det(W −1/2

0 )
)

− 2−1|W −1/2
0 Zn,0|2 + oP (1).

We will need the following lemma, whose proof is omitted, since it is a simple
calculus exercise.

Lemma 3.2. There exists a universal constant c, depending only on p, such that:
(i) If p ≥ 1, then

| |x − θ|p − |x|p| ≤ c(|x|p−1|θ| ∨ |θ|p),

for each x, θ ∈ �d.
(ii) If p = 1 and d = 1, then

| |x − θ| − |x| + |x| −1θ′x| ≤ 2|θ|I|x|≤|θ|,
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for each x, θ ∈ �d.
(iii) If 2 > p ≥ 1, then

| |x − θ|p − |x|p + p|x|p−2θ′x| ≤ c(|x|p−2|θ|2 ∧ |θ|p),

for each x, θ ∈ �d.
(iv) If p ≥ 2, then

| |x − θ|p − |x|p + p|x|p−2θ′x| ≤ c(|x|p−2|θ|2 ∨ |θ|p),

for each x, θ ∈ �d.
(v) If 2 ≥ p > 0, then

| |x − θ|p − |x|p + p|x|p−2θ′x − 2−1p(p − 2)|x|p−4(θ′x)2 − 2−1p|x|p−2|θ|2|

≤ c(|x|p−3|θ|3 ∧ |x|p−2|θ|2),
for each x, θ ∈ �d.

(vi) If 3 ≥ p ≥ 2, then

| |x − θ|p − |x|p + p|x|p−2θ′x − 2−1p(p − 2)|x|p−4(θ′x)2 − 2−1p|x|p−2|θ|2|

≤ c(|x|p−3|θ|3 ∧ |θ|p),
for each x, θ ∈ �d.

(viii) If p ≥ 3, then

| |x − θ|p − |x|p + p|x|p−2θ′x − 2−1p(p − 2)|x|p−4(θ′x)2 − 2−1p|x|p−2|θ|2|

≤ c(|x|p−3|θ|3 ∨ |θ|p),
for each x, θ ∈ �d.

Corollary 3.1. Let p ≥ 1. Let X be a �d–valued r.v. Let θ0 ∈ �d. Suppose that
(i)

E[|X − θ0|p] = inf
θ∈�d

E[|X − θ|p] < ∞.

(ii) There exists no v ∈ �d such that P {v′(X − θ0) = 0} = 1.
(iii) If p > 1, suppose that E[|X|2p−2] < ∞ and
(iv) If p = 1 and d > 1, suppose that E[|X| −1] < ∞.
(v) If p = 1 and d = 1, suppose that F (x) =P {X ≤ x}, x ∈ �, is differentiable

at θ0 and F ′(θ0) > 0.
Then, Theorem 2.1 applies to g(x, θ) = −|x − θ|p, x, θ ∈ �, φ(x) = p|x −

θ0|p−2(x − θ0)I(x − θ0 �= 0) and W = 2F ′(θ0), if p = 1 and d = 1, and

W =
p

2
E[|X − θ0|p−2Id] +

p(p − 2)
2

E[|X − θ0|p−2(X − θ0)(X − θ0)′], otherwise.

Proof. Without loss of generality, we may assume that θ0 = 0. Hypotheses (i) and
(iv) in Theorem 2.1 are obviously satisfied. Next, we will check the rest of hypotheses
case by case. Suppose that p > 1. By Lemma 3.2 (iii) and (iv), E[|X − θ|p], θ ∈ �d,
is differentiable at zero and its derivative is E[p|X|p−2X]. Since E[|X − θ|p], θ ∈ �d,
has a maximum at zero, E[p|X|p−2X] = E[φ(X)] = 0. Hence, by Lemma 3.2 (v)–
(vii),

E[g(X, θ) − g(X, 0)] + 2−1θWθ

=E[−|X − θ|p + |X|p − p|X|p−2θ′X + 2−1p(p − 2)|X|p−4(θ′X)2 + 2−1p|X|p−2|θ|2]
=o(|θ|2).
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Condition (iii) in Theorem 2.1 follows from Lemma 3.2 (iii) and (iv).
The case p = 1 and d > 1, follows similarly to the previous case.
Finally, suppose that p = 1 and d = 1. Since E[|X − θ|], θ ∈ �, has a maximum

at zero, F (0) = 1/2. Hence, E[|X| −1X] = 0. For θ > 0, we have that

E[−|X − θ| + |X| − |X| −1Xθ] = E[2(X − θ)I(0 < X ≤ θ)] =
∫ θ

0
2(x − θ) dF (x)

=
∫ θ

0
2(x − θ) d(F (x) − F (0)) = −2

∫ θ

0
(F (x) − F (0)) dx = −θ2F ′(0) + o(θ2).

A similar argument holds for θ < 0. Lemma 3.2 (iii),

|r(X, n−1/2θ)| ≤ 2n−1/2|θ|I(|X| ≤ n−1/2|θ|).

Hence,

nE
[
min

(
|r(X, n−1/2θ)|, |r(X, n−1/2θ)|2

)]
≤ 4|θ|2 Pr{|X| ≤ n−1/2|θ| } → 0.

Proof of Corollary 2.2. By symmetry, we have

E[|X − θ0|p1 ] = inf
θ∈�d

E[|X − θ|p1 ]

and
E[|X − θ0|p2 |] = inf

θ∈�d
E[|X − θ|p2 ].

Corollary 3.1 and the arguments in the proof of Theorem 2.2 imply the result.

Proof of Theorem 2.3. This theorem follows from the one on location families by a
transformation. Let Yj = log Xj , let f̃1(x) = f1(ex)ex and let f̃0(x) = f0(ex)ex. By
the change of variables λ = eθ,

∫ ∞
0

(∏n
j=1 λ−1fi(Xj/λ)

)
λ−1 dλ =

∫ ∞
− ∞

∏n
j=1

(
fi(Xje

−θ)e−θ
)

dθ(3.7)

=
∫ ∞

− ∞
∏n

j=1

(
f̃i(Yj − θ)e−Yj

)
dθ.

Hence,

Tn,scale =

∫ ∞
− ∞

∏n
j=1 f̃1(Yj − θ) dθ∫ ∞

− ∞
∏n

j=1 f̃0(Yj − θ) dθ

and the claim follows from Theorem 2.2.

Proof of Corollary 2.3. We apply Theorem 2.3. We need to show that Theorem 2.1
applies to log(f0(ex−θ)ex−θ) and log X. We have that

g0(x, θ) = log(f0(ex−θ)ex−θ) = α0(x − θ) − ex−θ − log(Γ(α0)), x ∈ �,

is a concave function on θ, i.e. (i) in Theorem 2.1 holds. We have that

E[g0(log X, θ0 + t) − g0(log X, θ0)]
= E[α1(log X − θ0 − t) − Xe−θ0−t − α0(log X1 − θ0) + X1e

−θ0 ]
= α0(−t) + α0λ0(e−θ0 − e−θ0−t) = −α0(e−t − 1 + t) = −2−1α0t

2 + o(|t|2),

as t → 0, where θ0 = log λ0. Hence, (ii) in Theorem 2.1 holds. We take φ0(x) =
−α0 + ex−θ0 , x ∈ �. Then,

E[φ0(log X)] = E[−α0 + λ−1
0 X] = 0,
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E[(φ0(log X))2] = E[(−α0 + λ−1
0 X)2] = α0.

and

r0(x, t) = g0(x, θ0 + t) − g0(x, θ0 + t) − tφ1(x)
= −ex−θ0−t + ex−θ0 − tex−θ0 = −ex−θ0(e−t − 1 + t) =, x ∈ �.

Hence,

nE
[
min

(
|r(log X, n−1/2t)|, (r(log X, n−1/2t))2

)]
≤ nE

[
(r(log X, n−1/2t))2

]
= nλ−2

0

(
e−n−1/2t − 1 + n−1/2t

)2

E[X2] → 0,

as n → ∞. Therefore, condition (iii) in Theorem 2.1 holds. Hence, (i) in Theorem 2.3
holds.

We have that

E[g1(log X, θ)] = E[α1(log X − θ) − Xe−θ − log(Γ(α1))]

=E[α1 log X] − α1θ − λ0α0e
−θ − log(Γ(α1))], θ ∈ �,

is minimized when α1 = λ0α0e
−θ, i.e. θ1 = log λ1 = log(λ0α0α

−1
1 ).

The proof that condition (iii) in Theorem 2.3 holds is similar to the proof of (i)
and it is omitted.
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