A remark on the maximum eigenvalue for circulant matrices

Włodek Bryc ${ }^{1}$ and Sunder Sethuraman ${ }^{2}$
University of Cincinnati and Iowa State University

Abstract

We point out that the method of Davis-Mikosch [Ann. Probab. 27 (1999) 522-536] gives for a symmetric circulant $n \times n$ matrix composed of i.i.d. entries with mean 0 and finite $(2+\delta)$-moments in the first half-row that the maximum eigenvalue is on the order $\sqrt{2 n \log n}$, and the fluctuations are Gumbel.

Let $\left\{X_{0}, X_{1}, \ldots\right\}$ be i.i.d. mean-zero, variance 1 , random variables. For $m \geq 1$, consider the $(2 m+1) \times(2 m+1)$ "palindromic" circulant matrix

$$
\left[\begin{array}{ccccccccc}
X_{0} & X_{1} & X_{2} & \cdots & X_{m} & X_{m} & X_{m-1} & \cdots & X_{1} \tag{1}\\
\vdots & & & & \vdots & & & & \vdots \\
X_{m} & X_{m-1} & \cdots & & X_{0} & X_{1} & X_{2} & \cdots & X_{m} \\
\vdots & & & & \vdots & & & & \vdots \\
X_{1} & X_{2} & X_{3} & \cdots & X_{m} & X_{m-1} & X_{m-2} & \cdots & X_{0}
\end{array}\right] .
$$

In this note, we observe, for circulant matrices (1), that an argument of [1] for the maximum of periodograms easily applies to deduce that the maximum eigenvalue is on the order $\sqrt{2 m \log m}$, and the fluctuations are Gumbel (Theorem 1). In particular, a sort of "universality" with respect to the entries $\left\{X_{i}\right\}$, much discussed in other contexts in the random matrix literature, is established for the asymptotic maximum eigenvalue distribution. We refer to [3] for more discussion of random circulant matrices, and note the result for Gaussian entries is as well given in [3, Corollary 5].
Theorem 1. Suppose X_{1}, X_{2}, \ldots are i.i.d. with $E\left(X_{1}\right)=0, E\left(X_{1}^{2}\right)=1$, and $E\left(\left|X_{1}\right|^{s}\right)<\infty$ for some $s>2$. Denote by λ_{m} the maximum eigenvalue of (1), and let $a_{m}=\sqrt{2 \log m}-\log (4 \pi \log m) /(2 \sqrt{2 \log m})$. Then

$$
\lim _{m \rightarrow \infty} P\left(\left(\frac{\lambda_{m}}{\sqrt{2 m+1}}-a_{m}\right) \sqrt{2 \log m} \leq x\right)=G(x)
$$

where $G(x)=\exp \left(-e^{-x}\right)$.
The proof follows closely the method used to prove [1, Theorem 2.1] which is based on Einmahl's multivariate extension of the Komlos-Major-Tusnady theorem

[^0](cf. Lemma 3). Indeed, Lemmas 4, 5 are similar to [1, Lemmas 3.3, 3.4] with analogous proofs. The well known Bonferroni inequalities (Lemma 2) and Lemma 3 are stated as [1, Lemmas 3.1, 3.2].
Lemma 2. Let A_{1}, \ldots, A_{n} be measurable events. Then for every $1 \leq k \leq\lfloor n / 2\rfloor$,
$$
\sum_{d=1}^{2 k}(-1)^{d-1} S_{d} \leq P\left(A_{1} \cup \cdots \cup A_{n}\right) \leq \sum_{d=1}^{2 k-1}(-1)^{d-1} S_{d}
$$
where $S_{d}=\sum_{1 \leq j_{1}<\cdots j_{d} \leq n} P\left(A_{j_{1}} \cap \cdots \cap A_{j_{d}}\right)$.
The next statement is Einmahl's Corollary 1(b), page 31, in combination with the Remark on page 32 [2].
Lemma 3. Let ξ_{1}, \ldots, ξ_{n} be independent random vectors in \mathbb{R}^{d}. Assume that the moment generating function of $\left\{\xi_{i}\right\}$ exists in a neighborhood of the origin, and that
$$
\operatorname{cov}\left(\xi_{1}+\cdots+\xi_{n}\right)=B_{n} I_{d}
$$
where $B_{n}>0$ and I_{d} is the d dimensional identity matrix. Let η_{k} be independent $N\left(0, \sigma^{2} \operatorname{cov}\left(\xi_{k}\right)\right)$ random vectors for $1 \leq k \leq n$ independent of $\left\{\xi_{i}\right\}$, and $0<\sigma^{2} \leq 1$.
Let $\xi_{k}^{*}=\xi_{k}+\eta_{k}$ for $1 \leq k \leq n$, and write p_{n}^{*} as the density of $B_{n}^{-1 / 2} \sum_{k=1}^{n} \xi_{k}^{*}$. Choose $0<\alpha<1 / 2$ such that
\[

$$
\begin{equation*}
\alpha \sum_{k=1}^{n} E\left|\xi_{k}\right|^{3} \exp \left(\alpha\left|\xi_{k}\right|\right) \leq B_{n} \tag{2}
\end{equation*}
$$

\]

Let

$$
\begin{equation*}
\beta_{n}=\beta_{n}(\alpha)=B_{n}^{-3 / 2} \sum_{k=1}^{n} E\left|\xi_{k}\right|^{3} \exp \left(\alpha\left|\xi_{k}\right|\right) \tag{3}
\end{equation*}
$$

If

$$
\begin{equation*}
|x| \leq c_{1} \alpha B_{n}^{1 / 2}, \quad \sigma^{2} \geq-c_{2} \beta_{n}^{2} \log \beta_{n} \text { and } B_{n} \geq c_{3} \alpha^{-2} \tag{4}
\end{equation*}
$$

where c_{1}, c_{2}, c_{3} are constants depending only on d, then

$$
\begin{equation*}
p_{n}^{*}(x)=\phi_{\left(1+\sigma^{2}\right) I_{d}}(x) \exp \left(\bar{T}_{n}(x)\right) \text { with }\left|\bar{T}_{n}(x)\right| \leq c_{4} \beta_{n}\left(|x|^{3}+1\right) \tag{5}
\end{equation*}
$$

where ϕ_{C} is the density of the d-dimensional centered Gaussian vector with covariance matrix C and c_{4} is a constant depending only on d.

Let now $\left\{X_{j}\right\}_{j \geq 0}$ be as in Theorem 1. For $j, m \geq 0$, define $\bar{X}_{j}=\bar{X}_{j}^{(m)}=$ $X_{j} 1_{\left|X_{j}\right| \leq m^{1 / s}}-E\left(X_{1} 1_{\left|X_{1}\right| \leq m^{1 / s}}\right)$.

Lemma 4. We have a.s. that

$$
\begin{aligned}
\frac{2}{\sqrt{2 m+1}} & \max _{1 \leq j \leq m}
\end{aligned} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) X_{k} .
$$

Proof. First, we can add and subtract $(2 m+1)^{-1 / 2} \bar{X}_{0}$ on the left-side. Since

$$
1+2 \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right)=0
$$

we can replace

$$
\bar{X}_{0}+2 \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) \bar{X}_{k}
$$

with

$$
X_{0} 1_{\left|X_{0}\right| \leq m^{1 / s}}+2 \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) X_{k} 1_{\left|X_{k}\right| \leq m^{1 / s}}
$$

Now, by Borel-Cantelli, as $\sum_{t} P\left(\left|X_{t}\right|>t^{1 / s}\right)<\infty$, we have $\left|X_{t}\right| \leq t^{1 / s}$ for all $t \geq N(\omega)$ a.s. Then,

$$
\begin{aligned}
\sum_{t=1}^{m}\left|X_{t}-X_{t} 1_{\left|X_{t}\right| \leq m^{1 / s}}\right| & =\sum_{t=1}^{m}\left|X_{t}\right| 1_{\left|X_{t}\right|>m^{1 / s}} \\
& \leq \sum_{t=1}^{N(\omega)} X_{t} 1_{\left|X_{t}\right|>m^{1 / s}}+\sum_{t=N(\omega)+1}^{m} X_{t} 1_{\left|X_{t}\right|>t^{1 / s}} \\
& \leq \sum_{t=1}^{N(\omega)}\left|X_{t}\right| 1_{\left|X_{t}\right|>m^{1 / s}}+\sum_{t>N(\omega)} X_{t} 1_{\left|X_{t}\right|>t^{1 / s}}=0
\end{aligned}
$$

for $m \geq \max \left\{N(\omega),\left|X_{1}\right|^{s}, \ldots,\left|X_{N(\omega)}\right|^{s}\right\}$. Hence, the sums

$$
\sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) X_{k} \text { and } \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) X_{k} 1_{\left|X_{k}\right| \leq m^{1 / s}}
$$

agree for all large m a.s.
We finish by noting the extra term

$$
\frac{1}{\sqrt{2 m+1}}\left[\bar{X}_{0}-X_{0} 1_{\left|X_{0}\right|} \leq m^{1 / s}\right]=\frac{1}{\sqrt{2 m+1}} E\left[X_{0} 1_{\left|X_{0}\right| \leq m^{1 / s}}\right]=O\left(m^{-1 / 2}\right)
$$

For $d \geq 1$, define $v_{d}(t)=\left\langle\cos \left(\frac{2 \pi j_{1} t}{2 m+1}\right), \ldots, \cos \left(\frac{2 \pi j_{d} t}{2 m+1}\right)\right\rangle$ with respect to distinct integers $1 \leq j_{1}, \ldots, j_{d} \leq m$. Let also $\left\{N_{j}\right\}$ be a sequence of i.i.d. $\mathrm{N}(0,1)$ random variables independent of $\left\{X_{j}\right\}$.
Lemma 5. For $d \geq 1$, let \tilde{p}_{m} be the density of

$$
\frac{1}{\sqrt{E\left[\bar{X}_{1}^{2}\right](2 m+1)}}\left[\sqrt{2}\left(\bar{X}_{0}+\sigma_{m} N_{0}\right) v_{d}(0)+2 \sum_{k=1}^{m}\left(\bar{X}_{k}+\sigma_{m} N_{k}\right) v_{d}(k)\right]
$$

where $\sigma_{m}^{2}=E\left[\bar{X}_{1}^{2}\right] s_{m}^{2}$. If $m^{-2 c_{5}} \log m \leq s_{m}^{2} \leq 1$ for $c_{5}=1 / 2-(1-\delta) / s>0$ and some $0<\delta<1$, then, uniformly for $|x|^{3}=o\left(m^{1 / 2-1 / s}\right)$,

$$
\tilde{p}_{m}(x)=\phi_{\left(1+s_{m}\right) I_{d}}(x)(1+o(1)) .
$$

Proof. Apply Lemma 3 to the centered vectors $\sqrt{2} \bar{X}_{0} v_{d}(0), 2 \bar{X}_{1} v_{d}(1), \ldots 2 \bar{X}_{m} v_{d}(m)$ where, after some calculation,

$$
\operatorname{cov}\left(\sqrt{2} \bar{X}_{0} v_{d}(0)+2 \bar{X}_{1} v_{d}(1)+\cdots+2 \bar{X}_{m} v_{d}(m)\right)=B_{m} I_{d}
$$

and

$$
B_{m}=E \bar{X}_{1}^{2}\left[2+4 \sum_{k=1}^{m} \cos ^{2}\left(\frac{2 \pi k}{2 m+1}\right)\right]=(2 m+1) E \bar{X}_{1}^{2} .
$$

Choose for a fixed constant $c_{6}>0$,

$$
\tilde{\alpha}=c_{6} m^{-1 / s} d^{-1 / 2}
$$

Note for each $0 \leq t \leq m$, that

$$
\left|v_{d}(t)\right|^{2}=\sum_{l=1}^{d} \cos ^{2}\left(\frac{2 \pi j_{l} t}{2 m+1}\right) \leq d
$$

Then, for large m,

$$
\begin{aligned}
& \tilde{\alpha} E\left|\sqrt{2} \bar{X}_{0} v_{d}(0)\right|^{3} \exp \left\{\tilde{\alpha} \sqrt{2} \bar{X}_{0} v_{d}(0)\right\}+\tilde{\alpha} \sum_{t=1}^{m} E\left|2 \bar{X}_{t} v_{d}(t)\right|^{3} \exp \left\{\tilde{\alpha}\left|2 \bar{X}_{t} v_{d}(t)\right|\right\} \\
& \quad \leq 8 d^{3 / 2} \tilde{\alpha}(m+1) E\left|\bar{X}_{1}\right|^{3} \exp \left\{2 \tilde{\alpha}\left|\bar{X}_{1}\right| d^{1 / 2}\right\} \\
& \quad \leq 10 d c_{6} m^{1-1 / s} E\left|\bar{X}_{1}\right|^{3} \exp \left\{2 c_{6}\right\} \\
& \quad \leq 10 d c_{6} \exp \left\{4 c_{6}\right\} m^{1-\delta / s} E\left|X_{1}\right|^{2+\delta}
\end{aligned}
$$

where $0<\delta<1$ is chosen so that $E\left|X_{1}\right|^{2+\delta}<\infty$. Then, (2) holds with $\alpha=\tilde{\alpha}$ for sufficiently small c_{6}.

Now choose

$$
\begin{aligned}
\tilde{\beta}_{m}= & B_{m}^{-3 / 2} E\left|\sqrt{2} \bar{X}_{0} v_{d}(0)\right|^{3} \exp \left\{\tilde{\alpha} \sqrt{2} \bar{X}_{0} v_{d}(0)\right\} \\
& +B_{m}^{-3 / 2} \sum_{t=1}^{m} E\left|2 \bar{X}_{t} v_{d}(t)\right|^{3} \exp \left\{\tilde{\alpha}\left|2 \bar{X}_{t} v_{d}(t)\right|\right\} \\
\leq & 8 d^{3 / 2} B_{m}^{-3 / 2}(m+1) E\left|\bar{X}_{1}\right|^{3} \exp \left\{2 \tilde{\alpha}\left|\bar{X}_{1}\right| d^{1 / 2}\right\}
\end{aligned}
$$

Then,

$$
\tilde{\beta}_{m} \leq \operatorname{const}\left(B_{m}^{-3 / 2} m^{1+(1-\delta) / s} E\left|\bar{X}_{1}\right|^{2+\delta}\right) \leq \operatorname{const}\left(m^{-c_{5}}\right)
$$

where $c_{5}=1 / 2-(1-\delta) / s>0$.
Next, we consider (4). We can choose x so that

$$
|x| \leq c_{1} \tilde{\alpha} B_{m}^{1 / 2} \sim \operatorname{const}\left(m^{1 / 2-1 / s}\right)
$$

Then, we can choose $\sigma^{2}=s_{m}^{2}$ so that

$$
1 \geq s_{m}^{2} \geq \operatorname{const}\left(m^{-2 c_{5}} \log m\right)
$$

and note

$$
B_{m} \sim m \geq c_{3} \tilde{\alpha}^{-2} \sim m^{2 / s}
$$

Noting (5), we have

$$
\tilde{p}_{m}=\phi_{\left(1+s_{m}^{2}\right) I_{d}}(x) \exp \left(\bar{T}_{m}(x)\right) \text { with }\left|\bar{T}_{m}(x)\right| \leq c_{4} \tilde{\beta}_{m}\left(|x|^{3}+1\right) .
$$

However, uniformly over $|x|^{3}=o\left(m^{1 / 2-1 / s}\right)$,

$$
\left|\bar{T}_{m}(x)\right| \leq c_{4} \tilde{\beta}_{m}\left(|x|^{3}+1\right) \leq \operatorname{const}\left(m^{1 / 2-1 / s-c_{5}}\right)=\operatorname{const}\left(m^{-\delta / s}\right)=o(1)
$$

Proof of Theorem 1. From properties of circulants, we have that the eigenvalues of (1) are $\lambda_{j}=X_{0}+2 \sum_{k=1}^{m} \cos \left(\frac{2 \pi k j}{2 m+1}\right) X_{k}$ for $0 \leq j \leq 2 m$, and also $\lambda_{j}=\lambda_{2 m+1-j}$ for $1 \leq j \leq m$. Since $m^{-1 / 2} \sqrt{2 \log m} \rightarrow 0$, the variable X_{0} in the expression for λ_{j} can be replaced by $\sqrt{2} \bar{X}_{0}$. We will also be able to omit the contribution of λ_{0} to the maximum. By Lemma 4, it will be enough to prove

$$
\begin{equation*}
\sqrt{2 \log m}\left[\frac{\sqrt{2} \bar{X}_{0}}{\sqrt{2 m+1}}+\max _{1 \leq j \leq m} \frac{2}{\sqrt{2 m+1}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) \bar{X}_{k}-a_{m}\right] \Rightarrow G \tag{6}
\end{equation*}
$$

To this end, let $\sigma_{m}^{2}=E\left[\bar{X}_{1}^{2}\right] s_{m}^{2}=E\left[\bar{X}_{1}^{2}\right] m^{-2 c_{5}} \log m$. We first show

$$
\begin{aligned}
& \sqrt{2 \log m}\left[\frac{\sqrt{2}\left(\bar{X}_{0}+\sigma_{m} N_{0}\right)}{\sqrt{E\left[\bar{X}_{1}^{2}\right](2 m+1)}}\right. \\
& \left.\quad+\max _{1 \leq j \leq m} \frac{2}{\sqrt{E\left[\bar{X}_{1}^{2}\right](2 m+1)}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right)\left(\bar{X}_{k}+\sigma_{m} N_{k}\right)-a_{m}\right] \Rightarrow G
\end{aligned}
$$

For $1 \leq j \leq m$, let
$\lambda_{j}^{\bar{X}+N}=\frac{1}{\sqrt{E\left[\bar{X}_{1}^{2}\right](2 m+1)}}\left[\sqrt{2}\left(\bar{X}_{0}+\sigma_{m} N_{0}\right)+2 \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right)\left(\bar{X}_{k}+\sigma_{m} N_{k}\right)\right]$.
Since $1-e^{-e^{-u}}=\sum_{d=1}^{\infty}(-1)^{d-1}\left(e^{-d u} / d!\right)$, by Lemma 2 , (7) will follow from the statement

$$
\begin{align*}
P\left(\lambda_{j_{1}}^{\bar{X}+N}>a_{m}+\frac{u}{\sqrt{2 \log m}}, \ldots, \lambda_{j_{d}}^{\bar{X}+N}\right. & \left.>a_{m}+\frac{u}{\sqrt{2 \log m}}\right) \\
& =m^{-d} \exp (-d u)(1+o(1)) \tag{8}
\end{align*}
$$

uniformly over the d-tuples $1 \leq j_{1}<\cdots<j_{d} \leq m$ for each $d \geq 1$ as $m \uparrow \infty$.
Let A_{m}^{d} denote the event in the probability on the left-side. Then, noting $s_{m}^{2}=$ $m^{-2 c_{5}} \log m$,

$$
\int_{A_{m}^{d}} \phi_{\left(1+s_{m}^{2}\right) I_{d}}(x) d x=m^{-d} \exp \{-d u\}(1+o(1))
$$

as $m \uparrow \infty$. Note that we can neglect the parts in (8) when there is $l \leq d$ such that

$$
\left|\lambda_{j_{l}}^{\bar{X}+N}\right|^{3}>m^{1 / 2-1 / s-\epsilon}
$$

for a small $\epsilon>0$. Indeed, given $d \geq 1$ and $s>2$ choose $0<\varepsilon<1 / 2-1 / s$ and $\gamma>2$ such that $\gamma(1 / 2-1 / s-\varepsilon)>d+1$. Note also $1 / 2 \leq E\left[\bar{X}_{1}^{2}\right] \leq 2$ for m large enough. Then, by Rosenthal's inequality there is a constant $C(\gamma)$ such that

$$
\begin{aligned}
P\left(\mid \sqrt{2} \bar{X}_{0}\right. & \left.+\left.2 \sum_{k=1}^{m} \cos \left(\frac{2 \pi j_{l} k}{2 m+1}\right) \bar{X}_{k}\right|^{3}>m^{2-1 / s-\epsilon}\right) \\
& \leq \frac{C(\gamma)}{m^{\gamma(2-1 / s-\epsilon)}}\left(\left(\sum_{k=0}^{m} E\left|\bar{X}_{k}\right|^{2}\right)^{3 \gamma / 2}+m E\left|\bar{X}_{1}\right|^{3 \gamma}\right) \\
& \leq C(\gamma)\left(\frac{2}{m^{\gamma(1 / 2-1 / s-\varepsilon)}}+\frac{m}{m^{\gamma(2-4 / s-\varepsilon)}}\right)=o\left(m^{-d}\right) .
\end{aligned}
$$

On the other hand, also

$$
P\left(\left|\frac{\sqrt{2} N_{0}}{\sqrt{2 m+1}}+\frac{2}{\sqrt{2 m+1}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j_{l} k}{2 m+1}\right) \sigma_{m} N_{k}\right|^{3}>m^{1 / 2-1 / s-\varepsilon}\right)=o\left(m^{-d}\right) .
$$

We conclude by Lemma 5 (which does not depend on the choice of j_{1}, \ldots, j_{d}) that (8) holds.

To deduce (6), note $E\left[\bar{X}_{1}^{2}\right] \rightarrow E\left[X_{1}^{2}\right]=1$, and

$$
\begin{aligned}
& \frac{\sqrt{2} \sigma_{m} N_{0}}{\sqrt{2 m+1}}-\max _{1 \leq j \leq m} \frac{2}{\sqrt{2 m+1}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right)\left(-\sigma_{m} N_{k}\right) \\
& \quad \leq \frac{\sqrt{2}\left(\bar{X}_{0}+\sigma_{m} N_{0}\right)}{\sqrt{2 m+1}}+\max _{1 \leq j \leq m} \frac{2}{\sqrt{2 m+1}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right)\left(\bar{X}_{k}+\sigma_{m} N_{k}\right) \\
& \quad-\frac{\sqrt{2} \bar{X}_{0}}{\sqrt{2 m+1}}-\max _{1 \leq j \leq m} \frac{2}{\sqrt{2 m+1}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) \bar{X}_{k}
\end{aligned}
$$

$$
\begin{equation*}
\leq \frac{\sqrt{2} \sigma_{m} N_{0}}{\sqrt{2 m+1}}+\max _{1 \leq j \leq m} \frac{2}{\sqrt{2 m+1}} \sum_{k=1}^{m} \cos \left(\frac{2 \pi j k}{2 m+1}\right) \sigma_{m} N_{k} \tag{9}
\end{equation*}
$$

Let $(2 m+1)^{1 / 2} \lambda_{j}^{N}=\sqrt{2} \sigma_{m} N_{0}+2 \sum_{k=1}^{m} \cos (2 \pi j k / 2 m+1) \sigma_{m} N_{k}$ for $1 \leq j \leq m$. One can calculate that that $\left\{\lambda_{j}^{N}\right\}_{j=1}^{m}$ are i.i.d. $\mathrm{N}\left(0, \sigma_{m}^{2}\right)$ variables.

Hence, to finish, the bounds (9) correspond to the maximum of m i.i.d. $\mathrm{N}\left(0, \sigma_{m}^{2}\right)$ random variables, well known to be on order $\sigma_{m} \sqrt{2 \log m} \sim m^{-c_{5}} \log m \rightarrow 0$ in probability.

Acknowledgement

The authors benefited from a discussion with Magda Peligrad.

References

[1] Davis, R. A. and Mikosch, T. (1999). The maximum of the periodogram of a non-Gaussian sequence. Ann. Probab. 27 522-536.
[2] Einmahl, U. (1989). Extensions of results of Komlos, Major and Tusnady to the multivariate case. J. Multivariate Anal. 28 20-68.
[3] Meckes, M. W. (2009). Some results on random circulant matrices. IMS Coll. 5 213-223.

[^0]: ${ }^{1}$ Department of Mathematical Sciences, University of Cincinnati, 2855 Campus Way, PO Box 210025, Cincinnati, OH 45221-0025, USA, e-mail: Wlodzimierz. Bryc@UC.edu
 ${ }^{2}$ Department of Mathematics, 396 Carver Hall, Iowa State University, Ames, IA 50011, USA, e-mail: sethuram@iastate.edu

 Keywords and phrases: maximum, eigenvalue, circulant, Gumbel, random, matrix.
 AMS 2000 subject classifications: Primary 15A52.

