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A remark on the maximum eigenvalue for
circulant matrices

Wlodek Bryc! and Sunder Sethuraman?

University of Cincinnati and Iowa State University

Abstract: We point out that the method of Davis-Mikosch [Ann. Probab.
27 (1999) 522-536] gives for a symmetric circulant n X n matrix composed of
i.i.d. entries with mean 0 and finite (2 + )-moments in the first half-row that

the maximum eigenvalue is on the order 4/2nlogn, and the fluctuations are
Gumbel.

Let {Xo, X1,...} be ii.d. mean-zero, variance 1, random variables. For m > 1,
consider the (2m + 1) x (2m + 1) “palindromic” circulant matrix

Xo X1 X9 X Xop Xm0 Xo
(1) Xow X1 o Xo X1 Xo oo Xom

X1 Xo Xz Xy X1 X2 -+ Xo

In this note, we observe, for circulant matrices (1), that an argument of [1] for the
maximum of periodograms easily applies to deduce that the maximum eigenvalue
is on the order /2mlogm, and the fluctuations are Gumbel (Theorem 1). In par-
ticular, a sort of “universality” with respect to the entries {X;}, much discussed in
other contexts in the random matrix literature, is established for the asymptotic
maximum eigenvalue distribution. We refer to [3] for more discussion of random
circulant matrices, and note the result for Gaussian entries is as well given in [3,
Corollary 5].

Theorem 1. Suppose X1, Xo,... are ii.d. with E(X;) = 0, E(X?) = 1, and
E(|X1|®?) < oo for some s > 2. Denote by A\, the mazimum eigenvalue of (1), and

let a,, = +/2logm — log(4mlogm)/(2y/2logm). Then
lim P <(% - am> v2logm < :c) = G(z)

m— 00 m _|_

where G(x) = exp(—e~7).

The proof follows closely the method used to prove [1, Theorem 2.1] which is
based on Einmahl’s multivariate extension of the Komlos-Major-Tusnady theorem
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180 W. Bryc and S. Sethuraman

(cf. Lemma 3). Indeed, Lemmas 4, 5 are similar to [1, Lemmas 3.3, 3.4] with analo-
gous proofs. The well known Bonferroni inequalities (Lemma 2) and Lemma 3 are
stated as [1, Lemmas 3.1, 3.2].

Lemma 2. Let Ay,..., A, be measurable events. Then for every 1 <k < [n/2],

2k 2k—1
D (=18 < P(AyU---UA,) < Y (—1)41S,,
d=1 d=1

where Sq = Zl§j1<"'jdg’ﬂ P(Aj1 n---N Ajd)'

The next statement is Einmahl’s Corollary 1(b), page 31, in combination with
the Remark on page 32 [2].

Lemma 3. Let &1, ...,&, be independent random vectors in R%. Assume that the
moment generating function of {§;} exists in a neighborhood of the origin, and that

COV(§1 + -+ gn) = Bnlda

where B, > 0 and Iy is the d dimensional identity matrix. Let ny be independent
N(0,02cov(&)) random vectors for 1 < k < n independent of {¢;}, and 0 < 02 < 1.
Let & = & +m for 1 < k < n, and write p}, as the density of B;l/z S &k
Choose 0 < o < 1/2 such that

(2) @) El&? explalé]) < By
k=1

Let

n
(3) Bu = Bule) = BY2 Y Elg| exp(alél).

k=1
If
(4) lz] < e1aBY? 6% > —cyPlogf, and B, > csa”?,

where c¢1,co, c3 are constants depending only on d, then
(5) (@) = daieny(r)exp(Th(z)) with |T,(2)] < cafu(lz]® +1),

where ¢ is the density of the d-dimensional centered Gaussian vector with covari-
ance matriz C and cq is a constant depending only on d.

Let now {X;};>0 be as in Theorem 1. For j,m > 0, define X; = X](-m) =
Xj1|Xj|Sml/S - E(X11|X1‘Sm1/5)'

Lemma 4. We have a.s. that

2 “ 2mik
R 3 X
V2m 1 121%;0%(2% 1) b

2 = 215k \ o(m -
- 72m+11%ixm2005(2m+1)Xé ) = O(m=Y?),
v == k=1
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Proof. First, we can add and subtract (2m + 1)~/2X, on the left-side. Since

s 2mjk
142 E =0
+ k_lcos<2m+1) )

we can replace

2mik \ o
X0+2ZC ( T )Xk
with
m .
2mjk
Xoljxo)<m1/s +2 Zcos<m)Xk1xk|<mus.
k=1

Now, by Borel-Cantelli, as >, P(|X;| > t'/%) < oo, we have |X,| < t/* for all
t > N(w) a.s. Then,

m
= Z [ X1 x5/

m
Z |Xt — Xt1|Xt|§m1/S

t=1 t=1
N(w)
< Z thlXt|>m1/< + Z Xt1|Xt|>t1/s
t=N(w)+
N(w)
S Z |Xt‘1|Xt|>ml/S + Z thIXt‘>t1/S - O
t=1 >N (w)
for m > max{N(w),|X1|%,...,|Xn(w)|*}. Hence, the sums
“ 2mik “ 2mik
Zcos(2m n 1>Xk. and ZCOS<2m n 1)Xk1Xk|<m1/S
k=1 k=1
agree for all large m a.s.
We finish by noting the extra term
1 - 1

[Xo — Xoljxo| < mise] = E[Xol|x,j<miss] = O(m™/?).

VvV2m+1 V2m+1

O

For d > 1, define vg(t) = (cos(%), . 7cos(%)) with respect to distinct

integers 1 < ji,...,j4 < m. Let also {NN;} be a sequence of i.i.d. N(0,1) random
variables independent of {X}.

Lemma 5. Ford > 1, let p,, be the density of

1
E[X?](2m +1)

[V2(%0 + 0 No)ua(0) +2 Zm: (X + o N Jva(k)]
k=1

where 02, = E[X?]s2,. If m~ 2% logm < s2, <1 forcs = 1/2— (1 —48)/s > 0 and
some 0 < 0 <1, then uniformly for |z|® = o(m'/?>=1/9),

P () = G(145,)1,(2) (1 4 0(1)).
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Proof. Apply Lemma 3 to the centered vectors v2X¢va(0),2X1v4(1), . .. 2X,,v4(m)
where, after some calculation,

cov(\/iXovd(O) +2X0g(1) + -+ Qvad(m)> = By

and

_ i 27k -
_ 2 2 _ 2
B, = EXj [24-4;:1608 (2 +1)] = (2m+1)EX7.

Choose for a fixed constant cg > 0,
& = cgm~ Va2

Note for each 0 < t < m, that

d .
27yt
t 2 _ 2
O = S oot (35

Then, for large m,

AEV2Xovq(0)]? exp{av2Xovq(0)} + & Z E12X0q4(t)]* exp { @|2X,va(t)|}

t=1
8d*/2&(m + 1)E| X1 |* exp {2a|X1|d"/?}
10dc6m1_1/5E\X1 |3 exp {206}
10dcg exp{4cG}m1_6/sE|X1|2+5

ANVAN

IN

where 0 < § < 1 is chosen so that E|X1|>"? < co. Then, (2) holds with a = & for
sufficiently small cg.
Now choose

Bm = B;LB/QE|\/§X0W(O)|3 eXP{dﬁXovd(O)}
+B,,%2Y " E|2X04(t)* exp {a[2X;va(t)| }
t=1
< 8d*2B,3*(m + 1)E| X1 | exp {2a| X1|d"/?}.
Then, ~ -
B < const(B 3/ ?m! T/ B X |?+9) < const(m ™)
where ¢5 =1/2 — (1 —46)/s > 0.
Next, we consider (4). We can choose z so that
lz| < ¢@aBY? ~ const(m!/271/9).

2

Then, we can choose 02 = s2, so that

1> 82

2> const(m 2% logm)

and note
By, ~m > 3672 ~ m

3
|

Noting (5), we have

D = ¢(1+Sgn)1d(x)exp (Tm(x)) with |T,,(z)] < C4Bm(\x|3+1).
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However, uniformly over |z|? = o(m!/2~1/%),

T ()] < cafBm(z)® +1) < const(m!/271/57) = const(m™%/) = o(1).

O

Proof of Theorem 1. From properties of circulants, we have that the eigenvalues of
(1) are \j = Xo +2) -, cos (2”T1)Xk for 0 < j < 2m, and also A\j = Agppa1—;
for 1 < j < m. Since mil/Q\/Qlog — 0, the variable X in the expression for \;
can be replaced by v2X,. We will also be able to omit the contribution of A to

the maximum. By Lemma 4, it will be enough to prove
\/5)_(0 ik
6 Vaogm[ 2K L N
(6) sl V2m +1 1<J<m V2 Z ( +1> B
To this end, let 02, = E[X?]s2, = E[Xf]m’2C5 log m. We first show

m{ \/5()_{0 + 0mNp)

E[X%](?m +1)

7 X L) —am| = G.
M+ max FXQ 5 Zl (2 +1>( & + o Nk) a}

For 1 <j <m,let

_ 1 _ “ 2mik >
ANXHN _ V2(Xo + omNo) + 2 cos( ) Xi +on,Ny)|.
’ mwmmﬂﬂ (Xotomop 23 cos{ g, 1y ) (X o)

Since 1 —e¢ " = Y77 (1) (e~ %/d!), by Lemma 2, (7) will follow from the
statement

POOAXHN s g+ Y NSNS Y
( n am + V2Iogm’ =~ m \/210gm)
®) — m exp(—du)(1 + o(1))

uniformly over the d-tuples 1 < j; < --- < jg < m for each d > 1 as m T oc.
Let A% denote the event in the probability on the left-side. Then, noting s2, =
m~2% log m,

/Ad ¢)(1+S?n)1d (Z‘)dl‘ = m™* exp{—du}(l + 0(1))
as m T co. Note that we can neglect the parts in (8) when there is I < d such that
‘)\X+N|3 > ml/Q—l/s—e

for a small € > 0. Indeed, given d > 1 and s > 2 choose 0 <e< 1/2 —1/s and
v > 2 such that y(1/2 —1/s — &) > d + 1. Note also 1/2 < E[X?] < 2 for m large
enough. Then, by Rosenthal’s inequality there is a constant C(y) such that

3
k —1/s—¢
p \/_XO+QZCOS( ‘]_:_1>Xk‘ > m2-1/

IN

3v/2
e (ZElXﬁ) mEL [

2 m —d
C() <m'y(1/21/ss) + m'y(24/ss)> = o(m™°).

IN
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On the other hand, also

3

\/?No + i (27lek) N
Om

VZm 1 \/2m+1k +1 b

We conclude by Lemma 5 (which does not depend on the choice of ji,...,jq4) that
(8) holds. B
To deduce (6), note E[X?] — E[X?] =1, and

\/igmNO k
VeImAo —omN
2m + 1 1<J<m \/ 2 Z (2 —|—1>( Tm k>

> m1/2—1/s—5 — o(m_d).

V2(Xo + 00 No) 2 = 21jk \, o
<——————" + max ————— » COs Xi +omN,
- 2m + 1 1§jgm\/2m+1kz::1 (Qm-i-l)( ¥ k)
—7\/5)_(0 — max 2z icos _2mik ) g
o1 1sigmEmylie \2m41)F
V20, No 2mik
< "), Ny.
) ~V2m 1 s amrl Z <2 _1_1)0 k

Let (2m + 1)Y2AN = /20, No + 23" cos(2mjk/2m + 1)om Ny, for 1 < j < m.
One can calculate that that {AN}7., are i.i.d. N(0,07,) variables.
Hence, to finish, the bounds (9) correspond to the maximum of m i.i.d. N(0, 02)

random variables, well known to be on order o,,v/2logm ~ m~%logm — 0 in
probability. O
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