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Interpolation spaces and the CLT in

Banach spaces

Jim Kuelbs1 and Joel Zinn2,∗

University of Wisconsin and Texas A&M University

Abstract: Necessary and sufficient conditions for the classical central limit
theorem (CLT) for i.i.d. random vectors in an arbitrary separable Banach
space require not only assumptions on the original distribution, but also on
the sample. What we do here is to continue our study of the CLT in terms of the
original distribution. Of course, some new ingredient must be introduced, so
we allow slight modifications of the random vectors. In particular, we restrict
our modifications to be continuous, and to be no larger than a fixed small
number, or in some cases a fixed small proportion of the magnitude of the
individual elements of the sample. We find that if we use certain interpolation
space norms to measure the magnitude of such modifications, then the CLT
can be improved. Examples of our result are also included.

1. Introduction

Let B denote a separable Banach space with norm ‖ · ‖ and let μ be a probability
measure on B for which continuous linear functionals have mean zero and finite
variance. Then there is a Hilbert space Hμ with norm ‖ · ‖μ determined by the
covariance of μ such that Hμ ⊆ B, and the identity map from Hμ into B is con-
tinuous. Furthermore, for all ε > 0 and x in the B-norm closure of Hμ, there is
a unique point with minimum Hμ-norm in the B-norm ball of radius ε > 0 and
center x. We denote this point by Tε(x), and its precise definition appears in (2.1)
below. The existence, and the continuity properties of the mapping Tε(·), can be
found in [5]. In addition, if X is a random variable in B with law μ, then under
a variety of conditions we obtain the central limit theorem (CLT) for Tε(X) and
certain modifications of such a quantity, even when X itself fails the CLT. The
motivation for the use of the mapping Tε(·) comes from the large deviation rates
for the Gaussian measure γ determined by the covariance of X whenever γ exists.
However, this is only motivation, and our results apply even when this Gaussian
law fails to exist.

One of the drawbacks to the mappings Tε(·) is that they do not provide universal
improvement for the CLT in all Banach spaces. This is particularly true in type-2
Banach spaces, and can be seen from Theorem 4 of [5]. There we show that in type-2
Banach spaces Tε(X) satisfies the CLT if and only if X does. Another difficulty with
these mappings is that they are not easy to compute, so we also provided some al-
ternatives. In particular, the methods used to estimate ‖Tε(x)‖μ in [5] are indirect,
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and undoubtedly somewhat imprecise. However, if one tries to compute ‖Tε(x)‖μ

exactly, one immediately encounters substantial difficulties. That these difficulties
are present should perhaps not be suprising, as the computation involves an infi-
mum over an infinite dimensional set. Furthermore, since Tε(x) has the uniqueness
property indicated, we see that if K is the unit ball of Hμ and ‖x‖ > ε, then in
determining ‖Tε(x)‖μ = r, we are actually finding the “best approximation of x”
within B-norm distance ε in the set rK.

More precisely, letting

E(x, r) = inf{ ‖x − rk‖ : k ∈ K},

we see ‖Tε(x)‖μ = r if and only if E(x, r) = ε. The quantity E(x, r) arises in
approximation theory, and is called the E-functional in this context, i.e. see [2].
The use of the E-functional, and its connection with interpolation theory, also
appeared recently in the paper [8], where topics in learning theory are addressed.
Furthermore, Theorem 3.1 of [8] has implications for the CLT provided we define
some additional mappings. However, before we turn to this task we mention that
frequently we will say a random variable satisfies the CLT without specifying the
required centering. That the centering can always be taken to be the mean vector
is not surprising, and some details and suitable references for this in the Banach
space setting can be found in [5]. The paper [5] also contains additional motivation
that the reader might find of interest.

2. A connection to interpolation spaces and best approximations

Let B denote a separable Banach space over the reals with topological dual space
B∗ and norm ‖ · ‖. Throughout X is assumed to be a Borel measuable, B valued
random vector. We say X is weakly square integrable with weak mean zero if

E(f(X)) = 0 and E(f2(X)) < ∞ for all f ∈ B∗.

We denote this by writing X is WM2
0 . If μ = L(X), we also will say μ is WM2

0

when that is more appropriate.
If μ is WM2

0 , then the Hilbert space Hμ used to determine the way we move
points in B and define the mappings Tε(·) is defined in Lemma 2.1 of [5]. This
Hilbert space arises in a number of different contexts, for example, see [4] and its
references, but in the generality we employ here this lemma is a useful summary,
and provides a convenient source for some of its properties. Furthermore, based on
this lemma, Proposition 1 in [5] then allows us to define mappings from B into Hμ

which move points continuously a small distance to a uniquely determined point in
Hμ which has minimal Hμ-norm. Since we wish to move points by an arbitrarily
small distance to points in Hμ, and a simple Hahn-Banach separation argument
implies μ(H̄μ) = 1, we will henceforth assume that B = H̄μ. This is no loss of
generality for our application to limit theorems, and guarantees that our mappings
are defined everywhere on B for arbitrarily small ε > 0.

Next we turn to the precise definition of our basic mappings, and recall that
throughout we are assuming that H̄μ = B.

Definition. Let ε > 0 and take x ∈ B. Then we define

(2.1) Tε(x) = 0 if ‖x‖ ≤ ε and Tε(x) = b if ‖x‖ ≥ ε,
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where b is the unique point such that ‖b − x‖ ≤ ε,

‖b‖μ = inf
‖y−x‖ ≤ε

‖x‖μ,

and we take ‖x‖μ = ∞ for x ∈ B ∩ Hc
μ.

Then we have Tε(·) well defined on all of B, with values in Hμ provided μ is
WM2

0, and we are also able to define for ε > 0, r > 0

(2.2) Tε,r(x) = Tε(r∨1)(x),

where a ∨ b = max(a, b). Hence Tε,r(·) is also well defined on all of B for each ε > 0.
Let 0 < α < ∞. Then using the ideas of the proof of Theorem 4 in [5] it follows

that Tε,‖X‖α(X) fails to improve the CLT in type-2 Banach spaces when 0 < α < 1.
A proof of this is included in Proposition 3.1 at the end of Section 3. Furthermore,
if 1 < α < ∞ it always satisfies the CLT in type-2 spaces, as it is then a bounded
random variable for each ε > 0. What happens when α = 1 is far less understood,
and here we consider similar mappings which relate to the approximation error via
interpolation spaces. That is, in the theorem below we will see that Theorem 3.1 of
[8] implies a sufficient condition on X such that Tε(X) and various modifications
of Tε,r(X) derived from interpolation space norms actually satisfy the CLT on B.
However, far less obvious is what this sufficient condition means in terms of explicit
examples. Hence we include some examples where X fails the CLT, but our theorem
implies a modification of Tε,r(X) derived from interpolation space norms satisfies
the CLT. There are also examples dealing with Tε(X) itself in this setting, but they
require we initially assume more about X than one might expect is optimal. Now
we turn to some ideas and notation for interpolation spaces.

Suppose B and Hμ are given as in Lemma 2.1 of [5], and that as before we
assume H̄μ = B. Also recall from this lemma that the identity map from Hμ into
B is continuous. The Banach spaces that interpolate between B and Hμ can be
defined in terms of the K-functional for the pair (B, Hμ), which is defined by

(2.3) K(a, t) = inf
b∈Hμ

{ ‖a − b‖ + t‖b‖μ}, t > 0.

For a ∈ B fixed, the function K(a, t) is continuous, non-decreasing, bounded by ‖a‖,
and tends to zero as t tends to zero. In particular, for 0 < θ < 1 and 1 ≤ p ≤ ∞,
the interpolation space (B, Hμ)θ,p consists of the vectors a ∈ B such that the norm

(2.4) ‖a‖θ,p = sup
t>0

{K(a, t)/tθ }, if p = ∞,

or

(2.5) ‖a‖θ,p =
{∫ ∞

0

(K(a, t)/tθ)pdt/t

}1/p

, if 1 ≤ p < ∞,

is finite.
In our next theorem we use modifications of Tε,r(·) based on the ‖ · ‖θ,p-interpo-

lation norms which provide a filtration between the μ-norm and the B-norm. In
fact, standard properties of interpolation spaces, see [2], pages 40-47, and/or [3],
pages 293-300, imply that for 0 < θ < 1 and 1 ≤ p < ∞ we have

(2.6) Hμ ↪→ (B, Hμ)θ,p ↪→ (B, Hμ)θ,∞ ↪→ B,



76 J. Kuelbs and J. Zinn

with the spaces increasing in p, and E ↪→ F meaning that E ⊆ F and E is
continuously embedded in F under the identity map. Hence there are constants
C1, C2, C3 ∈ (0, ∞) such that

(2.7) ‖x‖B ≤ C1‖x‖θ,∞ ≤ C2‖x‖θ,p ≤ C3‖x‖μ

for all x ∈ B, with some of the quantities sometimes possibly being infinite in (2.7).
The modification of Tε(·) for the θ, p interpolation norms is given in terms of

Tε,r(·), and is as follows.

Definition. If 0 < ε < ∞, 0 < θ < 1, 1 ≤ p ≤ ∞, and 0 ≤ α < ∞, we define

(2.8) Tε,‖x‖α
θ,p

(x) = Tε(‖x‖α
θ,p

∨1)(x), x ∈ B.

In particular, if α = 0 in (2.8), then obviously ‖x‖α
θ,p = 1 when 0 < ‖x‖θ,p < ∞,

and we use continuity in x for its definition at x = 0 and when ‖x‖θ,p = ∞, i.e. it
is one for all values of ‖x‖θ,p. Thus we have

Tε,‖x‖α
θ,p

(x) = Tε(x), x ∈ B

when α = 0. If 0 < α < ∞, and ‖x‖θ,p = ∞, then we define

Tε,‖x‖α
θ,p

(x) = T∞(x) = 0.

Thus (2.8), as interpreted in the previous definition, defines Tε,‖x‖α
θ,p

(x) for all
x ∈ B. In order to apply it in our next theorem, we now turn to measurability
properties of these mappings.

Lemma 2.1. Fix 0 < ε < ∞, p ∈ [0, ∞], 0 ≤ α < ∞ and 0 < θ < 1. Then the
mapping

Tε,‖x‖α
θ,p

(x), x ∈ B

takes B into Hμ, and it is Borel measurable from B into Hμ.

Proof. If α = 0, then by definition Tε,‖x‖α
θ,p

(x) = Tε(x), and the lemma follows from
part-a of Proposition 2 in [5]. Hence take 0 < α < ∞. The next thing to observe
is that Tε,r(x) can be extended to be continuous in (x, r), x ∈ B, r ∈ [0, ∞], into
Hμ, with the μ-norm topology on Hμ. That is, if we define Tε,0(x) = Tε(x) and
Tε,∞(x) = 0, then by part-c of Proposition 2 in [5], the continuity we claimed is
immediate. Hence the lemma will follow if we check that the map f(x) = ‖x‖α

θ,p

is Borel measurable from B into [0, ∞] for 0 < α < ∞. That is, if we define
φ(r, x) = Tε,r(x), then

Tε,‖x‖α
θ,p

(x) = φ(f(x), x) = φ(h(x)),

where h(x) = (f(x), x). Now φ continuous in (r, x) for r ∈ [0, ∞], x ∈ B, and h(·)
Borel measurable from B into the product space determined by [0, ∞] and B, with
all spaces separable, implies φ(h(·)) is Borel measurable as indicated. What remains
is to show f(x) = ‖x‖α

θ,p is Borel measurable from B into [0, ∞].
To check this, let A be a Borel measurable subset of [0, ∞]. Then we need that

E = f −1(A) is a Borel subset of B. Now E = f −1(A ∩ { ∞}) ∪ f −1(A ∩ [0, ∞)), and
f −1(A ∩ {∞}) = {x ∈ B : f(x) = ∞} = B − (B, Hμ)θ,p since (B, Hμ)θ,p = {x ∈
B : ‖x‖θ,p < ∞}, or it is trivially empty. Moreover,

f −1(A ∩ [0, ∞)) = {x ∈ (B, Hμ)θ,p : ‖x‖α
θ,p ∈ A, ‖x‖α

θ,p < ∞},
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and this last set is a Borel subset of (B, Hμ)θ,p, as x → ‖x‖α
θ,p is continuous on

(B, Hμ)θ,p. Since the identity map embeds (B, Hμ)θ,p into B, Kuratowski’s Theorem
[7], page 21, implies that the image of Borel subsets of (B, Hμ)θ,p are Borel subsets
of B. Hence E is a Borel subset of B, and the lemma is proven.

Now we are ready to state and prove our theorem involving interpolation spaces.

Theorem 1. Let X be WM2
0 on B, and assume H̄μ = B. Fix 0 < θ < 1 and

1 ≤ p < ∞. If 0 ≤ α ≤ 1/(1 − θ), β = 2(α + (1 − α)/θ), and

(2.9) E(‖X‖β
θ,p) < ∞,

then for all ε > 0 both

(2.10) Tε,‖X‖α
θ,p

(X) and Tε,‖X‖α
θ,∞

(X),

satisfy the CLT on B. If the integrability condition (2.9) is replaced by

(2.11) E(‖X‖β
θ,∞) < ∞,

then

(2.12) Tε,‖X‖α
θ,∞

(X)

satisfies the CLT on B for all ε > 0. Furthermore, under (2.9), for all ε > 0
sufficiently small the random vectors in (2.10) are non-degenerate. Similarly, (2.11)
and ε > 0 small implies the random vector in (2.12) is non-degenerate.

After one sees the proof, it is clear the result is strongest when we use the
space (B, Hμ)θ,∞. This follows by (2.7), which shows an integrability assumption
on ‖X‖θ,∞ is weaker than the equivalent integrability assumption for ‖X‖θ,p, 1 ≤
p < ∞. In addition, from (2.7) we also see that up to a constant multiple, points
of B are moved a smaller distance by Tε,‖x‖α

θ,∞
(·) than by Tε,‖x‖α

θ,p
(·). Hence the

maps and spaces indexed by the pair θ, ∞ turn out to be optimal for our purposes.
Therefore, one might ask, why do we include the θ, p maps and spaces? The answer
is that in the examples that follow, and possibly in other settings as well, the θ, p
spaces and their norms are more easily recognizable, and hence useful in doing the
analysis. Thus we thought it important to formulate results for them as well. Of
course, if one is able to compute the space (B, Hμ)θ,∞ and its norm well for certain
B and Hμ, then for the reasons mentioned above one would work only with them.

Remark. It should be mentioned that the relationship between Hμ and B in our
setting is more special than that which is typical in interpolation theory, or in [8].
That is, our space Hμ is always a Hilbert space, and it arises from the covariance
structure of a WM2

0 measure μ on the Borel sets of B, whereas in [8] the space
H is an arbitrary continuously embedded dense subspace of B. Of course, since we
assume H̄μ = B, the denseness is a common element, and from Lemma 2.1 of [5]
we also have the continuous embedding of Hμ into B.

Remark. Some cases of Theorem 1 that bear special mention include the following.
(a) The first is that if α = 0, then β = 2/θ. Hence E(‖X‖2/θ

θ,∞) < ∞ implies
Tε(X) satisfies the CLT on B for all ε > 0. (b) If α = 1, then β = 2 and hence
E(‖X‖2

θ,∞) < ∞ implies Tε,‖X‖θ,∞ (X) satisfies the CLT for all ε > 0. Of course, a
similar result holds for the θ, p norms. (c) If α = 1/(1 − θ), then β = 0, and

P (‖X‖θ,∞ < ∞) = 1,
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implies that
T

ε,‖X‖1/(1−θ)
θ,∞

(X)

satisfies the CLT for all ε > 0 and is non-degenerate for small ε. Of course, a similar
result holds for the θ, p norms.

3. Proof of Theorem 1 and some examples

Proof of Theorem 1. First we assume (2.9) and take 0 ≤ α ≤ 1/(1 − θ). Then
P (‖X‖θ,p < ∞) = 1 and again using Kuratowski’s Theorem we have L(X) a Borel
measure on (B, Hμ)θ,p, i.e. the Borel subsets of (B, Hμ)θ,p consist of the Borel
subsets of B intersected with (B, Hμ)θ,p. The separability and completeness of
these spaces then says there are compact subsets of (B, Hμ)θ,p, and hence also B via
continuous embedding, with arbitrarly large probability. Now on these compacts,
the norm topologies are equivalent, and hence if ε > 0 is sufficiently small we
have ε‖X‖α

θ,p < ‖X‖B except if X=0 where they are equal. Hence we have the
non-degeneracy for small ε > 0 as claimed.

Let r > 0. Then for ‖X‖θ,p > ε(‖X‖α
θ,p ∨ 1) we have ‖Tε,‖X‖α

θ,p
(X)‖μ = r if and

only if E(X, r) = ε(‖X‖α
θ,p ∨ 1), and it equals zero otherwise. Hence for all r > 0

(3.1) P (‖Tε,‖X‖α
θ,p

(X)‖μ > r) = P (E(X, r) > ε(‖X‖α
θ,p ∨ 1)).

Therefore by (2.7) for r > 0

P (‖Tε,‖X‖α
θ,p

(X)‖μ > r) ≤ P (E(X, r) > ε((C1/C2)α‖X‖α
θ,∞ ∨ 1)),

and by Theorem 3.1 of [8] we thus have

P (‖Tε,‖X‖α
θ,p

(X)‖μ > r) ≤ P (‖X‖1/(1−θ)
θ,∞ > rθ/(1−θ)ε((C1/C2)α‖X‖α

θ,∞ ∨ 1)).

Dividing by ((C1/C2)α‖X‖α
θ,∞ ∨ 1) within the probability in the last term of the

previous line, and replacing it by the possibly smaller quantity ((C1/C2)α‖X‖α
θ,∞),

we see that

(3.2) P (‖Tε,‖X‖α
θ,p

(X)‖μ > r) ≤ P (‖X‖1/(1−θ)−α
θ,∞ > rθ/(1−θ)ε((C1/C2)α)).

Hence for r > 0 we have

(3.3) P (‖Tε,‖X‖α
θ,p

(X)‖μ > r) ≤ P (‖X‖α+(1−α)/θ
θ,∞ > k

(1−θ)/θ
1 r),

where k1 = ε((C1/C2)α). Thus (2.7) and (2.9) implies (2.11), and hence (3.3) with
β = 2(α + (1 − α)/θ) implies

E(‖Tε,‖X‖α
θ,p

(X)‖2
μ) < ∞.

Thus Tε,‖X‖α
θ,p

(X) satisfies the CLT in Hμ for all ε > 0, and since the identity map
embeds Hμ continuously into B, it also satisfies the CLT in B for all ε > 0.

Repeating the previous argument, starting with Tε,‖X‖α
θ,∞

(X), we thus have

E(‖Tε,‖X‖α
θ,∞

(X)‖2
μ) < ∞.

Thus (2.9) implies (2.10) holds. Finally, if we assume (2.11), then the same argument
gives (2.12) and the theorem is proved.
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Examples. In this section we provide two types of examples - those which indi-
cate the differences between the classical CLT and the modifications we present in
this paper and others which deal with Tε(X) itself. In order to make the compar-
isons, we separate the individual conditions of Theorem 1 as well as the conditions
used in describing classical CLT behavior.

For our examples we use the spaces

(3.4) Lr(w0) =

{
{xj } :

∞∑
j=1

βj |xj |r < ∞
}

,

where the weights w0(j) = βj > 0 for j ≥ 1 and 1 < r < 2. Then Lr(w0), together
with the norm norm ‖ {xj } ‖r = (

∑∞
j=1 βj |xj |r)1/r, is a Banach space. If {ej } denotes

the canonical basis of these sequence spaces, we describe a point in the space both
by x = {xj } and x =

∑∞
j=1 xjej .

Let X =
∑∞

j=1 λ
1/2
j ηjej , where λj > 0 and {ηj } are orthogonal, mean zero

random variables with E(η2
j ) = 1, j ≥ 1. If

(3.5) E(‖X‖r
r) =

∞∑
j=1

βjλ
r/2
j E(|ηj |r) < ∞,

then X is Lr(w0).
Also, since 1 < r < 2 our normalization, E(η2

j ) = 1, implies supj≥1 E(|ηj |r) ≤ 1.
Hence, (3.5) holds if

(3.6)
∞∑

j=1

βjλ
r/2
j < ∞.

Since 1 < r < 2, the condition (3.6) is necessary and sufficient for X to satisfy
the CLT in B = Lr(w0), i.e. see, for example, [1], page 205.

While (3.6) implies X is WM2
0 , it is not a necessary condition for X to be WM2

0 ,
and this is what we examine next.

A necessary condition for WM2
0 . If X is WM2

0 and μ = L(X), then our
Hilbert space Hμ is the sequence space L2(w1) given by

(3.7) L2(w1) =

{
{xj } :

∞∑
j=1

w1(j)x2
j < ∞

}
,

where the weights w1(j) = λ−1
j , j ≥ 1, and

‖ {xj } ‖μ =

( ∞∑
j=1

λ−1
j x2

j

)1/2

.

Claim. X is WM2
0 if

∞∑
j=1

(λjβ
2/r
j )r/(2−r) =

∞∑
j=1

λ
r/(2−r)
j β

2/(2−r)
j < ∞.
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To see this first observe that since B = Lr(w0), then B∗ = Ls(w0) where s =
r/(r − 1). Hence we have E(g2(X)) < ∞ for all g = {gj } ∈ B∗ if

(3.8)
∞∑

j=1

λjg
2(ej) < ∞,

for all such g ∈ Lr/(r−1)(w0). Since the sequence ek = {δ(k, j) : j ≥ 1} ∈ B, then
for g = {gj } ∈ B∗ we have via the usual pairing of g and ek over Lr(w0) that

g(ek) =
∞∑

j=1

βjgjδ(j, k) = βkgk

for all k ≥ 1. Therefore, (3.8) requires that

(3.9)
∞∑

j=1

λjβ
2
j g2

j < ∞

whenever g ∈ Ls(w0) = Lr/(r−1)(w0), i.e. whenever

(3.10)
∞∑

j=1

βj |gj |r/(r−1) < ∞.

Now (3.10) implies {β
2(r−1)/r
j g2

j } ∈ �r/(2(r−1)) for all g = {gj } ∈ Lr/(r−1)(w0), and
hence (3.9) converges for all such {gj } if

{λjβ
2−2(r−1)/r
j } = {λjβ

2/r
j } ∈ �s∗

,

where 1/s∗ + 2(r − 1)/r = 1. Hence s∗ = r/(2 − r) and (3.9) holds for all g ∈ B∗ if

(3.11)
∞∑

j=1

(λjβ
2/r
j )r/(2−r) =

∞∑
j=1

λ
r/(2−r)
j β

2/(2−r)
j < ∞.

Summary. if (3.6) holds then X satisfies the CLT on B, and X is WM2
0 if the

weaker condition in (3.11) holds, i.e. recall 1 < r < 2.
The interpolation spaces. If we consider the interpolation spaces for the pair

(B, Hμ) = (Lr(w0), L2(w1)), where 1 < r < 2, then for 0 < θ < 1 Theorem 5.5.1 of
[2] implies

(3.12) (B, Hμ)θ,q = (Lr(w0), L2(w1))θ,q = Lq(w),

where w(j) = (w0(j))q(1−θ)/r(w1(j))qθ/2, and q = q(θ, r) is determined by 1/q =
(1 − θ)/r + θ/2. Then a simple calculation shows 1 < r < q < 2, and we have

(3.13) (B, Hμ)θ,q = Lq(w) =

{
{xj } :

∞∑
j=1

β
q(1−θ)/r
j λ

−qθ/2
j |xj |q < ∞

}
,

with norm

‖x‖θ,q =

( ∞∑
j=1

β
q(1−θ)/r
j λ

−qθ/2
j |xj |q

)1/q

.
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Hence if X is given by
∑∞

j=1 λ
1/2
j ηjej , where the {ηj } are orthonormal as above,

then

(3.14) ‖X‖θ,q =

( ∞∑
j=1

β
q(1−θ)/r
j λ

q(1−θ)/2
j |ηj |q

)1/q

,

and

‖X‖B = ‖X‖r =

( ∞∑
j=1

βjλ
r/2
j |ηj |r

)1/r

.

Therefore, if (3.6) holds, then an easy application of Minkowski’s inequality implies
we have E(‖X‖2

B) < ∞. Similarly, (3.14) implies

(3.15) E(‖X‖2
θ,q) ≤

∞∑
j=1

β
q(1−θ)/r
j λ

q(1−θ)/2
j ,

and

(3.16) E(‖X‖2/θ
θ,q ) ≤

∞∑
j=1

β
q(1−θ)/r
j λ

q(1−θ)/2
j (E(|ηj |2/θ))qθ/2.

Finally, if 1/q = (1 − θ)/r + θ/2, with 0 < θ < 1 and 1 < r < 2 fixed, then with β
of Theorem 1 such that β = 2(α + (1 − θ)/2) = q we have from (3.14) that

(3.17) E(‖X‖β
θ,q) = E(‖X‖q

θ,q) =
∞∑

j=1

β
q(1−θ)/r
j λ

q(1−θ)/2
j E(|ηj |q),

where 1 < r < q < 2. To see we can choose α ∈ [0, 1/(1 − θ)] such that β = β(α) =
2(α + (1 − α)/θ) = q, notice that β(α) is linear in α with β(0) = 2/θ > 2 and
β(1/(1 − θ)) = 0. Thus 1 < q < 2 implies there exists α = αq such that β(αq) = q
and (3.17) holds.

Hence if λj = 1/Lj, βj = 1/j for j ≥ 1, and E(|ηj |q) ≤ j−q/2, then we have

(a) P (X ∈ B) = 1 since (3.5) holds.
(b) (3.6) fails since r < 2.
(c) X is WM2

0 since (3.11) holds and r/(2 − r) > 1, 2/(2 − r) > 2.
(d) E(‖X‖q

θ,q) < ∞ since (3.17) holds and 1 < q(1 − θ)/r + q/2.

To see there are {ηj : j ≥ 1} such that E(|ηj |q) ≤ j−q/2, take cj = jq/(2−q) and
{ηj } independent such that P (ηj = ±c

1/2
j ) = 1/(2cj) and P (ηj = 0) = 1/cj . Then

E(ηj) = 0, E(η2
j ) = 1 and E(|ηj |q) = j−q/2.

Conclusions concerning Tε,‖X‖α
θ,∞

(X). Hence with these choices of {λj }, {βj },

{ηj }, and α = αq as above, the random vector X is B-valued, X is WM2
0 , X is not

pre-Gaussian, and by Theorem 1 and (d) above we have Tε,‖X‖α
θ,∞

(X) satisfies the
CLT in B for all ε > 0. That X is not pre-Gaussian on B when (3.6) fails follows
from [9], or our previous reference to [1] following (3.6).

Some additional examples. For some examples X where Tε(·) satisfies the
CLT, we take {ηj } orthogonal with E(ηj) = 0, E(η2

j ) = 1 and such that we also
have supj≥1 E(|ηj |2/θ) is finite. In addition we take

βj = j−r/(q(1−θ)), λj = (Lj)−2(1+δ)/(q(1−θ)),
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where δ > 0. Then (3.15) and (3.16) are both finite. Furthermore, (3.5) and (3.6)
hold since r/(q(1 − θ)) > 1, and X is WM2

0 since (3.11) holds. Of course, X is
also WM2

0 since we have E(‖X‖2
B) finite by (3.6). In addition, since 1 < r < 2,

we recall that (3.6) implies X satisfies the CLT. Furthermore, by Theorem 1 with
α = 0 we also have Tε(X) satisfies the CLT, i.e. recall (2.7), so (3.16) finite implies
E(‖X‖2/θ

θ,∞) < ∞ and hence (2.11) yields (2.12) with α = 0.
The following proposition shows that for 0 < α < 1, the analogues of the map-

pings used in Theorem 1 when the interpolation norms are replaced by the B-norm
do not improve the CLT in a type-2 Banach space.

Proposition 3.1. Let B be a separable type-2 Banach space and X be a Borel
measurable random vector with values in B. If X satisfies the CLT in B, then for
all ε > 0 and 0 < α < 1 we have Tε,‖X‖α(X) satisfies the CLT. Conversely, if
Tε,‖X‖α(X) satisfies the CLT for some ε > 0, then X satisfies the CLT in B.

Proof. If X satisfies the CLT in B, then as in the proof of Theorem 4 in [5] we have
Tε,‖X‖α(X) satisfies the CLT provided X −Tε,‖X‖α(X) satisfies the CLT there. Now

(3.18) ‖X − Tε,‖X‖α(X)‖ ≤ ε(‖X‖α ∨ 1),

and hence E(‖X − Tε,‖X‖α(X)‖2) ≤ ε2E((‖X‖2α ∨ 1)) < ∞, where the finiteness
of the last inequality holds since X satisfies the CLT and 0 < α < 1.

If Tε,‖X‖α(X) satisfies the CLT, then again it suffices to show that X −Tε,‖X‖α(X)
satisfies the CLT. Since

‖X‖ ≤ [‖Tε,‖X‖α(X)‖ + ε(‖X‖α ∨ 1)],

we have ‖X‖2α ≤ [‖Tε,‖X‖α(X)‖ + ε(‖X‖α ∨ 1)]2α, and hence there exists Cα < ∞
such that

‖X‖2α ≤ Cα[‖Tε,‖X‖α(X)‖2α + ε2α(‖X‖2α2 ∨ 1)].

Since 0 < α < 1 and Tε,‖X‖α(X) satisfies the CLT, we have from the previous
inequality that

E(‖X‖2α) < ∞.

Therefore (3.18) implies E(‖X − Tε,‖X‖α(X)‖2) < ∞, and when B is type-2 this
implies X − Tε,‖X‖α(X) satisfies the CLT. Thus the proposition is proven.
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