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A note on positive definite norm

dependent functions

Alexander Koldobsky

University of Missouri-Columbia

Abstract: Let K be an origin symmetric star body in R
n. We prove, un-

der very mild conditions on the function f : [0, ∞) → R, that if the function
f(‖x‖K) is positive definite on R

n, then the space (Rn, ‖ · ‖K) embeds iso-
metrically in L0. This generalizes the solution to Schoenberg’s problem and
leads to progress in characterization of n-dimensional versions, i.e. random
vectors X = (X1, . . . , Xn) in R

n such that the random variables
∑

aiXi are
identically distributed for all a ∈ R

n, up to a constant depending on ‖a‖K

only.

1. Introduction

In 1938, Schoenberg [26] posed the problem of finding the exponents 0 < p < 2 for
which the function exp(−‖x‖p

q) is positive definite on R
n, where

‖x‖q = (|x1|q + · · · + |xn|q)1/q

is the norm the space �n
q with 2 < q ≤ ∞. Recall that a complex valued function f

defined on R
n is called positive definite on R

n if, for every finite sequence {xi}m
i=1

in R
n and every choice of complex numbers {ci}m

i=1, we have

m∑
i=1

m∑
j=1

cic̄jf(xi − xj) ≥ 0.

For q = ∞, the problem was solved in 1989 by Misiewicz [21], and for 2 < q < ∞,
the answer was given in [11] in 1991 (note that, for 1 ≤ p ≤ 2, Schoenberg’s question
was answered earlier by Dor [5], and the case n = 2, 0 < p ≤ 1 was established
in [7, 9, 16]). The answers turned out to be the same in both cases: the function
exp(−‖x‖p

q) is not positive definite if the dimension of the space is greater than 2,
and for n = 2 the function is positive definite if and only if 0 < p ≤ 1. Different
and independent proofs of Schoenberg’s problems were given by Lisitsky [17] and
Zastavnyi [28, 29] shortly after the paper [11] appeared.

For an origin symmetric star body K in R
n, let EK = (Rn, ‖ · ‖K) be the space

whose unit ball is K, where ‖x| |K = min{a ≥ 0 : x ∈ aK} is the Minkowski
functional of K. Note that the class of star bodies includes convex bodies, and
EK is a normed space if and only if K is convex (see [12], p. 13). Denote by
Φ(K) = Φ(EK) the class of continuous functions f : [0, ∞) → R for which f(‖ · ‖K)
is a positive definite function on R

n.
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The classes Φ(K) admit an interesting probabilistic interpretation. Following
Eaton [6], we say that a random vector X in R

n is an n-dimensional version if all
linear combinations of its coordinates have the same distribution, up to a constant,
namely for any vector a ∈ R

n the random variables

n∑
i=1

aiXi and ‖a‖KX1

are identically distributed. The result of Eaton is that a random vector is an n-
dimensional version if and only if its characteristic functional has the form f(‖x‖K).
Hence, by Bochner’s theorem, the problem of finding all n-dimensional versions is
equivalent to characterizing the classes Φ(K). Note that, by the classical result of
P. Lévy [15], if K is the unit ball of a finite dimensional subspace of Lq, 0 < q ≤ 2,
then the function exp(−|t|q) ∈ Φ(K), and the corresponding n-dimensional versions
are the classical q-stable vectors.

The classes Φ(K) have been studied by a number of authors. Schoenberg [27]
proved that f ∈ Φ(Bn

2 ) if and only if

f(t) =
∫ ∞

0

Ωn(tr) dλ(r)

where Bn
2 is the unit Euclidean ball in R

n, Ωn(| · |2) is the Fourier transform of
the uniform probability measure on the sphere Sn−1, and λ is a finite measure on
[0, ∞). In the same paper, Schoenberg proved an infinite dimensional version of this
result: f ∈ Φ(�2) if and only if

f(t) =
∫ ∞

0

exp(−t2r2) dλ(r).

Bretagnolle, Dacunha-Castelle and Krivine [2] proved a similar result for the classes
Φ(�q) for all q ∈ (0, 2) (one just has to replace 2 by q in the formula), and showed
that for q > 2 the classes Φ(�q) (corresponding to infinite dimensional �q-spaces)
are trivial, i.e. contain constant functions only. Cambanis, Keener and Simons [3]
obtained a similar representation for the classes Φ(Bn

1 ). Richards [24] partially
characterized the classes Φ(Bn

q ) for 0 < q < 2. Aharoni, Maurey and Mityagin [1]
proved that if E is an infinite dimensional Banach space with a symmetric basis
{en} ∞

n=1 such that

lim
n→∞

‖e1 + · · · + en‖
n1/2

= 0,

then the class Φ(E) is trivial. Misiewicz [21] proved that for n ≥ 3 the classes
Φ(�n

∞) are trivial, and Lisitsky [17] and Zastavnyi [28, 29] proved the same the
classes Φ(�n

q ), q > 2, n ≥ 3. One can find more detailed information and references
in [23, 22, 4, 8, 12].

In all the results mentioned above the classes Φ(K) appear to be non-trivial
only if K is the unit ball of a subspace of Lq with 0 < q ≤ 2. It was conjectured
by Misiewicz [20] that the latter condition on K is necessary for Φ(K) to be non-
trivial. In support of this conjecture, Misiewicz [20] and Kuritsyn [14] proved that
if f ∈ Φ(K) is a non-constant function and its inverse Fourier transform ν (which
is a finite measure on R, by Bochner’s theorem) has a finite moment or the order
q ∈ (0, 2], then K is the unit ball of a subspace of Lq. Lisitsky [18] showed that if
f ∈ Φ(K) is a non-constant function and

∫
R

| log |t| | dν(t) < ∞ then, (Rn, ‖ · ‖K)
embeds in L0 (the definition of embedding in L0 was given later in [10]; see below),
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and formulated a weaker conjecture that if Φ(K) is non-trivial then K is the unit
ball of a subspace of L0.

The purpose of this note is to provide simple conditions on the function f itself
(rather than on its inverse Fourier transform) under which f(‖ · ‖K) can be positive
definite only if K is the unit ball of a subspace of Lq, 0 ≤ q ≤ 2. We prove
that if f is a continuous non-constant function satisfying |f(0) − f(t)| ≤ C|t|q in a
neighborhood of the origin, where C > 0, q ∈ (0, 2), and f(‖ · ‖K) is positive definite,
then K is the unit ball of a subspace of Lq. We also prove that if limt→∞ tε|f(t)| < ∞
for some ε ∈ (0, 1), and f(‖ · ‖K) is positive definite, then K is the unit ball of a
subspace of L0. This shows that, in order to defy the conjectures of Misiewicz and
Lisitsky, the function f must exhibit rather odd behaviour at both the origin and
infinity. Finally, we combine these facts with known results about embedding in Lq

to further generalize the solution of Schoenberg’s problem.

2. Proofs and examples

As usual, we denote by S(Rn) the space of infinitely differentiable rapidly decreasing
functions on R

n (Schwartz test functions), and by S ′
(Rn) the space of distributions

over S(Rn). If φ ∈ S(Rn) and f ∈ S ′
(Rn) is a locally integrable function with

power growth at infinity, then

〈f, φ〉 =
∫

Rn

f(x)φ(x) dx.

We say that a distribution is positive (negative) outside of the origin in R
n

if it assumes non-negative (non-positive) values on non-negative Schwartz’s test
functions with compact support outside of the origin.

The Fourier transform of a distribution f is defined by 〈f̂ , φ〉 = 〈f, φ̂〉 for every
test function φ.

We need a Fourier analytic criterion of embedability in Lq that applies to every
q > 0 which is not an even integer; see [K], Th. 6.10.

Proposition 1. Let K be an origin-symmetric star body in R
n, and q > 0 is not

an even integer. Then the space (Rn, ‖ · ‖K) embeds isometrically in Lq if and only
if Γ(−q/2)(‖ · ‖q

K)∧ is a positive distribution on R
n \ {0}.

We now prove our first result.

Theorem 1. Let K be an origin symmetric star body in R
n, and f a non-constant

continuous function on [0, ∞). Suppose that there exist C > 0, 0 < q < 2, u > 0
such that

(1) |f(0) − f(t)| ≤ Ctq

for every t ∈ (0, u). If f(‖ · ‖K) is a positive definite function, then the space
(Rn, ‖ · ‖K) embeds isometrically in Lq.

Proof. A positive definite function f(‖x‖K) has absolute maximum at zero (see [19]
or [25], p. 21) and is bounded on R

n, hence f(0) ≥ f(t) for every t > 0 and f is
bounded on [0, ∞).

Let 0 < α < q. The condition (1) and the remark above imply that the integral

c =
∫ ∞

0

t−1−α(f(0) − f(t)) dt
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converges and is positive (f is not a constant).
Making a change of variables u = t‖x‖K , we see that for every x ∈ R

n \ {0}

(2) c‖x‖α
K =

∫ ∞

0

t−1−α (f(0) − f(t‖x‖K)) dt.

Let φ be an even non-negative test function supported outside of the origin. Then

(3)
∫

Rn

φ̂(x) dx = (2π)nφ(0) = 0.

Applying the definition of the Fourier transform of a distribution and equalities (2)
and (3), we get

〈(‖ · ‖α
K)∧

, φ〉 = 〈‖x‖α
K , φ̂〉 =

∫
Rn

‖x‖α
K φ̂(x) dx

= − 1
c

∫ ∞

0

t−1−α

(∫
Rn

f(t‖x‖K)φ̂(x) dx

)
dt

= − 1
c

∫ ∞

0

t−1−α〈(f(t‖ · ‖K))∧
, φ〉dt ≤ 0,

because f(t‖ · ‖K) is a positive definite function on R
n for every fixed t ∈ R, and,

by Bochner’s theorem, (f(t‖ · ‖K))∧ is a finite measure on R
n.

For every 0 < α < q and x ∈ R
n, we have

‖x‖α
K |φ̂(x)| ≤ max(1, ‖x‖q

K) |φ̂(x)|,

where the function of x ∈ R
n in the right-hand side is integrable, so by the domi-

nated convergence theorem,

〈(‖ · ‖q
K)∧

, φ〉 =
∫

Rn

‖x‖q
K φ̂(x) dx

= lim
α→q

∫
Rn

‖x‖α
K φ̂(x) dx = lim

α→q
〈(‖ · ‖α

K)∧, φ〉 ≤ 0.

Now the result follows from Proposition 1 with 0 < q < 2.

The concept of embedding in L0 was introduced in [10].

Definition 1. We say that a space (Rn, ‖ · ‖K) embeds in L0 if there exist a finite
Borel measure μ on the sphere Sn−1 and a constant C ∈ R so that, for every
x ∈ R

n,

(4) ln ‖x‖K =
∫

Sn−1
ln |(x, ξ)|dμ(ξ) + C.

Embedding in L0 also admits a Fourier analytic characterization, as established
in [10], Th. 3.1.

Proposition 2. Let K be an origin symmetric star body in R
n. The space (Rn,

‖ · ‖K) embeds in L0 if and only if the Fourier transform of ln ‖x‖K is a negative
distribution outside of the origin in R

n.

We use the latter statement to prove our next result.
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Theorem 2. Let K be an origin symmetric star body in R
n, and f a continuous

function on [0, ∞) such that

(5) lim
t→∞

tε|f(t)| = 0

for some ε ∈ (0, 1). If f(‖ · ‖K) is a positive definite function, then the space
(Rn, ‖ · ‖K) embeds in L0.

Proof. By the condition (5) and since f is a bounded function, for every 0 < δ < ε,
the integral

c =
∫ ∞

0

t−1+δf(t) dt

converges absolutely. We need to show that c > 0. In fact, making a change of
variables z = tu and expressing the resulting integral in terms of the Γ-function,
we get ∫ ∞

0

u−δ exp(−t2u2/2) du = t−1+δΓ((1 − δ)/2).

The function f(| · |) is positive definite on R as the restriction to R of a positive
definite function. By Bochner’s theorem, f(| · |) = ν̂ for some finite measure ν on R.
We have

c =
1

Γ((1 − δ)/2)

∫ ∞

0

u−δ 〈f(|t|), exp(−t2u2/2)〉du

=
1

Γ((1 − δ)/2)

∫ ∞

0

u−δ 〈ν, (exp(−t2u2/2))∧ 〉du > 0,

since ν is a non-negative measure and the Fourier transform of a Gaussian density
is also a Gaussian density, up to a positive constant.

Now for any x ∈ Rn \ {0}, we have

c‖x‖−δ
K =

∫ ∞

0

t−1+δf(t‖x‖K) dt.

For every even non-negative test function φ,

〈‖x‖ −δ
K , φ̂〉 =

1
c

∫ ∞

0

t−1+δ 〈f(t‖ · ‖K), φ̂〉dt

=
1
c

∫ ∞

0

t−1+δ 〈(f(t‖ · ‖K))∧, φ〉dt ≥ 0,

since the function f(t‖ · ‖K) is positive definite for any fixed t ∈ R.
Suppose that, in addition, φ is supported outside of the origin, then by (3)

〈 ‖x‖ −δ
K − 1
δ

, φ̂

〉
=

1
δ

〈 ‖x‖ −δ
K , φ̂〉 ≥ 0.

Sending δ to zero, we get that

−〈log ‖x‖K , φ̂〉 = −〈(log ‖ · ‖K)∧, φ〉 ≥ 0,

and by Proposition 2, the space (Rn, ‖ · ‖K) embeds in L0.



Positive definite functions 35

Let us show several applications. For normed spaces X and Y and q ∈ R, q ≥ 1,
the q-sum (X ⊕ Y )q of X and Y is defined as the space of pairs {(x, y) : x ∈ X, y ∈
Y } with the norm

‖(x, y)‖ = (‖x‖q
X + ‖y‖q

Y )1/q
.

It was proved in [13] (see also [12], Th. 6.11, Th. 4.21) that if q > 2 and X is any
two-dimensional normed space, then the three dimensional space (X ⊕ R)q does not
embed in Lp, 0 < p ≤ 2. Combining this fact with Theorem 1, we get

Corollary 1. If a function f satisfies the conditions of Theorem 1 and (Rn, ‖ · ‖)
is a space containing a three-dimensional subspace (X ⊕ R)q, where q > 2 and X is
any two-dimensional normed space, then the function f(‖ · ‖) is not positive definite.

Recall that an Orlicz function M is a non-decreasing convex function on [0, ∞)
such that M(0) = 0 and M(t) > 0 for every t > 0. The norm ‖ · ‖M of the n-
dimensional Orlicz space �n

M is defined implicitly by the equality
∑n

k=1 M(|xk |/
‖x‖M ) = 1, x ∈ R

n \ {0}. It was proved in [13] that the spaces �n
M , n ≥ 3 do

not embed in Lp, 0 < p ≤ 2 if the Orlicz function M ∈ C2([0, ∞)) satisfies the
condition M ′(0) = M ′ ′(0) = 0.

Corollary 2. If a function f satisfies the conditions of Theorem 1 and (Rn, ‖ · ‖)
is a space containing �3M , where M is an Orlicz function such that M ∈ C2([0, ∞))
and M ′(0) = M ′ ′(0) = 0, then the function f(‖ · ‖) is not positive definite.

The concept of embedding of a normed space in L0 was studied in [10]. In
particular, every finite dimensional subspace of Lp, 0 < p ≤ 2 embeds in L0. Every
three-dimensional normed space embeds in L0. On the other hand, every space that
embeds in L0 also embeds in every Lp, p < 0.

It follows from the latter fact, combined with Theorems 4.21 and 4.22 from [12],
that

Corollary 3. If a function f satisfies the conditions of Theorem 2 and (Rn, ‖ · ‖)
is a space containing a four-dimensional space (X ⊕ R)q, where q > 2 and X is
any three-dimensional normed space, or (Rn, ‖ · ‖) contains a space �4M , where M
is an Orlicz function such that M ∈ C2([0, ∞)) and M ′(0) = M ′ ′(0) = 0, then the
function f(‖ · ‖) is not positive definite.

Corollaries 1-3 generalize the solution of Schoenberg’s problem.

References

[1] Aharoni, I., Maurey, B. and Mityagin, B. (1985). Uniform embeddings
of metric spaces and of Banach spaces into Hilbert spaces. Israel J. Math. 52
251–265.

[2] Bretagnolle, J., Dacunha-Castelle, D. and Krivine, J. L. (1966).
Lois stables et espaces Lp. Ann. Inst. H. Poincaré Probab. Statist. 2 231–259.
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