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Abstract: Let X; be a stochastic process driven by a differential equation of
the form dX¢ = o(t, X¢)dWe + b(t, X¢)dt, t > 0, and let X7, = sup,<,<; Xu,
be the maximum of the diffusion. In this work we obtain bounds for the tail
distribution of X:,tv define several dynamic VaR type quantiles for this pro-
cess and give upper and lower bounds for both, the VaR quantile and the
conditioned mean loss associated to it. The results we obtain are based in the
change of time property of the Brownian Motion, and can be applied to a a
large class of examples used in Finance, in particular where o(t, X;) = O'tX;Y,
where 0 < v < 1. The estimates we obtain are sharp. We discuss carefully
the Geometric Brownian Motion, the Cox-Ingersoll-Ross and the Vasicek type
models, and give an application to Russian options.

1. Introduction

For Risk Theory it is of interest to estimate high quantiles (Value at Risk: VaR) and
mean loss given that an extreme event has occurred. One approach to deal with this
is to use Extreme Value Theory by fitting Fréchet, Gumbel or Weibul distributions
to approximate VaR and the Generalized Pareto distribution to fit the conditional
loss distribution (see, for example, an excellent account in the book [EKM]; in
references therein and subsequent work by the authors). An enormous amount of
work in this direction has been done also for time series (see, for example [McNeil]).
The behavior of extremes for diffusion processes has been studied by Davis (1982,
[Dav]) who found a distribution F} which is the asymptotic limit for the distribution
of the maxima of the process as ¢ tends to infinity. On the other hand, Borkovec and
Kliippelberg (1998,[BoKl]) described the tail behavior of the limit F} -using again
Extreme Value Theory- in terms of the coefficients of the equation and proved that
the number of e—upcrossings of certain level converges to a homogeneous Poisson
Process as t tends to infinity and mentioned that the applications of these results
to study risk measures of financial products was work in progress.

Another point of view is that of Talay and Zheng (2002, [TaZh]), who combined
Monte-Carlo Methods with the Euler discretization to calculate VaR for diffusion
processes that have densities (uniformly elliptic, or a more general setting as in
Bally and Talay [BaTal] and [BaTa2|). They applied their results to find VaR for
portfolios.
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In this work we consider continuous processes driven by a differential stochas-
tic equation dX; = o(t, X;)dW, + b(t, X;)dt, ¢ > 0, define VaR quantiles for
SUP, <, < Xvu and give bounds for both, the VaR quantile and the conditioned mean
loss associated to it. The second quantity is generally considered better than VaR
not only because it is subadditive, but also because it provides useful extra in-
formation. Our approach is completely different to that of the authors mentioned
above and can be applied to a general class of diffusions, in particular to typical
examples in Finance where o(t, X;) = 0: X,, with 0 < v < 1 and o; bounded. We
use the change of time property of the Brownian Motion to give upper and lower
bounds for the tail distribution of the process sup,«,<; X., and apply those results
to obtain estimates for different measures of risk. We pay special attention to the
Geometric Brownian Motion, the Vasicek and the Cox-Ingersoll-Ross type models.
It is important to remark that our estimates are sharp, as can be seen in all the
corollaries where we combine upper and lower bounds. This property —sharpness
of the bounds, that is important by itself, seems relevant for practitioners, who in
general obtain bounds for the coefficients of the equations they work with. We can
also note that the coefficients that define the processes (o and b in equation (1)
below) can be random, as long as they satisfy certain hypotheses defined in Section
2.

The same type of analysis has already been done for diffusion processes with
jumps in [DFM], using other techniques. Those bounds, if restricted to processes
without jumps as in the present setting, are not as good as the estimates found
here. Additionally, in this paper three important classes of examples are carefully
discussed.

The structure of the paper is as follows: In Section 2 we state the notation,
the basic assumptions we will use (Hypotheses (UB) and (LB)), and we describe
the main examples we discuss all along the paper. Section 3 has the upper and
lower estimates for the tail distribution of sup,., <, X, based in the change of time
property of the Brownian Motion. Also in that Section are the computations of
the estimates for the main examples, including an application to Russian Options.
We devote Section 4 to the definition of different kinds of dynamic VaR quantiles,
and give general upper and lower estimates for them, based on the previous results.
Finally, in Section 5, we consider the expected shortfall as well as a second order
VaR conditioned on the past, and obtain the corresponding estimations.

2. Preliminaries: Hypotheses and Notation

We consider a one-dimensional Brownian Motion W and a diffusion process defined
by the following differential equation

(1) dXt = O'(t, Xt)th + b(t,Xt)dt, t > 0,

which models financial assets such as interest rate. The functions ¢ and b are
measurable, real valued, and so that equation (1) admits a unique solution which
is a diffusion process with state space IR (see for example [ReYor| Chapter IX, or
[KarShr| Chapter 6).

All along this paper we shall denote by (UB) the hypotheses to have upper
bounds, and by (LB) (correspondingly, to obtain lower bounds) to the following
sets of conditions:

Hypotheses (UB):
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1. for all z € R, and t > 0, b(¢, z) is unifomly bounded above b(t, z) < b* by the
constant b* > 0.

2. for all z € IR, and uniformly on ¢ > 0, |o(t, 2)| < va*|z|”, where a* > 0, and
v € [0,1) are constants.

Observe that in the case v = 0, Hypothesis 2. of (UB) means that o is bounded.
The case v = 1 is not considered in (UB): it shall be treated separately, for example
in what we call the Geometric Brownian type process case.

Hypotheses (LB):

1. Forall z € R, t > 0, b, < b(t, z) with the constant b, < 0.
2. Forall ze R, t >0, \/a. < o(t,z), where a, > 0 is constant.

Note that Hypotheses (LB) are just uniform lower bounds on the coefficients.
In a natural way, for all € IR, we shall denote by P, the probability associated
to X such that
Pz(X() = LC) =1.

Adopting conventional notations we define, for all 0 < s < ¢:

X:,t = Sup Xuv
s<u<t
and we put Xy = Xg ,.
Set, Vz € R, a(t,z) = 0*(t,z). Let us fix ¢ =1 —a in (0,1).
Let us denote by ® the tail of the standard normal distribution function defined
on IR:

L[ e
(b(x) = E/ e 2 du.
x

For any real number r, we shall denote by r* (resp. r™) its positive part (resp.
negative part) so that r = rt—r.

We are interested in finding upper bounds for some dynamic measures of risk
as the quantile type (VaR) and expected shortfall (analogous to those defined in
[McNeil] for time series), but for the maximum of the process between times s and
t.

We will define a quantile for the process (X} ,) given that the underlying process
is observed at time s and found equal to m. In order to do that we set, for z,m € IR
and 0 < s < t,

VaR,' (X) = inf{z € R, P,(X}, <z | X, =m)>q}.
Another definition for VaR (as in [TaZh]) is

VaRy! (X) =inf{z, Po(X; < 2 | Xy =m) > q}.
One can easily verify that VaR}' (X) < VaRi;fa(X ), so all the upper estimates
that follow are also valid for VaR}', (X).

We shall prove general results under (UB) or (LB), and apply them either
directly or after a change of variable. This will be done mainly to three classes of
examples, which are:

Example 1: The Geometric Brownian type process.

In this example, X satisfies the SDE

dX;

(2) Tt = O'tth + btdt,
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with Xo = m, m > 0, where o; and b; are real functions defined on IR. In the
context of the original model (1), b(¢, z) = bsz, and o(t, 2) = 0y2.

Example 2:The Coz-Ingersoll-Ross (CIR) type model.

The CIR process X is solution to the following SDE:

(3) dXt =V G*Xtth + (b* - C*Xt)dt,

with Xo = m, m > 0 and a*,b*,c¢* € RT.
It can be shown (see [IkWal), that for all m € IR™ this equation admits a unique
IR -valued solution with Xy = m. This process satisfies (UB) with v =1/2:

b(t,z) = b(z) = b* — c*2T <b*, and o(t,2) = 0(2) = \/a*|z|.

Let us remak that in general, this model is used in theory of interest rates.
Example 3: The Vasicek type model.
In this model X satisfies the SDE

(4) dXt = O'th + (ﬂ - ,utXt)dt,

where 0 € R, 3 € R, and p is a positive continuous function.
Let us remark that not all the examples above satisfy Hypotheses (UB) or (LB)
directly.

3. Estimates for the distribution of X* and applications
3.1. Estimates for the distribution of the sup

Lemma 3.1. Let X be a solution of equation (1), and let us assume (UB). Then,
fort >0, melR and z € R we have

N - (z—m—b*t)+>
P (XF>2)<2p (Lm0 )
(X 22) ( Jartlz7

Proof. If z < m, the result is clear.
If z > m, then (wlog) we can assume that

vVt >0, Yy >z, a(t,y) = a(t, 2).
We have

P.(X;>2) <P, ( sup / o(u, X)dWy, >z —m — b*t> .
0

0<s<t

Let us denote s
Vs >0, Rs :/ o(u, Xy)dW,.
0
By the change of time property, there exists a Brownian Motion B such that
Vs >0, Ry = B p),-

This yields

P (X! >2) <P, ( sup B<R7R>S > z—m—b*t>

0<s<t

IN

Pm< sup B,>z2—m— b*t>

0<u<a*t|z|?¥
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since for all s € [0,t], (R, R)s < a*t|z|*.
As

Pm< sup B, > z—m—b*t> :Pm(|Ba*t‘Z‘2w| >z —m—b"t),

0<u<a*t|z|?7

we get the result. O
To get a lower bound, we assume conditions (LB), and we obtain the following:

Lemma 3.2. Let X be a solution of equation (1), and let us assume conditions
(LB). Then, for all z,m € R and t > 0,

_ _ _ +
2 (z=m—bt)* < Po(X{ > 2).
Vaxt
Proof. We have
Pm< sup / o(u, X)) dWy, >z —m — b*t> < P (Xf > 2).
s€l0,t] JO

By making the same change of variable as in the previous proof, with the same
notation, and as

t
axt §/ o?(u, Xy)du = (R, R); a.c.,
0

we deduce, using the Reflection Principle, that

~((z=m—0bt)" ~
2P <(\/m)) = Pm(|Ba*t| 2 Z—m—b*t)

:Pm< sup B, zz—m—b*t>
s€[0,axt]

ng< sup Bszz—m—b*t>
s€[0,(R,R)+]

= P, (X[} > 2),
and so the proof is complete. O
Combining both results above, we have

Corollary 3.3. Let X be a solution of equation (1), and assume both (UB) and
(LB). Then, for all z > m,

3.2. Application to the Examples
We keep notations of section 2.

Example 1:Brownian Geometric type process In this example, the idea is to
apply It6’s formula to the process

vt >0, Y, = In(X,).
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Indeed, under P,,,
t t
Y; :lnm—|—/ chst—F/ bs ds,
0 0

where

2
Is

Vs >0, by = by — 5

As a consequence of Corollary 3.3, we have

Proposition 3.4. In Example 1, if one assumes that there exist constants 0 <
ax < a* and b, < b* such that for allt >0

b, <b <b* anda*gafga*7

then for all z > m andt >0

0% ((lnz —Inm +t(bs — a;)_)'*')

Vait

a
< P ;>z)<2<1><

(Inz —Inm — t(b* — ‘12)"’)“‘)
a*t ’

American options are good candidates for an application of this result, in par-
ticular, the so called Russian option:

Application: Let us consider a Russian option, whose underlying asset X is a
Brownian geometric type process satisfying all the Hypotheses of Proposition 3.4.
Assume that its maturity is at time ¢ > 0, and recall that the pay-off at each s > 0
is given by

fs = MO\/SU-pXu~
u<s

If we assume that My is fixed, the quantity P, (X} > Mj) represents the risk for
the seller that the option is exercised at a price greater than M, and Proposition
3.4 gives an estimate of such risk.

Example 3: The Vasicek type model

We introduce the process:

t
Y, = el %y, >0

One can easily verify that for all ¢ > 0:

t S t S
Yi=m+ U€f0 fr 7"dVVS—&—/ Befo Hrdt s,
0 0

this yields

Proposition 3.5. If X denotes the Vasicek type process as introduced in Example
3, for all z > 0 and m in R, we have:

(z—m— ﬂtefot “SdS)JF

t
Jefo usds\/i’E

- (ef(f Heds i — Bt)*

20
avt

Proof. It is an immediate consequence of:

< Pp(X] > 2) <20

Py = el %2y < Py (X} 2 2) < Pa(Y) > 2).
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4. Estimates of different kinds of VaR

Along this section we assume that X satisfies equation (1) and the coefficients o
and b do not depend on t.

We make the last assumption in order to apply the Markov property, and consider
dynamic VaR; but all the results in this Section remain valid if s = 0, without the
extra condition on the coeflicients.

4.1. Dynamic VaR

4.1.1. Estimates

Thanks to the estimates of the previous section, we are able to estimate VaR;fa (X):

Theorem 4.1. Let us assume (UB). Then, for all 0 < s < t,
VaR,, (X) <7,
where r is the unique oot on [b*(t — ) +m, +o0[ of the following equation:
(5) z— |27 Va*(t —8)®  (a/2) —m — b*(t — s) = 0.
Proof. Thanks to the Markov property we have
Po(X{; <z| Xy =m) = Ppn(X;, <2),

so P(X3, < z| Xy =m) > qif and only if P,,(X;_; > 2) < «, and because of
Lemma 3.1 this is implied, if z > m, by the following inequality:

28 <(Z_m_b*(t_s))+> <a.

Var(t—s)|z[Y

Since v < 1, the left member of the previous inequality is equal to one for z <
m + b*(t — s) and goes to zero when z — oo. Then there exists at least one root of
the equation (5). The uniqueness is easy to verify. O

Corollary 4.2. (i) Ify =0, that is o bounded, there is the following estimate:

Val)! (X) <m+b"(t — )+ Var (t — )0 (a/2).

(ii) If v =1/2 and m > 0, which corresponds to the CIR type model, we have:

Valtyo(X) < m bt — )+ 5a*(t — 5)(@ 7 (0/2)

+ %é_l(a/Z)\/a*(t —5) (a*(t = s)(271)%(ar/2) + 4(m + b*(t — 5))).

Proof. One just has to calculate the root r of equation (5) in both cases. O

Theorem 4.3. Let us assume (LB). Then for all 0 < s < t,

s,t
m,x

m+ b, (t —s) + a.(t — )@ ' (a/2) < VaR, . (X).
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Proof. Tt is just a consequence of Lemma 3.2. O

Let us sum up the results we obtained in the case where o and b are bounded
and s = 0 (see the comment at the beginning of this section):

Proposition 4.4. Assume (UB) with v =0 and (LB), so we consider the process

t t
X, = m—|—/ o(u, Xy)dW, —|—/ b(u, Xy)du, t>0.
0 0
Then for all t > 0,
m + byt + Vat® 1 (a/2) < VaR?,;fa(X) <m+ bt +Vatd 1 (a/2).
Remark: This last inequality proves that in this case (7 = 0), the estimates we

got are sharp.

4.1.2. Application to examples

Example 1:Brownian Geometric type process

In this case, as previously, we consider the process Y = In X and keep the same
notation.

We have, for all 0 < s < t:

VaRe! o (X) = Ve (Y),

This leads to the following estimate, that we state for the case s = 0 so that
coefficients o an b may depend on t:

Proposition 4.5. In Ezample 1, if one assumes that there exist constants 0 <
ax < a* and b, < b* such that for all t >0

by < by <b* and a, < o < a*,
then for allt >0
me 0= THVATNE) < VaRD! (X)) < et T F) VIR0,

Example 3: The Vasicek type model
In this case we consider y not depending on t.

Y; =eX,, t>0.

Theorem 4.6. If VaR)! (e #Y) > 0 then, fort >0,

et (m+ Bt oVinT (5)) < VaRy o (X) < mt Bert + eo/id (5]

Proof. Following the same argument of Proposition 4.4 we have:
VaR% (7MY < VaRy o (X) < VaR% (Y),
and

m+ B+ oVitd ! (%) < VaRggfa(Y) <m 4 Bett 4 erto/td ! (%) )

then we get the desired inequality. O
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5. Expected shortfalls and other kinds of VaR

In this Section we assume again that X satisfies equation (1), the coefficients o and
b do not depend on t, and m > 0. The assumption on m is natural, and simplifies
the calculations since applying the estimates of Lemma 3.1 we drop the absolute
value.

5.1. Mean of the excess distribution over the threshold VaR:: o(X)

We want to measure the expected shortfall of X7 ; given that the process X; exceeds
VaR between times s and ¢. In order to do that we find bounds for the excess
distribution (see [EKM]| and references therein) and find estimates for what we call
a "second order" VaR. More precisely, we define for all 0 < s < t:

VVaR,, (X) = inf{z € R, Po(XZ, < 2| X7, > VaRy, o(X), X, =m) > g}.

Notice that for z < VaR, o(X), Po(X7, <z | X%, > VaRy, o(X), X, =m) = 0.
Lemma 5.1.
Pr(X7 > 2)

Po(XZ, > 2| X7y > VaR,! (X), X, =m) <
| , , -

with equality if Pp (X}, = m:nta(X)) =0.
Proof. Thanks to the Markov property, if z > mf,’:’a(X ) one has
P(Xiy 22| Xs=m)
Po(X:, > VaR, (X) | X, = m)
P (Xis 2 2)
m(Xiy > Vally) (X))

P
 Pu(XiL %)

Po(X:, >z | X2, > VaR,, (X), X, =m) =

o
As P (XF > mfja()()) =aif Pp(Xf_, = mfja()()) = 0, the last assertion
of the Lemma is clear. O
So, we have the following
Corollary 5.2. For all 0 < s < t, we have
VVaR,,'o(X) < VaR,, o (X),

with equality if Po(X;_, = VaRy, . (X)) = 0.
Proof.
VVaR,, o(X) = inf{z, Po(XZ, > 2 | X2, > VaR,, o(X), X, =m) < a}

P (X[, >
Sinf{z7(t5—z) Sa}
Q@

=inf{z, P,(X}, > z | X, =m) < o}
= VuR,,

m,a?:
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We also are able to estimate the mean loss under this conditional probability:

Proposition 5.3. Let us assume hypotheses (UB), then if m < VaRf,;fa(X)

B (X2, | X2, > VaRy o(X), Xy =m) = VaRy, o(X) + R,

+oo _ _B* (4 +
R< g/ % (z—m—0b*(t—s)) .
O JVaR:! (X) a*(t — s)z7

Proof. We have
B, (X2, | X2, > VaR,! (X), X, = m) = VaRy, .(X)

where

“+oo
+/ P (X:, 22| X5, > VaRf,’lta(X),Xs:m) dz.
VaR.,' . (X) ' ' '

From Lemma 5.1, and Lemma 3.1, we have

m,x

+oo
/7 P (X:, >z| X5, > VaR:! (X),Xs=m)dz

1 [t
< */ P, (Xt*_s > Z) dz
)

IN

2/** o (L—m-b(-—s)")
@ JVaR;! () Var(t —s)z7

+oo _ _OBRE(4
2/ Y i b*(t —s) &,
Q JVaRS! (X) Var(t—s)zY

IN
\

O

Remark: This estimation seems complicated but, from a numerical point of
view, it is easy to simulate since we assumed m > 0 and then, VaRi;fa(X ) >0,
integrating by parts we have:

+o0 _ (z—‘m—b*(t—s))2
R<K (=2 " +y(m+ b (t—s))z ") e 2@ dz
VaR,", (X)
2VaR,, (X) . VaR,! (X)) —m —b*(t — s)
- ——=5,t v !
@ a* (t - S) (VaRm,a(X))
where 5
K =

ay/2ma*(t —s)
Moreover, if v = 0, we have a more tractable formula:

Corollary 5.4. Let us assume (UB), v = 0, then the constant R as in Proposition
5.3 satisfies

2. /a* (t _ S) 3 (Vay,! o (X)—m—b* (t—3))2
R S Vv~ ‘e 2a* (t—s)
ay/ 2

) VaR,, (X) —m — b (t - g < VaR,, (X) —m — b (t - s)>

o a*(t —s)
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Proof. If v = 0, we have

+o0 _ OBk (4
R< g/ Y b*(t — s) &
@ JVaR))! (X) a*(t—s)

m,a

_ 2«/@*(?* s) /:O B(u) du

t(X)—m—b*(t—s)

m,o

Va*(t—s)

which yields the result.
O

One can consider the risk at time ¢ as defined by Talay and Zheng, and so define
VVaR;! (X)) =inf{z € R, P(X; < z| Xy > VaR}! (X), X, =m) > q}.
The same arguments as those we used all along this section yield

Lemma 5.5. For all 0 < s < t, we have

s,t s,t
VVaRy! (X) < VaR}! .,

with equality if Py, (Xt_s = VaRf,’:a(X)) =0.
Proposition 5.6. If VaRf,’Lfa(X) >m:

Ey (X¢ | Xy > VaRy! (X), Xs =m) < VaR}! (X)+ R,

where

+o00o _ _ Bk _ +
R< g/ % (z—m—=0*(t—s)) &
& JVaR;,,(X) Var(t—s)lz

Example 1:
Consider that X is the Geometric Brownian Motion, i.e. where the coefficients
o and b are constant and do not depend on ¢, then we have the following estimate:

Proposition 5.7. If VaR;’f’a(X) >m, then for all0 <s <t

E (X2, | X2, > VaR,, (X), X, = m) = VaRy, o(X) + R

m,o

where

P 2/+<><> s ((lnz—lnm— (b— "2)+(t—s))+> .

- JWaR L (x)

o _ (WVaR) (X)—Inm—(b— %) (t—s) — o%(t —s)
< 2{Kd :
<o T )

VAR (X)® <lnmn;’a(X) “lnm - (b—F)7( - S)) }

e V)

where
02

K — e—‘g—z(t—s)—(lnm+(b—7)+(t—s)).
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Proof. As in the previous proofs, we start with

E (X, | X2, > VaR,, .(X), X, = m) = VaRy, . (X)

+oo
+/ Po(X:, >z | X2, > VaR. (X), X, =m)dz.
VaRs,! (X) ' ' '

For all z > VaRf,’L’a(X) thanks to Proposition 3.4 we have

P (X2, 2 2| X2, 2 VaR, o(X), X, = m)

1 1
< S Pu(X{, 2 2) = ~Pu(Yy, 2 In2)
(6% (8%

2¢<(lnz—1nm (b— "7) (t—s))*‘).
2(t—s)

IN

[0

This yields,

+oo
/ P.(X:, > z)dz
VaRk:)' (X) ’

o

2 [t _((nz—Inm—(b—%)"(t—s))*"
f/ ( )@( )dz

o JVars! (X

IN

I
ol )
—
+
§ 3
Q:U
;
Q
IS
|
VN
N
\
=
3
\
Y=
=
|
21
+
—~
~
\
=
\_/
o8

ot o= (WVaR, (X) —lam —(b— % )*(t —s)
o?(t —s)

(ufln m,f(b—L;)‘F(t,S))?
e 202 (t—s) du S,

\/27ro'2 t—s) /m VaR:,

One can verify that

(u—In m,f(b7§)+(t75))2
6 202 (t—s) du

\/27‘(’0’2 t—s) /]n VaR,,' o (X
q)(mvaz-zmya( ) —Inm — (b— %)+ (t—s)—o2(t—s)>
o*(t—s) ’

CIJ

where 2
K = ¢ T (t=9)—(Inm+(b *"7) (t—s)).

3

this ends the proof. O

5.2. Second Order VaR conditioned on the past

In this Section we want to measure the VaR of X[, given that the process X
exceeded VaR before time s. This would help to know how risky the future is (up
to time ¢ > s), given that you already exceeded VaR in the past.

In a natural way we define

VaR, o (X) =inf {2 € R, P, (X7, < 2| X0 > Va5 (X)) > q}.
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Theorem 5.8. Let us assume (UB),
VaR,',(X) <,
where T is the unique oot on [b*t +W2:Z(X), +ool of the following equation:
(6) 2 — 2['Vartd (a/2) — VaRy o (X) = b*t = 0.
Proof. Let z > WZZZ(X) :

(33, 2 20X > ARV ()

P (X*, > 2| XF > VaRo' (X)) =
s,t s x, o 0,s
PI(X: 2 VaRw,a<X))

We now introduce 0
T = inf {u >0, X, = VaRI:Z(X)} )

denote by p the law of T under P,,. Then

P (X002 2 X0 2 VARL(O) = [P (X2, 22 | T =) uar)
0
</ P, (X}, > 2| T =r)p(dr)
/ PV(LRO s (X) ) (d?“)

_ [ (z— VaR C(X) = bt —r)) T
20 dr
s/o ( e >u< )

([ (2= VaRy (X)) — bty
2 < Vil > P.(T <5s)

IN
A

——=0,s
_((z—=VaR, (X)—bt)T — 0,
Ja il ,
So,
———=0,s
T — — VaR. (X) — b t)t
P, (X:tEZIX:Z VGRS.’OC(X)) < 2% (Z a. ;c,a( ) ) |
| ’ Vart|z]
and we conclude as in Theorem 4.1. -

Remark: In other words, the bound we obtain is the same as the one we got for

——0,t
Valgge: x.a(X)-

As previously, for v =0 or v = 1/2 we are able to calculate this bound and this
yields:

Corollary 5.9. (i) Ifv =0, that is o bounded, there is the following estimate:
VaR, ' (X) < VaRos (X) + bt + Vartd~(a/2).
(ii) If v = 1/2 we have:

—— s,t — 90,8 1 =
VaR, o(X) < VaRy ' (X) + bt + Sa H® ) (0/2)

+% (a/?)\/ t (@ t@1)2(0/2) + A(VaR,, (X) + bD))



314 Laurent Denis, Begonia Ferndndez, and Ana Meda

References

[BaTal] BALLY, V. and TALAY, D. (1996). The law of the Euler scheme for stochas-
tic differential equations. I. Convergence rate of the distribution function.
Probab. Theory Related Fields 104 (1) 43-60.

[BaTa2] BALLY, V. and TALAY, D. (1996). The law of the Euler scheme for stochas-
tic differential equations. II. Convergence rate of the density. Monte Carlo
Methods Appl. 2 (2) 93-128.

[BoK]l] BORKOVEC, M. and KLUPPELBERG, C. (1998). Extremal behavior of dif-
fusion models in finance. Ertremes 1 (1) 47-80.

[Dav] Davis, R. (1982). Maximum and minimum of one-dimensional diffusions.
Stoch. Proc. Appl. 13 1-9.

[DFM| Denis, L., FERNANDEZ, B. and MEDA, A. (2006). Estimation of Value
at Risk for diffusion processes with jumps and their ruin probabilities.
Preprint.

[EKM| EMBRECHTS, P., KLUPPELBERG, C. and MIKOSCH, T. (1999). Modelling
Extremal Events for Insurance and Finance. Springer Verlag, Berlin-
Heidelberg-New York.

[[kWa] IkEDA, N. and WATANABE, S. (1981). Stochastic Differential Equations
and Diffusion Processes. North-Holland, Tokyo.

[KarShr| KARATZAS, I. and SHREVE, S. (1991). Brownian Motion and Stochastic
Calculus. Springer Verlag, Berlin, Heidelberg, New York.

[McNeil] McNEIL, A. (2000). Extreme value theory for risk managers. In Extremes
and Integrated Risk Management (P. Embrechts, ed.) 3-18. Risk Books,
Risk Waters Group, London.

[ReYor] REvuz, D. and YOR, M. (1994). Continuous Martingales and Brownian
Motion. Springer Verlag, Berlin, Heidelberg, New York.

[TaZh] TALAY, D. and ZHENG, Z. (2003). Quantiles of the Fuler scheme for dif-

fusion processes and financial applications. Conference on Applications of
Malliavin Calculus in Finance (Rocquencourt, 2001). Math. Finance 13
(1) 187-199.



