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Abstract: We have developed a strategy for the analysis of newly available
binary data to improve outcome predictions based on existing data (binary
or non-binary). Our strategy involves two modeling approaches for the newly
available data, one combining binary covariate selection via LASSO with lo-
gistic regression and one based on logic trees. The results of these models are
then compared to the results of a model based on existing data with the ob-
jective of combining model results to achieve the most accurate predictions.
The combination of model predictions is aided by the use of support vector
machines to identify subspaces of the covariate space in which specific models
lead to successful predictions. We demonstrate our approach in the analysis of
single nucleotide polymorphism (SNP) data and traditional clinical risk factors
for the prediction of coronary heart disease.
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1. Introduction

In applied research contexts the statistician is often faced with newly available data
which may provide information relevant to a recently completed analysis. This sce-
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nario is occurring more and more frequently in medical research as genomic data
becomes available which may provide information relevant to the determination of
disease risk, a determination that has been traditionally based on existing clinical
data. There is a need for statistical approaches to variable selection and model-
ing which attempt to provide improved outcome predictions in such contexts by
combining information from new and existing data which may be of multiple types.

We have developed one such strategy for utilizing newly available binary data to
improve binary outcome predictions from an existing model based on both contin-
uous and binary data. There are many approaches to regression and classification
in the machine learning and statistical literature that would be appropriate for
modeling binary data, including CART [4], MARS [15], treed models [6], and logic
regression [30], to name only a few. Since our interest is specifically in single nu-
cleotide polymorphism (SNP) data, we have chosen to model binary data with
logistic regression as well as logic regression models. The logic regression models
recognize the often complex interactions that exist among SNPs and attempt to
model such interactions in analyzing the relationships between SNPs and outcome
status. Logic regression models also perform variable selection and model construc-
tion when the number of observations, n, is less than the number of covariates, p,
which is a context of particular interest to us.

Our goal is to combine all available information in generating the best outcome
predictions possible. In doing so we consider several approaches which borrow ideas
from the multimodel ensemble modeling literature [11]. One approach is to take a
weighted average of the predictions from the existing model and the binary data
model, in the spirit of Bayesian model averaging [7]. A second approach is to build
a model from all available covariates and not utilize the existing model, which was
built before the newer binary covariates were available. Our final approach is a two-
stage approach: determine subspaces of the covariate space on which the predictions
from the existing model are accurate, and utilize the predictions from a model of
the newer binary covariates on the remaining subspaces. This would yield a more
accurate set of predictions overall in situations where neither data type is globally
informative, for example, where the data have been collected from a heterogeneous
population. To avoid a subspace definition which requires knowledge of the outcome
of interest for observations to be predicted, we differentiate these various subspaces
via support vector machines (SVM) [3, 8, 39]. As a result our technique yields
“honest” predictions for new observations.

Initially we discuss the model classes and variable selection for binary data. We
then discuss how the predictions from such models can be used to improve the
predictions from models based on existing data via support vector machines. Our
approach is demonstrated in the context of prediction of coronary heart disease
from traditional clinical risk factors and genetic (SNP) data.

2. Model types

We assume a continuous response variable Y and a p-dimensional vector of binary
covariates X (the “newly available” data). In the case of SNP data each covariate
Xj , j = 1, . . . , p, is binary. Since the relationship between the covariates and the
response is unknown we consider two model types, logistic regression and logic
regression [30]. As logistic regression is a well known modeling technique we will
not discuss it in detail. However we will discuss variable selection prior to logistic
regression modeling when n < p in Section 2.2. Logic regression is discussed in more
detail below.
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2.1. Logic regression

Logic regression [20, 30] is an adaptive regression methodology for finding Boolean
combinations of binary covariates that are associated with an outcome variable.
This methodology was developed to address situations where the interaction of
many predictors is responsible for differences in the response, which is often the
case when all predictors are binary. As described in [30] logic regression models
take the form

(2.1) g(E[Y ]) = β0 +
t∑

i=1

βiLi,

where Li is a Boolean expression of the covariates Xj . A score function relates
fitted values to the response. This framework includes linear regression (g(E[Y ]) =
E[Y ] with score function RSS), logistic regression (g(E[Y ]) = log(E[Y ]/(1−E[Y ])
with score function binomial deviance), as well as classification (Ŷ = I(L = 1)
where I(·) is the indicator function and the score function is

∑
(Y �= Ŷ )). Logic

regression models can be conveniently represented in tree form. For example, the
tree in Figure 1 represents the logic expression

(2.2) (((Xc
79) ∨ ((Xc

48) ∧ (Xc
64))) ∧ (((Xc

28) ∨ (Xc
9)) ∨ ((Xc

43) ∧ X63))).

where Xj indicates Xj = 1 and Xc
j indicates the conjugate (Xj = 0).

Fig 1. A logic tree representing the Boolean expression in Equation (2.2). White text on a black
background denotes the conjugate of a variable.
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Note that each Li in Equation (2.1) may be represented as a tree, and hence
logic regression allows for multiple tree models.

The space of possible logic trees is enormous, especially in situations where n < p.
To search this space efficiently without sacrificing the desire for optimality, either
a greedy search or a search via simulated annealing can be employed. These search
techniques estimate the Li and βi simultaneously (see Equation (2.1)) and use
simple “moves” to search for “good” logic models (i.e., models which minimize the
scoring function). Using terminology similar to that of CART [4] these “moves”
include growing, pruning, splitting, and deleting. As greedy searches often lead to
models which overfit the data or are suboptimal (as when the search gets “stuck”
in a local minimum) [35] we prefer the use of simulated annealing to search for
logic trees. Note that each “move” mentioned above has a matching “countermove”
(e.g., growing as opposed to pruning) which is important in the Markov chain theory
which underlies simulated annealing [38].

We use randomization to both test the null model of no signal in the data and
determine the optimal model size (if the test is rejected). For testing the null model
we randomly permute the response values and find the best fitting model. If there
is no signal, the score of this model should be comparable to the score of the best
model fit to the original data. By repeating the above procedure multiple times we
can consider the number of runs with model scores better than the score of the best
model fit to the original data as a p-value for our test.

The method for finding the optimal model size is based on a series of random-
ization tests. The null hypothesis for each test is that the optimal model size is k
and larger models with better scores are due to noise. Assume the null hypothesis
and the best model of size k has score sk. The fitted values from this model fall
into two classes; we now permute the response values within each class and find the
best model of any size on the permuted data. If this model has score s∗k then under
the null hypothesis sk comes from the same distribution as s∗k. This distribution
can be approximated by repeated permutations. We perform the above process for
k ∈ {0, . . . ,K} yielding a series of histograms of randomization scores s∗k for each
value of k. The optimal model size is determined by comparing these histograms,
for example, one may choose the model size for which only a small proportion of
scores s∗k are better than sk.

To further avoid overfitting the data set of n observations on p covariates Xj , j =
1, . . . , p, is split into a training set of size n1 and a test set of size n2 (n = n1 +n2).
The logic regression models are fit to the training set and the accuracy of their
predictions are evaluated on the test set. The fitting and evaluation of models can
be performed in the R package LogicReg as described in [29].

2.2. Variable selection

Unlike logic trees, logistic regression models require that n < p. In cases where
n ≥ p we perform a variable selection via least absolute shrinkage and selection
operator (LASSO) [36] prior to regression modeling. LASSO retains the beneficial
features of both subset selection and ridge regression by minimizing the residual
sum of squares subject to the constraint that the sum of the absolute values of the
coefficients on the covariates is less than a constant (i.e., a constraint on the L1

norm of the coefficient vector). This tends to shrink some coefficients and set others
to zero, leading to models with improved interpretability and stability. LASSO can
be applied to generalized regression models such as logistic regression models; see
[36] for details.
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Osborne et al. [25] developed an efficient algorithm for computing LASSO esti-
mates which is applicable in the n < p case. We use this algorithm as implemented
in the R package lasso2 [21] in an iterative fashion to perform variable selection,
removing those covariates whose coefficients has been set to zero at each iteration.
If the iterative LASSO technique yields p∗ ≥ n variables with non-zero coefficients
we remove variables one at a time between LASSO iterations, starting with those
variables with the smallest coefficients, until p∗ < n. The remaining variables are
used in developing a logistic regression model of our response variable via stepwise
selection.

It is important to mention that variable selection techniques exist specifically
for SNP data. For example, Genomic Control (GC) [9, 10] is an analytic method
for SNP selection which controls the false positive rate by separating causal from
confounding factors. There are also methods for selecting which SNPs to genotype
when presented with a large number of arbitrary SNPs (see, for example, [37, 41]).
However, we deemed such methods inappropriate for our context of interest in which
we were presented with only the partial results of such methods, i.e., a modest num-
ber of SNPs not in linkage disequilibrium (LD) and without haplotype information
which had been selected based upon the application of methods similar to those
mentioned above (see Section 4 for more details on our context of interest).

3. Comparing and combining model predictions

Our goal is to determine whether the information from new binary covariates
Xj , j = 1, . . . , p, can be used to improve predictions of a response Y from a model
built on existing covariates Zl, l = 1, . . . , p′. Let M1 and M2 represent the logic
regression and logistic regression models fit to Xj , j = 1, . . . , p, respectively, and let
Me represent the existing model fit to Zl, l = 1, . . . , p′. Suppose we are given a data
set of size n′ consisting of covariates X and Z for which we would like to generate
predicted values of the outcome Y . Let Ŷ1 be the predictions for this data set from
M1, Ŷ2 be the predictions from M2, and Ŷe be the predictions from Me. Possible
strategies for generating optimal predictions include the following:

• Weighted Average of Predictions ¯̂
Y . Determine whether a weighted average

of the predictions from either Ŷ1 or Ŷ2 and Ŷe yields better results than Ŷe

alone. A weighed average prediction ¯̂
Y is defined as

(3.1) ¯̂
Y = αŶe + (1 − α)Ŷm, m = 1, 2,

where 0 ≤ α ≤ 1. α is determined by repeated training/test set evaluation.
• Predictions from Composite Model Ŷc. We consider whether building a model

directly to {X,Z} will lead to improved predictions. The modeling procedures
described in Section 2 are repeated with Z as well as X considered as possi-
ble covariates. This leads to models Mc1 (logic regression) and Mc2 (logistic
regression) whose predictions Ŷc1 and Ŷc2 can be compared to Ŷe.

• Two-Stage Predictions Ŷs. Assume a two-class classification problem, i.e., Y ∈
{−1, 1}. In Stage 1 we determine for which observations the predictions Ŷe

are correct (nc ∈ {1, . . . , n′}) or incorrect (nc̄ = {1, . . . , n′}/nc). In Stage 2
for observations in nc̄ we replace the predictions from Ŷe with the predictions
from either M1 or M2. In other words, we create a two-stage model Ms for
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Yi, i = 1, . . . , n′, with predictions defined as

(3.2) Ŷsi =
{

Ŷei, if Ysi = Yi,
ˆYmi, if Ysi �= Yi,

where m = 1, 2. This predictive scheme may be particularly useful for data
from a heterogenous population, where it is possible that the accuracy of the
predictions from a given model may vary across different subgroups of the
population.

Unfortunately Ms, and hence Ŷs, depends on the true response Y . As an alterna-
tive we propose the use of a support vector machine (SVM) to discriminate those
subspaces of the covariate space on which the results of Me are correct from those
on which the results are incorrect, based on the training data.

3.1. Support vector machines

Support vector machines (SVMs) [3, 8, 39] are a group of related supervised learning
methods for classification or regression. In the case of two-class classification we
consider a set of data points {(x1, y1), . . . , (xn, yn)} where each yi ∈ {−1, 1} denotes
the class to which xi belongs. The objective of an SVM is to produce a hyperplane
which can separate the two classes using only xi, i = 1, . . . , n in a way which
minimizes the empirical classification error and maximizes the geometric margin
between the classes.

More specifically, the (soft margin) support vector machine is the solution to the
following optimization problem:

minw,b,ξ
1
2wtw + C

∑l
i=1 ξi, C > 0,

subject to yi(wtφ(xi) + b) ≥ 1 − ξi, ξi ≥ 0.

Note that the vectors xi, i = 1, . . . , n are mapped to a higher dimensional space
by the function φ, and the SVM finds a linear separating hyperplane in this higher
dimensional space. This SVM has a “soft margin” in the sense that is allows for
misclassified samples; if no hyperplane exists which can separate the two classes,
this method will chose the hyperplane which splits the classes as cleanly as possible
while still maximizing the geometric margin. The slack variables ξi measure the
degree of misclassification of the datum xi. K(xi, xj) = φ(xi)tφ(xj) is called the
kernel function of the SVM. The kernel function typically falls into one of four
classes: linear, polynomial, radial basis function, and sigmoid. For more information
on SVMs and their implementation we refer the reader to [5, 31].

As stated previously, our use of SVMs is to discriminate those subspaces of the
covariate space on which the results of the existing model Me are correct from
those on which the results are incorrect, based on the training data. Let X be
the covariate space and consider a SVM which divides X into subspaces Xc and Xc̄

where the model results are correct and incorrect, respectively. We now redefine the
two-stage model Ms (and Ŷsi), originally defined in Equation (3.2), independently
of Y using the results of the SVMs:

(3.3) Ŷsi =
{

Ŷei, if Xi ∈ Xc,
ˆYmi, otherwise m = 1, 2.
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3.2. Analysis strategy recap

Before we move to Section 4 we briefly summarize our analysis strategy. We want a
statistical model which can accurately predict the outcome status of an observation
given a set of existing predictors (both continuous and binary) and a set of new
binary predictors. Our key modeling approach is a two-stage model. In the first stage
we build a model from the existing predictors only (a logistic regression model).
Given the predictions from this model we design an SVM which can identify the
subspaces in which observations are correctly or incorrectly predicted. In the second
stage, in those subspaces where observations are incorrectly predicted, we use a
model based only on the new binary predictors (a logistic regression or logic tree
model) to generate accurate predictions. In this approach information from the
new binary predictors is only utilized where needed, i.e., in subspaces where the
existing predictors do not provide enough information to generate accurate outcome
predictions.

4. Example: The CATHGEN study

We demonstrate the use of our method in the analysis of data from a cardiology
study. A substantial problem in clinical cardiology is the gap in the ability to
detect asymptomatic individuals at high risk for coronary heart disease (CHD) for
preventive and therapeutic interventions [17, 26]. Up to 75% of such individuals are
designated as low to intermediate risk by standard CHD risk assessment models;
however, a substantial number of such individuals who are actually at increased
risk may not be identified. One analysis from the Framingham Heart Study found
that for individuals that manifested a new CHD event, the initial presentation
in over 50% of the cases was myocardial infarction, silent myocardial infarction
or sudden cardiac death [1]. Over 50% of individuals with sudden cardiac death
have no prior symptoms of CHD [40]. Therefore, it is likely that the traditional risk
factors do not account fully for CHD risk [16, 22, 24, 28]. Furthermore, current CHD
risk assessment models do not provide one’s individual risk. Rather, the calculated
assessment is for a population of individuals who share the same demographics and
panel of risk factors.

A group of researchers at Duke University Medical Center (DUMC) has pursued
an avenue of study evaluating the role of genes and gene variants in the development
of atherosclerosis (the AGENDA study) [18, 19, 33]. As a result of their efforts they
have compiled a list of candidate genes with a strong statistical correlation with
vascular atherosclerosis. Through subsequent analysis for SNPs in these candidate
genes, they analyzed 1300+ SNPs for association with significant CHD (stenosis
≥75% in at least one coronary artery) in a cohort of 1500 subjects who had un-
dergone cardiac catheterization (CATHGEN). These SNPs were then ranked by
their marginal association with the presence of CHD in a cardiac catheterization
population.

We conduct an analysis of a subset of the CATHGEN data to test the hypoth-
esis that genetic information in the form of SNPs will improve the ability of risk
assessment models that use only traditional risk factors to classify individuals as
having high risk for CHD. We developed prediction models for likelihood of sig-
nificant CHD based on traditional risk factors such as cholesterol, blood pressure,
diabetes and smoking, using a group of CATHGEN subjects who underwent cardiac
catheterization. A separate set of CATHGEN subject data was used in selecting



Ensembles for prediction 309

from the candidate SNP pool those SNPs with the highest marginal association
with significant CHD; 81 such SNPs were available for analysis. We then assessed
whether including genetic information improved our ability to classify individuals
as having significant CHD.

The research was performed under an approved protocol from the Institutional
Review Board of DUMC.

4.1. Data

Two data sets were constructed from the CATHGEN data, one for SNP selection
and model building (build set) and one for the evaluation of model predictions
(evaluation or eval set). The evaluation set consisted of white individuals (self-
reported race) with complete data for all 81 SNPs and all clinical variables (see
Section 4.2). The build set consisted of white individuals with complete data for all
81 SNPs but incomplete clinical data (clinical data was assumed to be missing at
random). Within each set individuals were separated into three cohorts: a) controls,
≥ 65 years of age without significant CHD, b) older cases (OC), ≥ 65 years of age
with significant CHD, and c) younger cases (YC), ≤ 50 years of age with significant
CHD. For each cohort a group of samples was selected for model validation only,
those 50–55 years of age with either minimal or significant CHD as defined by
coronary angiography (for validation of models of cohorts a) and c)) and those
56–65 years of age with either minimal or significant CHD as defined by coronary
angiography (for validation of models of cohorts a) and b)). Each cohort was further
split by gender. A table of the study cohorts and number of subjects is shown in
Table 1.

We used the 81 SNPs from the AGENDA study with the strongest statistical
association with the presence of significant CHD. The strength of association was
determined by 1) the p-value of SNP status in a logistic regression model of CHD,
including both age and gender as covariates, and 2) the p-value of SNP status from
a Cochran-Armitage Test for Trend [2]. We should note that the designation of the
top SNPs was performed using a large group of subjects (1500) that included the
data used for this study.

Typically with any given single base-pair difference, or single nucleotide poly-
morphism (SNP), only two out of the four possible nucleotides occur. Since each
cell contains a pair of every autosome, we can think of a SNP as a three-level vari-
able X taking the values 0, 1, or 2 (e.g., for nucleotide pairs A/A, A/G, and G/G,
respectively). Each SNP can be recoded as a binary variable using either dominant
coding (Xd = 1 if X ≥ 1 and Xd = 0 otherwise) or recessive coding (Xr = 1
if X = 2 and Xr = 0 otherwise). With the CATHGEN data we chose dominant

Table 1

CATHGEN data

Build set Evaluation set

Training Validation Training Validation
Young Cases 44 80 69 103

Male Controls 34 14 32 18
Older Cases 79 13 47 11

Young Cases 11 21 11 18
Female Controls 59 12 42 18

Older Cases 15 3 15 4
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coding for the SNPs, where X = 0 indicates no copy of the minor (less frequently
occurring) allele.

4.2. Model building

Models were constructed on either male or female subjects. Within gender, these
models compared either controls with young cases or controls with older cases. We
describe the modeling approaches used for each gender/comparison combination.
All computations were performed in R [27].

Predictive model using clinical variables (Me).
For the clinical variables we used standard CHD risk factors as denoted by as-

sessment tools such as the Framingham heart study risk algorithm [40]. We included
presence of diabetes, current smoking status, total cholesterol level, HDL cholesterol
level, systolic blood pressure and diastolic blood pressure. Clinical variables were
collected at the time of cardiac catheterization. We used these variables to train
both weighted and unweighted logistic regression models in the evaluation set, as
the build set has incomplete clinical data. The weights were chosen to balance the
importance of case and control samples. The trained model was then used to clas-
sify the validation subjects in the evaluation set as having minimal or significant
CHD.

Predictive model using genetic variables (M1,M2).
Our SNP data consisted of the 81 SNPs from the AGENDA study typed in our

CATHGEN samples, as described in Section 4.1. We constructed two models using
only the CATHGEN samples from the build set: 1) LASSO for SNP selection fol-
lowed by logistic regression (weighted and unweighted) using backwards selection,
and 2) logic regression based on all 81 SNPs. Logic models were fit for both classifi-
cation and logistic regression. These models were then used to classify the subjects
in the evaluation set as having minimal or significant CHD. LASSO and logic re-
gression were performed using the R packages lasso2 and LogicReg, respectively.

Predictive model using combined clinical and genetic variables (Mc).
First, logistic regression models (weighted and unweighted) were built using ge-

netic variables, as described above. The SNPs which appear in each model and the
clinical variables were combined to train logistic regression models in the evaluation
set. These models were then used to classify the validation subjects in the evalua-
tion set as having minimal or significant CHD. A similar procedure was performed
for each logic regression model.

Two-Stage Predictive model using the clinical and genetic models (Ms).
First, the trained clinical model was used to classify the subjects in the evaluation

set as having minimal or significant CHD. Next an SVM was constructed which
could discriminate the subspace of correctly classified samples from the subspace
of incorrectly classified samples. For those samples in the subspace of incorrectly
classified samples, the trained genetic models were applied to reclassify the subjects
into the minimal and significant CHD groups. This resulted in a set of two-stage
predictions, as described in Section 3.1 and Equation (3.3). SVMs were based on a
radial basis function kernel and computed using the R package e1071 [12, 23].

4.3. Results

Our interest is in classifying individuals as having non-significant CHD (Y = 0) or
significant CHD (Y = 1). A fitted or predicted probability of significant CHD Ŷi
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Table 2

Results of clinical model and logic regression classification models on evaluation data

Training/Test Samples Validation Samples

Ŷe Ŷ1 Ŷc Ŷs Ŷe Ŷ1 Ŷc Ŷs

Female, controls vs older cases
auROC 71.38 48.81 75.38 81.31 50.48 57.62 53.33 75.24
acc 71.93 50.88 66.67 82.46 50.00 68.18 54.55 81.82
fn 36.00 68.00 40.00 28.00 57.14 71.43 42.86 42.86
fp 21.88 34.38 28.13 9.38 46.67 13.33 46.67 6.67

Male, controls vs older cases
auROC 81.97 51.46 82.97 74.18 59.52 42.86 59.94 60.00
acc 78.48 73.42 78.48 87.34 51.72 41.38 83.47 58.62
fn 11.48 8.20 11.48 1.64 14.29 14.29 5.66 0.00
fp 55.56 88.89 55.56 50.00 80.00 100.0 93.33 80.00

Female, controls vs younger cases
auROC 80.80 50.15 80.80 86.53 63.81 50.00 63.81 85.71
acc 79.25 56.60 79.25 88.68 61.11 47.22 61.11 83.33
fn 33.33 80.95 33.33 23.81 42.86 66.67 42.59 28.57
fp 12.50 18.75 12.50 3.13 33.33 33.33 33.33 0.00

Male, controls vs younger cases
auROC 84.00 37.01 86.81 73.19 60.19 58.33 59.94 88.11
acc 83.17 46.53 83.17 88.12 81.82 52.07 83.47 94.21
fn 4.82 48.19 4.82 3.61 8.49 50.00 5.66 3.77
fp 72.22 77.78 72.22 50.00 86.67 33.33 93.33 20.00

from a logistic regression model for a given individual was considered an “accurate”
classification if Yi = 1 and Ŷi ≥ 0.5, or Yi = 0 and Ŷi < 0.5, and considered “inaccu-
rate” otherwise. A fitted or predicted outcome Ŷi from a logic regression model for
a given individual was considered “accurate” if Yi = Ŷi and considered “inaccurate”
otherwise. We considered overall model accuracy as well as the rate of false positive
(P (Ŷi ≥ 0.5|Yi = 0)) and false negative (P (Ŷi < 0.5|Yi = 1)) model results. In
an attempt to balance specificity and sensitivity we also calculated the area under
the receiver-operating characteristic (ROC) curve (auROC) for the results of each
model. The auROC is equal to the value of the Wilcoxon–Mann–Whitney statis-
tic and can be interpreted as the probability that the model will assign a higher
probability of significant CHD to a randomly selected positive sample than to a
randomly selected negative sample. The auROC calculations were performed with
the R package ROCR [34].

The results of the weighted logistic regression models and the logic regression
classification and logistic models for each gender and comparison (control vs. young
cases or control vs. older cases) on the evaluation set are presented in Tables 2, 3,
and4. The results of the unweighted logistic regression models are not discussed
here due to their similarity to the results of the weighted models. In these Tables
Ŷe = clinical only model, Ŷ1 or Ŷ2 = SNP only model, Ŷc = Clinical+SNP model,
Ŷs = Two-Stage Predictions using SVM, acc = accuracy, fn = false negative rate,
and fp = false positive rate.

These tables show clearly that the two-stage predictions yield the best results.
In some cases the combined clinical+SNP models perform better on the training
set in comparison to the two-stage predictions, but their performance deteriorates
on the validation samples. This could be due to the fact that the clinical model and
the clinical+SNP model were trained on the training/test samples and tested on
the validation samples, while the SNP models were tested on both sets of samples
(having already been trained on the samples in the build set). This would also
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Table 3

Results of clinical model and logic regression logistic models on evaluation data

Training/Test Samples Validation Samples

Ŷe Ŷ1 Ŷc Ŷs Ŷe Ŷ1 Ŷc Ŷs

Female, controls vs older cases
auROC 71.38 52.50 72.50 84.63 50.48 59.05 48.57 79.53
acc 71.93 49.12 63.16 84.21 50.00 54.55 31.82 72.73
fn 36.00 20.00 44.00 12.00 57.14 28.57 42.86 14.29
fp 21.88 75.00 31.25 18.75 46.67 53.33 80.00 26.67

Male, controls vs older cases
auROC 81.97 59.38 82.97 88.39 59.52 43.81 63.33 82.86
acc 78.48 49.36 82.28 91.14 51.72 44.83 51.72 82.76
fn 11.48 59.02 4.92 6.56 14.29 85.71 14.29 14.29
fp 55.56 22.22 61.11 16.67 80.00 26.67 80.00 20.00

Female, controls vs younger cases
auROC 80.80 52.60 81.40 80.21 63.81 50.00 64.13 80.95
acc 79.25 56.60 70.70 83.02 61.11 47.22 55.56 77.78
fn 33.33 66.67 47.62 33.33 42.86 66.67 47.62 38.10
fp 12.50 28.13 15.63 6.25 33.33 33.33 40.00 0.00

Male, controls vs younger cases
auROC 84.00 47.52 91.43 77.78 60.19 57.83 61.32 80.97
acc 83.17 49.50 81.13 92.08 81.82 57.20 78.51 91.74
fn 4.82 49.40 4.82 0.00 8.49 44.34 12.26 4.72
fp 72.22 55.56 50.00 44.44 86.67 40.00 86.67 33.33

Table 4

Results of clinical model and weighted logistic regression models on evaluation data

Training/Test Samples Validation Samples

Ŷe Ŷ1 Ŷc Ŷs Ŷe Ŷ1 Ŷc Ŷs

Female, controls vs older cases
auROC 71.38 54.56 77.38 84.00 50.48 60.48 49.52 75.24
acc 71.93 56.14 70.18 85.96 50.00 72.73 50.00 81.82
fn 36.00 64.00 32.00 32.00 57.14 71.43 42.86 42.86
fp 21.88 28.13 28.13 0.00 46.67 6.67 53.33 6.67

Male, controls vs older cases
auROC 81.97 47.27 93.62 77.78 59.52 45.00 66.19 73.33
acc 78.48 65.82 88.61 89.87 51.72 51.72 48.28 72.41
fn 11.48 22.95 6.56 0.00 14.29 35.71 21.43 0.00
fp 55.56 72.22 27.78 44.44 80.00 60.00 80.00 53.33

Female, controls vs younger cases
auROC 80.80 45.47 83.33 81.77 63.81 52.38 49.52 78.57
acc 79.25 56.60 75.47 84.91 61.11 38.89 50.00 75.00
fn 33.33 100.0 33.33 33.33 42.86 95.24 42.86 42.86
fp 12.50 6.25 18.75 3.13 33.33 13.33 53.33 0.00

Male, controls vs younger cases
auROC 84.00 51.94 95.79 82.13 60.19 62.52 66.19 91.45
acc 83.17 47.62 93.07 92.08 81.82 50.41 48.28 95.04
fn 4.82 54.22 2.41 2.41 8.49 52.83 21.43 3.77
fp 72.22 44.44 27.78 33.33 86.67 26.67 80.00 13.33

explain the consistency of the SNP model results across both the training/test and
validation samples.

Interestingly the combined clinical+SNP models did not perform better than
the clinical only or SNP only models on the validation samples. In many compar-
isons the clinical and clinical+SNP models performed comparably, with the SNP
models performing quite poorly. We surmise that the population under study is
quite heterogeneous, and that no one data type provides information predictive of
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Fig 2. Quality of two-stage predictions on evaluation data.

CHD in all subpopulations. The clinical data is predictive for some samples while
the genetic data is predictive for others. The results of a weighted average of the
predictions from the clinical only and SNP only models ( ¯̂

Y ; results not shown)
were not successful because both data types are not relevant for all samples; often
the data types provide conflicting information. The two-stage predictions are an
attempt to use an SVM to define subpopulations for which the clinical data or the
genetic data are predictive. Using the SVM results we can identify which data type
is predictive for a given sample, leading to more accurate predictions overall.

In Figure 2 we display the quality of the two-stage predictions on the evaluation
set (train/test subset or validation subset) for each model and each comparison.
No single model performs consistently best in all comparisons. By averaging the
performance measures (auROC or accuracy) on the validation samples across com-
parisons we find in terms of auROC the logic regression logistic models perform
1.43% better than the weighted logistic regression models, which in turn perform
2.38% better than the logic regression classification models. In terms of accuracy
the logic regression logistic models perform 0.19% better than the weighted logistic
regression models, which in turn perform 1.57% better than the logic regression
classification models. Hence we conclude that overall the logic regression logistic
models perform best, followed by the weighted logistic regression models and fi-
nally the logic regression classification models. However, the difference in average
performance between any two model types is quite small.

The only comparison in which model performances are clearly distinguished is
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the male controls vs. older cases comparison. The relatively poor performance of
the two-stage predictions from the logic regression classification models is striking;
the results in Table 2 reveal that the logic regression classification model had false
positive rates of 89% for the training/test patients and 100% for the validation
patients. Unfortunately the clinical model also had a high false positive rate of
80%. Both data types (and consequently the two-stage predictions) failed to predict
those with minimal CHD. This is possibly a result of SNP selection; of the 9, 8,
and 8 SNPs selected by the weighted logistic, logic regression classification and
logistic models, respectively, only 2 appear in all three models and no other SNPs
are shared by any two models. No definitive conclusions can be drawn without an
independent data set on which to validate our results.

5. Discussion

We have presented a two-stage approach to generating combined predictions from
models built from different data sources. One model is built on existing data of
multiple types (e.g., traditional clinical risk factors), while a second set of models are
built on newly available binary predictors only (in our case genetic SNP data). This
two-stage approach uses an SVM to distinguish the covariate subspaces on which
the existing data model generates accurate or inaccurate predictions. The existing
model is used to generate predictions for samples in the “accurate” subspace while
a model built on the newly available data is used to generate predictions for samples
in the “inaccurate” subspace. This approach appears to perform well in generating
predictions for a heterogeneous population for which no single data type provides
predictive information for all samples.

As discussed briefly in Section 1 there exist modeling approaches other than lo-
gistic and logic regression models which could have been employed here. We chose
logic trees because of their ability to capture higher order interactions, an issue
of great importance in regression and a key to variable selection. However, similar
models could be constructed by Bayesian model averaging with lower-dimensional
logistic regression models that allow for interactions among covariates. We also
could have employed neural networks or projection pursuit models. These alterna-
tive approaches would require careful prior variable selection in any context where
n < p, but would be worth considering in future work.

Our modeling approach is similar in spirit to ensemble methods [11], learning
algorithms which construct a set of classifiers and then generate predictions by
taking a (weighted) average or vote of their predictions. One such approach is
boosting [13, 14, 32], a method for converting a weak learning algorithm into one
with high accuracy. This is done by training classifiers on weighted versions of the
training data, giving higher weight to misclassified samples, and forming the final
classifier as a linear combination of the training classifiers. This approach does
not apply different models to different covariate subspaces, but does attempt to
improve model performance in subspaces where the model performs poorly. Our
approach is a type of ensemble method in which each classifier gets either a single,
fully weighted vote or no vote depending upon the subspace in which the sample
of interest is located. It would be of interest to compare our two-stage predictive
approach to an approach aimed at building a boosted classifier from all available
covariates. The results of such a comparison would help in determining the necessity
of building a subspace-dependent classifier.

Several different model types were used in generating predictions from the newly
available binary data, including logistic regression and logic regression models. No
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single model type performed significantly better than the others, although a slight
performance advantage was observed when using the two-stage predictions from
the logic regression logistic models. Across comparisons within gender and case the
best models generated two-stage predictions with validation accuracies between
81.82% and 94.21%. It should be noted, however, that the sizes of the validation
sets for some comparisons are quite small and all comparisons were conducted
within a single population (CATHGEN). Also, our inferences are done conditional
on a fixed chosen model; the variability of the models is not considered in the
inference procedure. This is a weakness in our approach as model uncertainty can
be substantial in high dimensional data contexts. Hence we regard our results as
a “proof-of-concept” for our analysis approach. We are planning an analysis of a
second, independent population and await the results of such an analysis before
making any definitive conclusions regarding the predictive power of our method.

Acknowledgments. The authors wish to thank the following for their assistance:
Bertrand Clarke, Department of Statistics, University of British Columbia; Ed
Iversen, Department of Statistical Science, Duke University; Pascal Goldschmidt,
Dean, Leonard M. Miller School of Medicine, University of Miami.

References

[1] American Heart Association (2006). Heart Disease and Stroke Statistics –
2006 Update 2–10.

[2] Armitrage, P. (1955). Tests for linear trends in proportions and frequencies.
Biometrics 11 375–386.

[3] Boser, B., Guyon, I. and Vapnik, V. (1992). A training algorithm for opti-
mal margin classifiers. In 5th Annual ACM Workshop on COLT (D. Haussler,
ed.) 141–152. ACM Press.

[4] Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classifi-
cation and Regression Trees. Wadsworth Press, Belmont, CA.

[5] Chang, C.-C. and Lin, C.-J. (2001). LIBSVM – A library for support vector
machines. Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[6] Chipman, H., George, E. and McCullough, R. (2002). Bayesian treed
models. Machine Learning 48 299–320.

[7] Clyde, M. (1999). Bayesian model averaging and model search strategies. In
Bayesian Statistics 6 (J. Bernardo, J. Berger, A. Dawid and A. Smith, eds.)
157–185. Oxford University Press, Oxford, UK.

[8] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine
Learning 20 273–297.

[9] Devlin, B., Bacanu, S.-A. and Roeder, K. (2004). Genomic control to
the extreme. Nature Genetics 36 1129–1130.

[10] Devlin, B. and Roeder, K. (1999). Genomic control for association studies.
Biometrics 55 997–1004.

[11] Dietterich, T. (2000). Ensemble methods in machine learning. Lec-
ture Notes in Comput. Sci. 1857 1–15. Available at citeseer.ist.psu.edu/
dietterich00ensemble.html.

[12] Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D. and Weinges-

sel, A. (2006). The e1071 Package: Miscellaneous functions of the department
of statistics (e1071). Technische Universität Wien, Austria. Version 1.5-16.

[13] Freund, Y. (1995). Boosting a weak learning algorithm by majority. Infor-
mation and Computation 121 256–285.



316 J. Clarke and D. Seo

[14] Freund, Y. and Schapire, R. (1997). A decision-theoretic generalization
of on-line learning and an application to boosting. J. Comput. System Sci. 55
119–139.

[15] Friedman, J. (1991). Multivariate adaptive regression splines (with discus-
sion). Ann. Statist. 19 1–141.

[16] Greenland, P., Knoll, M., Stamler, J., Neaton, J., Dyer, A., Gar-

side, D. and Wilson, P. (2003). Major risk factors as antecedents of fatal
and nonfatal coronary heart disease events. J. Amer. Medical Association 290
891–897.

[17] Greenland, P., Smith, S. and Grundy, S. (2001). Improving coronary
heart disease risk assessment in asymptomatic people: Role of traditional risk
factors and noninvasive cardiovascular tests. Circulation 104 1863–1867.

[18] Hauser, E., Crossman, D., Granger, C., Haines, J., Jones, C.,

Mooser, V., McAdam, B., Winkelmann, B., Wiseman, A.,

Muhlstein, J., Bartel, A., Dennis, C., Dowdy, E., Estabrooks, S.,

Eggleston, K., Francis, S., Roche, K., Clevenger, P., Huang, L.,

Pedersen, B., Shah, S., Schmidt, S., Haynes, C., West, S., Asper, D.,

Booze, M., Sharma, S., Sundseth, S., Middleton, L., Roses, A.,

Hauser, M., Vance, J., Pericak-Vance, M. and Kraus, W. (2004).
A genomewide scan for early-onset coronary artery disease in 438 families:
The GENECARD study. Amer. J. Human Genetics 75 436–447.

[19] Karra, R., Vermullapalli, S., Dong, C., Herderick, E., Song, X.,

Slosek, K., Nevins, J., West, M., Goldschmidt-Clermont, P. and

Seo, D. (2005). Molecular evidence for arterial repair in atherosclerosis. Proc.
Nat. Acad. Sci. U.S.A. 102 16789–16794.

[20] Kooperberg, C., Ruczinski, I., LeBlanc, M. and Hsu, L. (2001). Se-
quence analysis using logic regression. Genetic Epidemiology 21 S626–S631.

[21] Lokhorst, J., Venables, B., Turlach, B. and Maechler, M. (2006).
The lasso2 package: L1 constrained estimation aka “lasso.” Univ. Western
Australia School of Mathematics and Statistics. Version 1.2-5. Available at
http://www.maths.uwa.edu.au/˜berwin/software/lasso.html.

[22] Magnus, P. and Beaglehole, R. (2001). The real contribution of the major
risk factors to the coronary epidemics: time to end the “only-50%” myth.
Archives of Internal Medicine 161 2657–2660.

[23] Meyer, D. (2006). Support vector machines: The interface to libsvm in pack-
age e1071. Technische Universität Wien, Austria.

[24] Mosca, L. (2002). C-Reactive protein: To screen or not to screen? New Eng-
land J. Medicine 347 1615–1617.

[25] Osborne, M., Presnell, B. and Turlach, B. (2000). On the LASSO and
its dual. J. Comput. Graph. Statist. 9 319–337.

[26] Pasternak, R., Abrams, J., Greenland, P., Smaha, L., Wilson, P.

and Houston-Miller, N. (2003). Task force #1 – identification of coronary
heart disease risk – is there a detection gap? J. American College of Cardiology
41 1863–1874.

[27] R Development Core Team (2006). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna, Aus-
tria. Available at http://www.R-project.org.

[28] Ridker, P., Rifai, N., Rose, L., Buring, J. and Cook, N. (2002). Com-
parison of C-reactive protein and low-density lipoprotein cholesterol levels in
the prediction of first cardiovascular events. New England J. Medicine 347
1557–1565.



Ensembles for prediction 317

[29] Ruczinski, I., Kooperberg, C. and LeBlanc, M. (2002). Logic regression
– methods and software. In Proceedings of the MSRI workshop on Nonlinear
Estimation and Classification (D. Denison, M. Hansen, B. Holmes, B. Mallick
and B. Yu, eds.) 333–344. Springer, New York.

[30] Ruczinski, I., Kooperberg, C. and LeBlanc, M. (2003). Logic regression.
J. Comput. Graph. Statist. 12 475–511.

[31] Schölkopf, B. and Smola, A. (2002). Learning with Kernels. MIT Press,
Cambridge, MA.

[32] Schapire, R. (1990). The strength of weak learnability. Machine Learning 5
197–227.

[33] Seo, D., Wang, T., Dressman, H., Hergerick, E., Iversen, E.,

Dong, C., Vata, K., Milano, C., Rigat, F., Pittman, J., Nevins, J.,

West, M. and Goldschmidt-Clermont, P. (2004). Gene expression phe-
notypes of atherosclerosis. Atherosclerosis, Thrombosis, and Vascular Biology
24 1922–1927.

[34] Sing, R., Sander, O., Beerenwinkel, N. and Lengauer, T. (2005).
ROCR: Visualizing classifier performance in R. Bioinformatics 21 3940–3941.
Available at http://rocr.bioinf.mpi-sb.mpg.de/.

[35] Sutton, C. (1991). Improving classification trees with simulated annealing.
In Proceedings of the 23rd Symposium on the Interface (E. Kazimadas, ed.)
333–344. Interface Foundation of North America.

[36] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
J. Roy. Statist. Soc. Ser. B 58 267–288.

[37] Tzeng, J.-Y., Byerley, W., Devlin, B., Roeder, K. and Wasser-

man, L. (2003). Outlier detection and false discovery rates for whole-genome
DNA matching. J. Amer. Statist. Assoc. 98 236–246.

[38] van Laarhoven, P. and Aarts, E. (1987). Simulated Annealing: Theory
and Applications. Kluwer Academic Publishers, Norwell, MA.

[39] Vapnik, V. (1995). The Nature of Statistical Learning Theory. Springer, New
York.

[40] Wilson, P., D’Agostino, R., Levy, D., Belanger, A., Silbershatz, H.

and Kannel, W. (1998). Prediction of coronary heart disease using risk factor
categories. Circulation 97 1837–1847.

[41] Xu, H., Gregory, S., Hauser, E., Stenger, J., Pericak-Vance, M.,

Vance, J., Zuchner, S. and Hauser, M. (2005). SNPselector: a web tool
for selecting SNPs for genetic association studies. Bioinformatics 21 4181–
4186. Available at http://primer.duhs.duke.edu/.


