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distributions
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Inha University and Michigan State University

Abstract: In recent years, the literature in the area of Bayesian asymptotics
has been rapidly growing. It is increasingly important to understand the con-
cept of posterior consistency and validate specific Bayesian methods, in terms
of consistency of posterior distributions. In this paper, we build up some con-
ceptual issues in consistency of posterior distributions, and discuss panoramic
views of them by comparing various approaches to posterior consistency that
have been investigated in the literature. In addition, we provide interesting
results on posterior consistency that deal with non-exponential consistency,
improper priors and non i.i.d. (independent but not identically distributed)
observations. We describe a few examples for illustrative purposes.
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1. Introduction

Let θ be an unknown parameter and X1, X2, . . . , Xn be n random variables whose
joint distribution is P

(n)
θ . In order to draw inferences on θ, a Bayesian posits a

prior distribution Π for θ and updates this prior to the posterior distribution given
X1, X2, . . . , Xn, which we denote by Π(·|X1, X2, . . . , Xn). This paper focuses on
some issues related to an asymptotic aspect of this posterior distribution, namely,
consistency.
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The sequence of posterior distributions {Π(·|X1, X2, . . . , Xn)} is said to be con-
sistent at θ0, if the posterior converges, in a suitable sense, to the degenerate mea-
sure at θ0.

Posterior consistency is a kind of frequentist validation of the updating method.
If an oracle were to know the true value of the parameter, posterior consistency
ensures that with enough observations one would get close to this true value. Pos-
terior consistency also assures that as more and more observations accumulate, the
observations have to dominate the role of the prior in inference. There are other
interpretations related to merging of opinions and other concepts. We refer the
reader to Diaconis and Freedman [10].

In order to set the perspective for this paper we begin with a short summary
of earlier results in posterior consistency. Details and additional references can
be found in Ghosh and Ramamoorthi [19]. The first posterior consistency result
goes back to Laplace. In more recent times posterior consistency and asymptotic
normality of the posterior were established for regular finite dimensional models. In
a seminal paper, Freedman [12] gave a nonparameteric example, with integer-valued
observations, where the posterior is inconsistent. In [10], Diaconis and Freedman
showed that in the nonparametric case inconsistency can occur, even in location
models with an Euclidean parameter. They suggested that instead of searching for
priors that would be consistent at all unknown values of the parameter it would be
fruitful to study natural priors and identify points of consistency.

On the positive side, Freedman [12, 13] and soon after Schwartz [25] provided
conditions under which the posterior probability of a set A will go to 0. These condi-
tions involved two parts, one on prior positivity of Kullback–Leibler neighborhoods
and the other on existence of certain test functions. Under the assumption of prior
positivity of Kullback–Leibler neighborhoods, Barron gave necessary and sufficient
conditions for the posterior probability of A to go to 0. These results were then
specialized to weak and L1 neighborhoods by Barron et al. [3], Ghosal et al. [15]
and Walker [32].

One aspect of these results was that they all established exponential consistency.
In this paper we first give a quick review of these results from a slightly different
perspective with a focus on the role of exponential consistency. We then give an ex-
ample where there is consistency but not exponential consistency. The example also
shows that the exponential aspect is not driven by the Kullback–Leibler condition.

Another early result in consistency is due to Doob [11], who showed that posterior
consistency occurs for all θ in a set of prior measure one. In this paper we consider
a study of the non i.i.d. case based on Doob’s result, specifically, the simple linear
regression model. The martingale techniques are not applied here and we discuss
the connection of posterior consistency with orthogonality of product measures.

Consistency is just the beginning of Bayesian asymptotics. Issues such as rates
of convergence and asymptotic normality have received quite a lot of attention. Yet
it appears that even at the level of consistency there are still issues that need to be
clarified. In this paper, we review some conceptual issues in consistency of posterior
distributions, and discuss different approaches to posterior consistency that have
been investigated in the literature; we view this as a followup of Ghosal et al. [14].
We have attempted to elucidate those sufficient conditions to establish posterior
consistency and tie up some loose ends on diverse conceptual issues in consistency
of posterior distributions. The paper also contains some new results along with a
brief commentary to the subject. In general, detailed proofs are omitted and given
only when they are different from standard published materials or when the result
is unpublished.
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Section 2 contains a summary of some background material, some of the nota-
tions and assumptions used in the paper. Section 3 largely describes known results
although some of the proofs are reorganized. The criteria based on the uniform
strong law of large numbers is new and so far we are not aware of any significant
application. The result might still be of interest because of its similarities to results
on the consistency of nonparametric maximum likelihood estimates (NPMLEs) and
also because it affords a natural extension to non i.i.d. cases. Section 4 specializes
the results in Section 2 to the context of consistency. After a brief discussion of
Schwartz’s result, we discuss the known conditions for L1 consistency and the rela-
tionship between these. Section 5 extends the Schwartz theorem to improper priors
and formal posteriors. The result is new even in the parametric case. We have not
pursued conditions for stronger consistency because improper priors usually arise
in finite dimensional situations where weak and strong consistency coincide. Sec-
tion 6 contains an example. All the general consistency results in the literature
actually establish exponential consistency. In Section 6 we give an example where
consistency obtains but not exponential consistency. The example surprised us as
we had believed that, at least in the i.i.d. case, consistency would always be at an
exponential rate.

In the last section we study the extension of consistency results to a non i.i.d.
case. We give an example to show that the analogue of Doob’s theorem will not
always hold, and we prove a Doob theorem for the linear regression model with
nonparametric errors. We also briefly discuss an extension of the theorem of Walker.

2. Preliminaries

In the setup that we consider, Θ is the parameter space; {fθ : θ ∈ Θ} is a family of
densities with respect to a σ-finite measure μ on a measurable space X . We will use
Pθ to denote the probability distribution generated by fθ. Throughout the paper
we assume that Θ and X are complete separable metric spaces and we also assume
that θ �→ fθ is 1-1 and (θ, x) �→ fθ(x) is measurable.

The affinity, Aff(f, g), between any two densities is defined as Aff(f, g) =∫ √
fgdμ. Let Π be a prior distribution, i.e., a probability measure on Θ. Given

θ, X1, X2, . . . , Xn are assumed to be i.i.d. Pθ. f
(n)
θ (x1, x2, . . . , xn) will stand for the

joint density
∏n

i=1 fθ(xi).
The Kullback–Leibler (KL) divergence is denoted by K(θ0, θ) = Eθ0 log(fθ/fθ0).

A KL neighborhood Kε(θ0) of θ0 is denoted by {θ : K(θ0, θ) < ε}.

Definition 2.1. A point θ0 is said to be in the KL support of Π if for all ε >
0, Π(Kε(θ0)) > 0.

The posterior distribution Π(A|X1, X2, . . . , Xn), the version that we consider, is
given by the following. For any measurable subset A of Θ,

(2.1) Π(A|X1, X2, . . . , Xn) =
JA(X1, X2, . . . , Xn)
J(X1, X2, . . . , Xn)

where

JA(X1, X2, . . . , Xn) =
∫

A

f
(n)
θ

f
(n)
θ0

(X1, X2, . . . , Xn)Π(dθ)
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and

J(X1, X2, . . . , Xn) =
∫

Θ

f
(n)
θ

f
(n)
θ0

(X1, X2, . . . , Xn)Π(dθ).

3. Exponential decrease to 0

We begin with a review of results that provide conditions under which, for a mea-
surable subset A of Θ, Π(A|X1, X2, . . . , Xn) goes to 0 exponentially with P∞

θ0
prob-

ability 1.

Definition 3.1. Let θ0 ∈ Θ and let P∞
θ0

stand for the joint distribution of {Xi}∞i=1

when θ0 is the true value of θ. Then Π(A|X1, X2, . . . , Xn) is said to go to 0 expo-
nentially with P∞

θ0
probability 1, if there exists a β > 0 such that

P∞
θ0

(
{Π(A|X1, X2, . . . , Xn) > e−nβ i.o. }

)
= 0

where i.o. stands for “infinitely often.”

Proposition 3.2 goes back to [12] and [25]. For a proof see [19, Lemma 4.4.1].

Proposition 3.2. If θ0 is in the KL support of Π then for all β > 0,

lim
n→∞

enβJ(X1, X2, . . . , Xn) = ∞ a.s. P∞
θ0

.

Proposition 3.2 shows that the Kullback–Leibler support condition takes care of
the denominator in (2.1). The exponential convergence to 0 would follow if it can
be established that there exists β0 > 0 such that enβ0JA(X1, X2, . . . , Xn) → 0 a.s.
P∞

θ0
. We explore sufficient conditions to achieve this.

Definition 3.3. For a probability measure ν on θ, let q
(n)
ν be the marginal density

of X1, . . . , Xn,

q(n)
ν (x1, x2, . . . , xn) =

∫
Θ

f
(n)
θ (x1, x2, . . . , xn)ν(dθ).

Definition 3.4. Let A ⊂ Θ and δ > 0. The set A and θ0 are said to be strongly δ
separated if for any probability ν on A,

Aff(fθ0 , q
(1)
ν ) < δ.

The relationship H2(f, g) = 1−2Aff(f, g) between the Hellinger distance H(f, g)
and the Affinity Aff(f, g) shows that Aff(fθ0 , q

(1)
ν ) < δ is equivalent to H2(fθ0 ,

q
(1)
ν ) > 1 − δ. Say that A and θ0 are strongly separated if they are strongly δ

separated for some δ > 0.

Example 3.5. Suppose that the L1 distance between fθ∗ and fθ0 is larger than δ∗

for some δ∗ > 0, ‖fθ∗ − fθ0‖ > δ∗. Let

A =
{

θ : ‖fθ∗ − fθ‖ <
δ∗

2

}
.

It is easy to see that A is strongly separated from θ0 for every ν on A.
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We begin by isolating a useful consequence of strong separation. The underlying
idea is in [32]. Note that the argument is essentially analytic and does not use
Hoeffding’s inequality as in [19]. Lemma 3.6, we believe, can be extended to non-
i.i.d and even to non-independent cases. We do not pursue this here but will briefly
return to it in Section 7.

Lemma 3.6. If θ0 and A are strongly δ separated then for all probability ν on A,
for all n,

(3.1) Aff(f (n)
θ0

, q(n)
ν ) < e−nβ0 , where β0 = − log δ.

Proof. The proof is straightforward by induction on n, combined with the definition
of strong separation.

Remark 3.1. The conclusion of Lemma 3.6 holds with β0 = − log δ/k if for all
ν, for some k, Aff(f (k)

θ0
, q

(k)
ν ) < δ, i.e., A and θ0 are strongly separated for the

parametrization θ �→ f (k).

The next result is the celebrated result of Schwartz [25] stated in terms of strong
separation. A result of LeCam [21] shows that it is equivalent to the formulation of
Schwartz involving an unbiased test for testing H0 : θ = θ0 vs. H1 : θ ∈ A. LeCam’s
theorem is proved using the Hahn–Banach theorem so is essentially an existence
result. Hence the point of view of strong separation could be an easier condition to
verify in some situations.

Theorem 3.7 (Schwartz). If

(1) θ0 is in the KL support of Π,
(2) for some k, A and θ0 are strongly separated for the parametrization θ �→ f (k).

Then Π(A|X1, X2, . . . , Xn) goes to 0 exponentially a.e. P∞
θ0

.

Proof. Let Π∗ be the probability measure obtained by restricting Π to A and nor-
malizing it. Then

Pθ0(
√

JA > e−nγ) ≤ enγEθ0(
√

JA)

= enγ
√

Π(A)Aff(f (n)
θ0

, q
(n)
Π∗ )

≤
√

Π(A)enγe−nβ0 .

Taking γ = β0/4, it follows easily that

Pθ0(
√

JA > e−nγ i.o.) = 0.

The proof can be completed easily using Proposition 3.2. For details see [19].

Proposition 3.2 and Lemma 3.6 easily give the following theorem of Walker [32].

Theorem 3.8. If

(1) θ0 is in the KL support of Π.
(2) If A = ∪i≥1Ai such that:

(a) For some δ > 0 all the Ai’s are strongly δ separated from θ0 and
(b)

∑
i≥1

√
Π(Ai) < ∞.

Then Π(A|X1, X2, . . . , Xn) goes to 0 exponentially a.e. P∞
θ0

.
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Proof. It follows by noting

Pθ0(
√

JA > e−nγ) ≤ enγEθ0(
√

JA)

≤ enγEθ0

⎛
⎝√∑

i

JAi

⎞
⎠ ≤ enγ

∑
i

Eθ0

(√
JAi

)

= enγ
∑

i

√
Π(Ai)Aff(f (n)

θ0
, q

(n)
Π∗

i
)(3.2)

≤ enγe−nβ0
∑

i

√
Π(Ai),

where Π∗ in (3.2) is the normalized restriction of Π∗ to Ai.

The next theorem gives another set of sufficient conditions, in terms of the uni-
form Strong Law of Large Numbers (SLLN), for the posterior probability of a set
to go to 0 exponentially. The conditions are stronger than those of Schwartz [25].
They are similar in spirit to the conditions used in the study of Hellinger consis-
tency of NPMLEs (see [30]) and suggest a parallel between consistency of NPMLEs
and posterior consistency.

Theorem 3.9. Let A ⊂ Θ. If

(1) θ0 is in the KL support of Π.
(2) Aff(fθ0 , fθ) < δ for all θ ∈ A.

(3) sup
θ∈A

∣∣∣∣∣
∫ √

fθ

fθ0

(x)dPn − Aff(fθ0 , fθ)

∣∣∣∣∣ → 0 a.s P∞
θ0

, where Pn is the empirical

distribution obtained from X1, X2, . . . , Xn.

Then Π(A|X1, X2, . . . , Xn) goes to 0 exponentially a.e. P∞
θ0

.

Proof. Note that
∫

g(x)dPn = (1/n)
∑n

i=1 g(Xi) for arbitrary function g(x). Thus,

JA =
∫

A

n∏
1

fθ

fθ0

(Xi)Π(dθ)

=
∫

A

exp

{
2n

∫
log

√
fθ

fθ0

(x)dPn

}
Π(dθ)

since log x ≤ x − 1

≤
∫

A

exp

{
2n

∫ (√
fθ

fθ0

(x) − 1

)
dPn

}
Π(dθ).

Take δ∗ = 1 − δ. By assumptions 2 and 3, for all large n,

sup
θ∈A

√
fθ

fθ0

dPn ≤ sup
θ∈A

{∣∣∣∣∣
√

fθ

fθ0

dPn − Aff(fθ0 , fθ)

∣∣∣∣∣ + Aff(fθ0 , fθ)

}

≤ δ∗

2
+ 1 − δ∗ = 1 − δ∗/2,

which in turn implies that JA < Π(A) exp(−nδ∗/2).

Proposition 3.10. Conditions (2) and (3) of Theorem 3.9 imply that there exists
a uniformly consistent test for H0 : θ = θ0 vs. H1 : θ ∈ A.
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Proof. Choose δ0 such that δ + δ0 = β0 < 1.
Let

C =

{
(x1, x2, . . . , xn) : sup

θ∈A

∣∣∣∣∣
∫ √

fθ

fθ0

(x)dPn − Aff(fθ0 , fθ)

∣∣∣∣∣ < δ0

}
.

By assumption (3) of Theorem 3.9, for any ε > 0 and sufficiently large n,
Pθ0(C) > 1 − ε. For each (x1, x2, . . . , xn) in C, for all θ ∈ A,

1
n

∑ √
fθ

fθ0

(xi) ≤ sup
θ∈A

Aff(fθ0 , fθ) + δ0

so that ∑(√
fθ

fθ0

(xi) − 1

)
< n(δ + δ0 − 1) = −nβ0.

Therefore, for θ ∈ A,

Pθ(C) =
∫

C

f
(n)
θ

f
(n)
θ0

(xi)f
(n)
θ0

(xi)
∏

μ(dxi) < Pθ0(C)e−2nβ0 .

Remark 3.2. Salinetti [24] has used the notion of hypo convergence to study con-
sistency of posterior and consistency of maximum likelihood estimates. A somewhat
related result is due to Ghosal and van der Vaart who show that her condition is
related to Schwartz’s testing condition in the discussion of [24].

While the results discussed so far deal with sufficient conditions for Π(A|X1, . . . ,
Xn) to go to 0 exponentially, the next basic result due to Barron [2] gives conditions
that are both necessary and sufficient.

Theorem 3.11 (Barron). A ⊂ Θ. Assume that θ0 is in the KL support of Π.
Then the following are equivalent.

(i) There exists a β0 such that

Pθ0{Π(A|X1, X2, . . . , Xn) > e−nβ0 i.o.} = 0.

(ii) There exist subsets Vn, Wn of Θ, positive numbers c1, c2, β1, β2, and a se-
quence of tests {φn} , φn based on n observations, such that

(a) A ⊂ Vn ∪ Wn,
(b) Π(Wn) ≤ C1e

−nβ1 , and
(c) Pθ0{φn > 0 i.o.} = 0 and inf

f∈Vn

Efφn ≥ 1 − c2e
−nβ2 .

4. Consistency

As before, Π stands for a prior and {Π(·|X1, X2, . . . , Xn)} denotes a sequence of
posterior distributions. The sequence of posteriors is said to be consistent at θ0 if
{Π(U |X1, X2, . . . , Xn)} → 1 a.s.P∞

θ0
for all neighborhoods U of θ0.

Typically the parametrization θ �→ fθ turns out to be continuous when the space
of densities is endowed with weak convergence or with the L1 or the Hellinger
metric. Consequently the neighborhoods of interest are those that arise from weak
or L1 topology.
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In view of the last section, what is required then is to verify that the conditions
developed in the last section apply to neighborhoods.

Let g(x) be a bounded measurable function and define

(4.1) Ag =
{

θ :
∫

g(x)fθ(x)μ(dx) −
∫

g(x)fθ0(x)μ(dx) ≥ ε

}
.

Clearly A is strongly ε separated from θ0 and hence if θ0 is in the KL support
of Π then by Theorem 3.7 the posterior probability of A goes to 0 exponentially. If
U is a weak neighborhood then U c is a finite union of sets of the type displayed in
(4.1). This establishes exponential consistency for weak neighborhoods.

Consider the L1 neighborhood

U = {θ : ‖fθ − fθ0‖ < ε}.

In this case, in general, U c cannot be expressed as a finite union of sets strongly
separated from θ0. Unlike the case of weak neighborhoods, in this case we need
conditions beyond requiring that θ0 is in the KL support of Π.

Theorem 3.8 can be easily adapted in this context.

Theorem 4.1. Assume

(1) θ0 is in the KL support of Π.
(2) For all δ > 0, there exist sets A1, A2, . . . such that the diameter of Ai,

diam(Ai) < δ,
⋃

Ai = Θ and
∑ √

Π(Ai) < ∞.

Then for any L1 neighborhood U of θ0, the posterior probability of U c goes to 0
exponentially a.e. P∞

θ0
.

The theorem follows from observing that if U is an ε neighborhood, then taking
{Ai}∞i=1 for δ = ε/3 it is easily seen that the Ai’s that have non-empty intersection
with U c cover U c. These Ai’s satisfy the assumptions of Theorem 3.8.

Definition 4.2 (Bracketing entropy). Let Γ ⊂ Θ. For a δ > 0 define the
bracketing entropy H(Γ, δ) to be the logarithm of the minimum integer k such
that, there exist non negative functions fU

1 , fU
2 , . . . , fU

k satisfying

(1)
∫

fU
i (x)μ(dx) < 1 + δ,

(2) for each θ there exists i such that fθ ≤ fU
i .

Definition 4.3 (Metric entropy). Let Γ ⊂ Θ. For δ > 0 the Metric entropy
J(Γ, δ) is defined to be the logarithm of minimum of all integers k such that there
exist densities f∗

1 , f∗
2 , · · · , f∗

k such that for each θ there exists i such that ‖fθ−f∗
i ‖ <

δ.

If θ0 is in the KL support of Π then each of the three conditions listed below
ensures that the posterior is exponentially L1 consistent. The first condition (W)
is from Walker’s theorem, Theorem 3.8, the next (BSW) is due to [3] and the third
(GGR) appears in [15]. A formal statement and proof can be found in [3] and [15].

(W) For each δ > 0, there exist sets A1, A2, . . . such that
⋃

Ai = Θ, L1-diameter
of {fθ : θ ∈ Ai} < δ and

∑
i

√
Π(Ai) < ∞.

(BSW) For each ε > 0, there exist Θn ⊂ Θ, and C, c1, c2, δ all positive such that

(a) Π(Θc
n) < e−nc2 .

(b) H(Θn, δ) ≤ nc for c < ([ε −
√

δ]2 − δ)/2, δ < ε2/4.
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(GGR) If for each ε > 0, there is a 0 < δ < ε, c1, c2, β < ε2/2 and Θn such that

(a) Π(Θc
n) < c1e

−nβ .
(b) J(Θn, δ) ≤ nβ.

The next theorem shows that both (W) and (BSW) imply (GGR). A proof that
(W) ⇒ (GGR) was also communicated to us by Ghosal, S. [personal communica-
tion].

Theorem 4.4. (W)⇒(GGR) and (BSW) ⇒ (GGR).

Proof. (W)⇒(GGR).
Assume without loss of generality that Π(Ai) = Πi is decreasing in i and let∑√

Πi = c < ∞. Set

Θn =
kn⋃
1

Ai.

Since the L1-diameter of {fθ : θ ∈ Ai} < δ, it is easy to see that J(Θn, δ) < log kn.
Thus, by taking kn = exp(nβ) one then obtains sieves with the properties required
by (GGR).

Next, we shall argue that Π(Θc
n) = Π

(⋃
i>kn

Ai

)
≤ 2c2/kn. Note that, for any

j, j
√

Πj ≤
∑j

i=1

√
Πi ≤ c so that j ≤ c/

√
Πj . Therefore,

Π

⎛
⎝ ⋃

j>kn

Ai

⎞
⎠ ≤

∑
j>kn

Πj ≤ c2
∑

j>kn

1
j2

≤ 2c2

kn
.

(BSW)⇒(GGR)

Let f1, f2, . . . , fk be functions such that
∫

fi = 1+ ci < (1+ δ) and such that for
any θ ∈ Γ,∃ i such that fθ ≤ fi. Let f∗

i = fi/(1 + ci). Then

‖f∗
i − fθ‖ ≤ 1

1 + ci
‖fi − (1 + ci)fθ‖

≤ ‖fi − fθ‖ + ci

≤ 2δ.

Hence f∗
1 , f∗

2 , . . . , f∗
k forms a 2δ net for Γ and J(Γ, 2δ) ≤ H(Γ, δ).

5. Improper priors and formal posteriors

Suppose that Π is an improper prior on Θ, that is, a σ-finite measure with Π(Θ) =
∞. A formal posterior density given X1 = x1, X2 = x2, . . . Xn = xn is defined as in
Equation (2.1). This is of course well defined only if

J(x1, x2, . . . , xn) =
∫

Θ

f
(n)
θ

f
(n)
θ0

(x1, x2, . . . , xn)Π(dθ) < ∞.

This situation occurs widely in the context of noninformative priors (see for
example, Ghosh and Ramamoorthi [18] and Kass and Wasserman [20]).

The next theorem shows that if P0 is in the KL support of Π then the posterior is
weakly consistent. Improper priors largely arise in the context of finite dimensional
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regular models and in these situations weak consistency and strong consistency
coincide. Hence, we do not develop conditions akin to (W), (BSW) or (GGR) for
improper priors. First, Lemma 5.1 states a result of the KL support of Π(·|x).

Lemma 5.1. Let P0 is in the KL support of Π. Denote by A = {x : J(x) =∫
fθ(x)Π(dθ) < ∞}. Then, for P0 almost all x in A, θ0 is in the KL support of

Π(·|x).

Proof. Fix ε > 0. Consider E = {x ∈ A : Π(Kε|x) = 0}. We shall show that
Pθ0(E) = 0. Note that

Π(Kε|x) =

∫
Θ

IKε(θ)fθ(x)Π(dθ)∫
fθ(x)Π(dθ)

.

Denoting by Π∗ the measure Π(· ∩ Kε)/Π(Kε), since, for x ∈ E, Π(Kε|x) = 0, we
have that

Π∗{θ : fθ(x) = 0} = 1.

Consequently
∫

E

∫
Kε

fθ(y)Π∗(dθ)(E)dμ(y) = 0. Interchanging the integrals,∫
Kε

[
∫

E
fθ(y)dμ(y)]Π∗(dθ) = 0 and hence there exists some θ′ such that∫

E
fθ′(y)dμ(y) = 0 so that Pθ′(E) = 0. For every θ in Kε Pθ dominates Pθ0 , so

Pθ0(E) = 0. Letting ε run through rationals, the lemma is established.

Theorem 5.2. Let Π be an improper prior on Θ. {fθ : θ ∈ Θ} is a family of
densities. Assume that the formal posterior is defined with P∞

0 probability one.
Formally, if

An = {x1, x2, . . . , xn : J(x1, x2, . . . , xn) < ∞} then P∞
0 (

⋃
An) = 1.

If θ0 is in the KL support of Π then the formal posterior is weakly consistent at θ0.

Proof. By Lemma 5.1, for each n, except for those in a set of Pθ0 measure 0, for all
(x1, x2, . . . , xn) ∈ An, θ0 is in the KL support of Π(·|(x1, x2, . . . , xn)).

Since on An, Π(·|(x1, x2, . . . , xn+1)) = Π(x1,x2,...,xn)(·|xn+1), the result follows.

6. Example

All the results discussed so far are related to exponential consistency. The next
example shows that, even in the context of i.i.d. observations, the posterior can be
consistent at a non-exponential rate.

Consider an example where we have a prior Π, f0 is in the KL support of Π and
the posterior is not L1 consistent, i.e., there is a set A which is a complement of a
neighborhood of f0 and whose posterior does not go to 0. Such an example appears,
for instance, in Barron et al. [3].

Consider the prior to Π∗ = .5δf0 + .5Π. Then by Doob’s theorem the posterior
of A goes to 0. It cannot go exponentially, for if it does, by Barron’s theorem (e.g.
[2] and [19, Theorem 4.4.3]), there would be sieves Vn and sets Un of exponentially
small Π∗ probability that cover A. These properties also carry over to Π and now the
first part of Barron’s result would imply that the original prior Π is itself consistent,
in fact, exponentially consistent.
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7. Independent but non-identically distributed models

7.1. Extension to posterior consistency

Here we look at the setup where, as before, Θ is a parameter space and Π is a prior
on Θ. Given θ, we assume that X1, X2, . . . are independent with Xi distributed as
fi,θ.

All the results discussed so far can be easily adapted, but not necessarily easily
applied in the non-identically distributed case. As in Section 1, the posterior can be
written as the ratio of two integrals. A stronger form of KL support (for instance,
see Choudhuri et al. [9] and Amewou-Atisso et al. [1]) takes care of the denominator.
It is not clear if there is a simple version of the (GGR) type of sufficient condition.
Instead, those results for independent but non-identically distributed models as in
Amewou-Atisso et al. [9], Choudhuri et al. [1], Ghosal and Roy [16] and Choi and
Schervish [8], tried to establish the existence of uniformly consistent tests directly,
which makes the numerator in the ratio of two integrals decrease to 0 exponentially.

Alternatively, LeCam [22] and Birge [4] showed that for independent
non-identically distributed variables, tests with exponentially small errors exist
when we use the average squared Hellinger distance to separate densities and con-
vex sets. That is, uniformly consistent tests are always obtained if the entropy with
such a distance is controlled. In the recent paper by Ghosal and van der Vaart
[17], (GGR) type results have been investigated in the test construction for the
convergence rates of posterior distributions for non i.i.d. observations.

On the other hand, Walker’s sufficient conditions are easily adaptable in this
case. Note that the proof of Lemma 3.6 does not require the assumption of the
identically distributed observations; hence Theorem 3.8 easily follows to this case.
We state it formally below.

Theorem 7.1. If A =
⋃

i≥1 Ai such that

1. For some δ > 0 all the Ai’s are strongly δ separated from θ0 for the model
θ �→ fi,θ and

2.
∑

i≥1

√
Π(Ai) < ∞.

Then for some β0 > 0,

enβ0

∫
A

n∏
i=1

fi,θ(xi)
fi,θ0(xi)

Π(dθ) → 0 a.s
∞∏

i=1

Pi,θ0 .

Similar results to Theorem 7.1 along with regression problems have been dis-
cussed in Walker [33].

Example 7.2 (Orthogonal series expansion). Let

(7.1) Yi = η(Xi) + εi, i = 1, . . . , n

where the εi’s are assumed to be independent N(0, 1) random variables, the Xi’s
are sampled from a known probability distribution, and η(·) is a regression function.
An orthogonal series expansion for the regression function η(x) is a representation
of η(x) by an infinite sum,

η(x) =
∞∑

j=1

ηjφj(x),
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where {φj(x)}∞j=1 is an orthonormal basis for an L2 space containing η. Regarding
either posterior consistency or rate of convergence of posterior distributions, this
model has been investigated by Shen and Wasserman [26], Walker [33] and Choi
and Schervish [8].

Let {φj(·)}∞j=1 be an orthonormal basis for L2[0, 1] such that for some C > 0,
supx∈[0,1] |φj(x)| ≤ C for all j.

In this case, we consider the following δ-covering of Ω, a union of sets of the type

(7.2) {ψ : njδj < ψj < (nj + 1)δj , j = 1, 2, . . .},

which was also examined for Hellinger consistency in density estimation problems
from infinite-dimensional exponential families in Walker [32] and regression prob-
lems in Walker [33]. Based on (7.2), the condition (b) in Theorem 7.1 can be verified
as in Section 6.1 [32]. When the regression function is uniformly bounded, the L1(or
Hellinger) neighborhood of the true density fθ0 becomes equivalent to the L1 neigh-
borhood of the true regression function η0. Therefore, by considering a δ-covering
in (7.2) and its corresponding prior probability, two conditions (a) and (b) are eas-
ily verified. Hence, the conclusion of Theorem 7.1 is achieved when A is in the L1

neighborhood of the true density generating the regression model (7.1).

Example 7.3 (Gaussian process regression). Gaussian process regression is
one of the popular approaches to Bayesian nonparametric regression problems, and
it is used to model the regression function η(x) as a Gaussian process a priori.
Posterior consistency based on Gaussian processes has been established in Ghosal
and Roy [16] and Choi [7] for nonparametric binary regression, Tokdar and Ghosh
[29] for density estimation and Choi [6] and Choi and Schervish [8] for nonpara-
metric regression. Interestingly, all the results mentioned above have been based
on constructing uniformly consistent tests rather than the condition (b) in Theo-
rem 7.1. The challenges in the study of posterior consistency based on Gaussian
processes is to find a rate that a prior probability shrinks as we consider a sequence
of δ-coverings that satisfies the condition (b). In this case, the important task to
be achieved is obtaining the exponentially small lower bound for small balls of
Gaussian processes. There is a recent investigation in this regard (e.g. see Li and
Shao [23] and van der Vaart and van Zanten [31]). It would be interesting to explore
if this difficulty in verifying (b) under Gaussian process priors can be bypassed when
we apply Theorem 7.1.

7.2. Doob’s theorem

Doob [11] showed that when Θ is the parameter space and given θ, X1,X2, . . . ,
are i.i.d. Pθ then, for any sequence of posterior distributions Π(·|X1,X2, . . . ,Xn),
under mild set theoretic assumptions (for instance when X and Θ are Borel subsets
of Polish spaces) for any prior Π, there is a ΘΠ ⊂ Θ with Π(ΘΠ) = 1 such that the
posterior is consistent at all θ ∈ ΘΠ. In what follows we explore the analogue of
Doob’s theorem in independent non-identically distributed models.

To change the notation a bit, given θ in Θ, let Y1,Y2, . . . ,be Y valued random
variables with joint distribution Pθ,∞. For any prior Π on Θ, denote by λΠ the
joint distribution induced on Θ×Y∞ by Π and {Pθ,∞ : θ ∈ Θ}. We will denote the
elements of Y∞ by y and of (Y1,Y2, . . . , ) by Y. As before Π(·|Y1,Y2, . . . ,Yn)
will stand for a fixed version of the posterior distribution of θ.

By going through an appropriate countable set of continuous functions g and
applying the martingale convergence theorem to each posterior mean of g(θ), it can
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be seen that there is a conditional probability Π∗(·|y) such that for all y outside a
λΠ null set

Π(·|Y1,Y2, . . . ,Yn)
weakly→ Π∗(·|y).

Clearly the posterior is consistent at θ if Π∗(·|y) = δθ a.e. Pθ,∞.

Proposition 7.4. Consider the following two sets of statements for a given prior
Π:

1. There is a set ΘΠ with Π(ΘΠ) = 1 and the posterior is consistent at all θ ∈ ΘΠ.
2. There is a set ΘΠ with Π(ΘΠ) = 1 and a measurable set EΠ ⊂ Θ × Y∞ such

that

(a) for each θ ∈ ΘΠ, Pθ,∞(EΠ
θ ) = 1,

(b) EΠ
θ ∩ EΠ

θ′ = ∅ for θ �= θ′.

The two sets of statements are equivalent.

Proof. Suppose (1) holds. Then it is easy to verify that the set

EΠ = {(θ, y) : Π∗(·|y) = δθ, (θ ∈ ΘΠ)}

is measurable and satisfies the conditions in (2).
On the other hand if (2) holds then define φ(y) = θ if (θ, y) ∈ EΠ. Then, using

a result from set theory [28, Theorem 4.5.7], it can be shown that φ is measurable.
It is easy to verify that Π̃ defined by

Π̃(·|y) = δφ(y)

is a version of the conditional distribution of θ given Y and hence Π∗(·|y) =
Π̃(|y) a.e. λΠ. An application of Fubini’s theorem yields the result.

Our interest is in establishing (1) for all priors Π and it is convenient to work
with a stronger version of (2) by seeking a decomposition that does not depend
upon Π. Formally,

Proposition 7.5. Let Π be a prior for Θ.
Suppose there exists a measurable set E ⊂ Θ × Y∞ such that

1. For each θ ∈ Θ, Pθ,∞(Eθ) = 1 where Eθ is the θ-section {y : (θ, y) ∈ E}.
2. Eθ ∩ Eθ′ = ∅ for θ �= θ′.

Then there is a set ΘΠ with Π measure 1, such that the posterior is consistent
at all θ ∈ ΘΠ.

Thus, Doob’s theorem is intimately related to uniform orthogonality of {Pθ,∞ :
θ ∈ Θ}. There is a wide literature on singularity and mutual absolute continuity of
measures on infinite product spaces ([27] and [5]). This literature in general deals
with pairwise orthogonality whereas Proposition 7.5 requires uniform orthogonality.
The step from pairwise to uniform orthogonality can be formidable. Yet we feel that
some of these results are likely to be useful in establishing Doob-type theorems in
the non-i.i.d. set up.

Motivated by Proposition 7.5, we present an example where the Doob-type theo-
rem fails to hold. On the positive side, Proposition 7.5 enables us to prove a theorem
for linear regression models with nonparametric errors.
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The case that we consider is

Yi = α + βxi + εi, i = 1, 2, . . .

where

1. x1, x2, . . . , are fixed non-random design points.
2. ε1, ε2, . . . are independent and identically distributed random variables with a

probability density symmetric around 0.

Example 7.6. Suppose
∑

i x2
i < ∞ and εi ∼ N(0, 1), and let α = 0. In this case

it follows from a result of Shepp [27] that
∏∞

1 N(βxi, 1) are mutually absolutely
continuous. Hence the decomposition required by Proposition 7.4 fails and Doob’s
theorem cannot hold.

The last example we consider is semiparametric regression, the linear regression
model where the distribution of the noise is assumed to be unknown and thus
needs to be estimated. This example has been investigated in terms of posterior
consistency, following from the generalization of the Schwartz theorem in Amewou-
Atisso et al. [1]. We revisit this example in Theorem 7.7 and show that the Doob-
type theorem holds with an assumption on the fixed non-random design points,
similar to that of [1].

Let Assumption A be defined as the following: There exists ε0 > 0 such that the
covariate values xi’s satisfy∑

i

I(−∞,−ε0)(xi) = ∞ and
∑

i

I(ε0,∞)(xi) = ∞.

Theorem 7.7. Consider the model

Yi = α + βxi + εi, i = 1, 2, . . .

where

1. x1, x2, . . . , are fixed nonrandom design points.
2. ε1, ε2, . . . are i.i.d. variables with an unknown distribution of which density f is

symmetric, continuous at 0 and f(0) > 0.

If Assumption A holds, then given any prior Π for (α, β, f), there is a set ΘΠ of Π
measure 1 such that the posterior is consistent at all (α, β, f) ∈ ΘΠ.

Proof. Let F be all densities f on the real line which are symmetric, continuous
at 0 and f(0) > 0. Formally, we have as the parameter space Θ = R × R × F
and given (α, β, f), the Yi’s are independent with Yi ∼ fα+βxi , where fα+βxi(y) =
f(y − (α + βxi)).

We now construct a decomposition satisfying the conditions of Proposition 7.5.
Let N1 = {n1, n2, . . .} be the subsequence of all i with xi > ε and M1 =

{m1, m2, . . .} be the subsequence of all i with xi < −ε. Let t be a real number
and define At = (t,∞).

Note that the unknown parameter θ is the triple θ ≡ (α, β, f). Following nota-
tions in Proposition 7.5, let Π be a prior on Θ and let EΠ be the set of all (α, β, f,y)
such that for any real number t,

1. limn→∞
1
n

∑n
1 IAt(yi − (α + βxi)) = Pf (At).

2. limk→∞
1
k

∑k
1 IAt(yni − (α + βxni)) = Pf (At).
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3. liml→∞
1
l

∑l
1 IAt(ymi − (α + βxmi)) = Pf (At).

Since N1, M1 are fixed subsequences and since it is enough to work with t -
rational, EΠ is easily seen to be measurable.

Further, for each (α, β, f), [
∏∞

1 Pα+βxi ] (E
Π
α,β,f ) = 1, where EΠ

α,β,f is the
(α, β, f)-section {y : (α, β, f,y) ∈ EΠ} for each (α, β, f) as defined in Proposition
7.5. This follows by noting that under [

∏∞
1 Pα+βxi ], Y1−(α+βx1), Y2−(α+βx2), . . .

are i.i.d. with common density f . An application of the law of large numbers proves
the claim.

We next argue that if (α1, β1, f1) �= (α2, β2, f2) then EΠ
α1,β1,f1

∩ EΠ
α2,β2,f2

= ∅.
If α1 = α2, β1 = β2 and f1 �= f2, and if y ∈ EΠ

α,β,f1
∩EΠ

α,β,f2
then a contradiction

is easily obtained by considering a t for which Pf1(At) �= Pf2(At).
Now suppose that for some Δ > 0, α1−α2 > Δ and β1−β2 > Δ. Clearly for every

ni ∈ N1, (β1−β2)xni > Δε. Choose η such that η < Δε and inf |x|<η f1(x) > C > 0.
Since f is symmetric and η > 0, Pf1(Aη) < 1/2. We will get a contradiction by

showing that if y ∈ EΠ
α1,β1,f1

∩ EΠ
α2,β2,f2

, then Pf1(Aη) ≥ 1/2.
If y ∈ EΠ

α1,β1,f1
∩ EΠ

α2,β2,f2
, then for all t,

1
k

k∑
1

IAt(yni − (α1 + β1xni)) → Pf1(At),(7.3)

1
k

k∑
1

IAt(yni − (α2 + β2xni)) → Pf2(At),(7.4)

α1 + β1xni = α2 + β2xni + (α1 − α2) + (β1 − β2)xni

≥ α2 + β2xni + η

and hence

IAt(yni − (α1 + β1xni)) ≥ IAt(yni − (α2 + β2xni + η))
= IAt−η (yni − (α2 + β2xni)).

In particular with t = η,

IAη (yni − (α1 + β1xni)) ≥ I(0,∞)(yni − (α2 + β2xni)).

Consequently

1
k

k∑
1

IAt(yni − (α1 + β1xni)) ≥ 1
k

k∑
1

I(0,∞)(yni − (α2 + β2xni))

→ Pf2(0,∞) =
1
2
.

The case when α1 − α2 < Δ, β1 − β2 > Δ can be handled by considering the
subsequence M1. Similarly, the other remaining cases follow.
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