
13 

SOME REMARKS ON 

ALGEBRAIC INVERSE PROBLEMS 

Lars Elden 

During my five-week visit to CMA I primarily worked in two problem areas: 

a) algorithms for the computation of functionals defined on the solution of a discrete 
ill-posed problem 

b) hyperbolic approximations for a Cauchy problem for the heat equation 

Below I give a brief account of that work. 

Functiona1s. Consider the linear system of equations 

Ax""' b, (1) 

where A is an m x n matrix, m 2: n, and let the singular value decomposition (SVD) of A 
be 

A= u:svT, uru = vTv =I, 

E = diag(o-1, ... ,a,), 01 2: ... 2: On 2:0. 
(2) 

If the condition number of A is very large, typically of the same order of magnitude as the 
reciprocal of the unit round off of the computer where we want to solve (1), then we call 
( 1) a discrete ill-posed problem. 

In recent years several authors have pointed out that in many cases one is not primarily 
interested in the solution of the ill-posed problem but rather a functional defined on the 
solution, see [ l , [ 2 ] , [ 8 ]. For example, in geophysical exploration it may be more 
important to know the total mass or the centre of gravity of a mineral deposit than the 
exact boundaries. 

Taking into account also that the data are most often contaminated ·with random errors, 
we are led to the problem of computing a confidence interval for a functional 

WTX, (3a) 

subject to the constraint 
x E So= {xI I!Ax- bj[ S E}, (3b). 

where E is a constant related to properties of the random error, see [ 9 ]. The norm is 
the Euclidean vector norm. In the sequel we only discuss the problem of computing the 
minimum of the functional ( 3a). 
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Even though (3) may be much better conditioned than the problem of solving (1), it 
may still not be well-conditioned enough, see [ 9 ]. Then it is necessary to formulate 
mathematically some a priori information about the problem and use it in the numerical 
solution. In [ 9 ] a nonnegativity constraint is imposed. We assume that there is a trial 
solution x 0 , from which the solution is not allowed to deviate more than a certain amount. 
Thus we consider 

minwT x, S = {x! IIAx- b!l :S £, l!x- xoll :S 8}. 
xES 

(4) 

In [ 5 ] we study numerical algorithms for computing the solution of (4). It turns out not 
to be practical to solve (4) as it stands: the set Sis the intersection of an ellipsoid and a 
sphere in Rn and it is not easy to find points on the boundary of S. What we are looking 
for is a scalar ¢ such that the hyperplane wT x = ¢ intersects S in exactly one point. 

From the point of view of computational efficiency it is better to reformulate the problem 
so that we fix the position of the hyperplane and consider its intersection with the sphere. 
This is a sphere of dimension n - 1, which is easier to treat mathematically than S. Then 
we determine an ellipsoid that intersects the ( n - 1 )-dimensional sphere in exactly one 
point. Thus we solve 

L(¢) =min !lAx- bll 2 , T = 
xET · 1 

( 5). 

To get the solution of (4) we then solve the equation L(¢) = £ 2 . 

Apart from the geometric arguments above, (5) can be seen to be easier to deal with 
numerically than (4), since the linear constraint can be eliminated to give an equivalent 
problem 

L(¢) = mi11IIAy- IJj[, T = {y lliY- roll<::: 8}. 
yET 

This can be solved easily using the methods in I 4 ]. We have also studied algorithms for 
the problem when there are several different vectors w, as is the case in the applications 
in [ 9]. 

The inspiration to do this work comes from several discussions with R.S. Anderssen. 

Cauchy problems for the heat equation. The problem of determining the tem­
perature at an inaccessible side of a thick wall from measurements inside the wall can be 
formulated as a Cauchy problem for the heat equation in a quarter plane 

0 :::; x, 0 :::; t, 

u(x,O) = 0, 0 :S x, (6) 
u(l, t) = g(t), 0:::; t. 
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We want to find the solution at x = 0. This problem is ill-posed in the sense that the 
solution does not depend continuously on the data. It can be stabilized if we impose a 
bound on the solution at x = 0 and allow for some imprecision in the data: 

Uxx=Ut, O<Sx,O'St, 

u 0) = 0, 0 'S x, 

llu ·)II <S 
llu(l,·)- g(·)ll 'S c, 

for some constants M and t, which are assumed to be known a priori. il· II is the L 2-norm 
on (0, oo). Using the results of l 7 ] it is easy to show that any two solutions of (7), u1 and 
u 2 , may differ in norm 

(8) 

at most. 

We are interested in the computation of an approximate solution of (7). Carasso [ 3 ] 
obtained an error estimate of the type (8) for a regularization method. In applications 
related to oil reservoir modelling modified equations of the form 

(9) 

are used. The extra term makes the hyperbolic and the Cauchy problem for this 
equation is well-posed. Such modifications have several advantages. The equation can be 
discretized and solved using standard methods for hyperbolic equations. These methods 
can also be used for problems with non-constant coefficients. 

On the other hand it turns out that the error estimates for the modified equation are worse 
than (8). In [ 6 ] it is shown that essentialiy we only get logarithmic continuity: 

c 
liu(x,·)- v(x,·)ll 'S (log(M/c))2, 

for small f ( u is the ,. exact" solution and v is the solution of the Cauchy problem for the 
modified equation ( 9)). 

This work was finished and ·written up during my visit to CMA. There I also started a joint 
project with another visitor, T .I. Seidman. We hope to get improved error estimates for a 
modified equation, where the modification is made using pseudodifferential operators. 



16 

REFERENCES. 

1. R.S. Anderssen, On the use of Linear Functionals for Abel-type Integral Equations 
in Applications, in The Application and Numerical Solution of Integral Equations, 
R.S. Anderssen, F.R. de Hoog, and M.A. Lukas (eds.), Sijthoffand Nordhoff, Alphen 
and den Rijn, 1980. 

2. M. Bertero, C. De Mol and G.A. Viano, The Stability of Inverse Problems, Inverse 
Scattering Problems in Optics, H.P. Bates (ed.), Springer Verlag, Berlin 1980. 

3. A.S. Carasso, Determining surface temperatures from interior observations, SIAM 
J. Appl. Math. 42(1982), 558-574. 

4. L. Elden, Algorithms for the Regularization of Ill-Conditioned Least squares Prob­
lems, BIT 17(1977), 134-145. 

5. L. Elden, Algorithms for the Computation of Functionals Defined on the Solution 
of a Discrete Ill-posed Problem, in preparation. 

6. L. Elden, Hyperbolic approximations for a Cauchy problem for the heat equation, 
Centre for Mathematical Analysis, ANU, Canberra, Research Report CMA-R44-86, 
1986. 

7. H.A. Levine, Continuous data dependence, regularization, and a three lines theorem 
for the heat equation with data in a space like direction, Ann. Mat. Pura Appl. 
(IV) Vol CXXXIV (1983), 267-286. 

8. P. Linz, Approximate Evaluation of Functionals Defined on Solutions of Ill-posed 
Problems, Univ. Calif. Davis, Computer Science Division, Report CSE-85-3, 1985. 

9. D.P. O'Leary, B.W. Rust, Confidence Intervals for Inequality-Constrained Least 
Squares Problems, with Applications to Ill-Posed Problems, SIAM J. Sci. Stat. 
Comput. 7(1986), 473-489 

Home institute: 

Department of Scientific Computing 
Uppsala University 
Sturegatan 4B, 2tr 
s-752 23 Uppsala 
Sweden 




