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1. Introduction

Let x = (xi, * , xp) be a p dimensional random vector,

(1.1) P(s) PE{lXl| . h1, *.**, |xp . hp} = J 112f(x1-x1) dx,
and

(1.2) P (E) =P{x1 _Ix ,* ,,,xp _ t} = J' -112f(xX-1X') dx,

where h (h1,l , hp) and f = (el, ep,4) are constant vectors, hi> 0,
i = 1, * * , p, and E = (ainj) is a positive definite matrix. We call a density (with
respect to Lebesgue measure) of the form

(1.3) jyj- 12f(Xj -lx'
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242 SIXTH BERKELEY SYMP'OSIUM

where J0 rP-lf(r2) dr < oo, elliptically contoured; it has also been called
a spherical distribution by Lord [19], since the transformation y = XI-1/2
yields a density which is uniform on spheres, or equivalently, since the distri-
bution has spherical symmetry in the Euclidean geometry defined by the distance
p(x, y) = [(x _ y) - I(x _ y)y]1/2. The normal distribution is clearly a special
case and other examples are given below.

Inequalities for P(s) and P+ (1) have been obtained in a series of papers, and
with a number of variants. However, in almost all instances the results are
based on the normal distribution. The first inequality of which we know for
P+(1) is due to Slepian [28].
THEOREM 1.1. If f(z) = (2ir) Pe2eZ/2, I = (aij), and F = (yij), with aij _

yij and aii = yii, then P+ (E) _ P+ (IF).
Slepian's elegant proof is based on a property of the normal distribution

a?( 1 02?0 a?0 a2
(1.4) apj 2 ,,_ Z

aaii 2? ax ' aaij axiaxj
where cp(x, 1) = III-1/2 exp {--4(xF1x')}. Because the proof depends so
heavily on (1.4), it is not easily adaptable to the more general class of elliptically
contoured distributions. An alternative geometrical proof for the normal distri-
bution is given by Chartres [2]. However, normality really does not play an
essential role, and his proof can be modified to apply to elliptically contoured
distributions. A general proof using a reflection-inclusion argument is given in
Section 5. As a by product in the study of dependence, Lehmann [18] obtains
the inequality P+ (E) _ P + (I) for the bivariate normal distribution with a,1 =
a22 = 1, and a12 _ 0.

Inequalities for P(I) perhaps originate with special results of Dunnett and
Sobel [7] and of Dunn [5], in which it is shown that P(I) _ P(I) for special
forms of F (with aii = 1) or for special values ofp. The most general result for
the normal distribution obtained by Sidik [25], [26] is that P (EA) is a mono-
tone increasing function of A, 0 < A < 1, where

(1.5) =Ell ay22,)2),:p- 1X p - 1.

This he proved by using a conditional argument together with an inequality of
Anderson [1] on the integral of a unimodal symmetric distribution. Jogdeo [13]
provides a simpler proof of the same result by combining property (1.4) and the
same inequality of Anderson. Scott [23] provides an alternative proof for the
special case P(1) _ P(I) using a conditional argument. (His proof contains a
flaw which is discussed in Section 3.1.)
When the distribution is normal, Chover [3] uses a geometric argument to

prove both the one sided and two sided inequalities. His proof is of interest
since it treats both cases simultaneously, although the result is not completely
general because the covariance matrices must satisfy certain conditions.
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Our main result is an extension of gidak's result to general elliptically con-
toured densities (Section 2). We give a stronger version dealing with a convex
symmetric set, which permits several extensions (Section 3). In Section 3.1 we
show how previous results for the normal distribution are interrelated. Com-
plementary inequalities and reversals are given in Sections 3.2 and 3.3. As a
consequence of our main theorem, an inequality for the probability of a convex
symmetric set when one covariance dominates another is given in Section 3.4.
Counterexamples in Section 3.5 show that certain assumptions cannot be
weakened.
One motivation for seeking bounds for PI stems from the study of simul-

taneous confidence bounds. Inequalities for Studentized variates have been
obtained by Dunnett and Sobel [7], Halperin [11], Khatri [15], and Sidak [26],
[27]. Section 4 provides some extensions of these results.

Property (1.4) for p = 2 apparently is an old result. A proof for general p
was provided by Plackett [21]. The class of elliptically contoured distributions
has been studied in some detail by Kelker [14], who obtains a number of charac-
terizations. In Section 6 we discuss several characterizations, and incidentally
give a direct and simple proof that (1.4) also characterizes the multivariate
normal distribution. This property was independently obtained by another
method by Patil and Boswell [20].

2. Main theorem

In this section we prove our main two sided inequality for elliptically con-
toured distributions.
THEOREM 2.1. Let

(2.1)
y = E1 Yl2)

be a p x p positive definite matrix with I1 (p - 1) x (p - 1), and let x =
(x1, * , xp) be a random vector with density function |j;A112f(xI -Ix'), where

(2.2) -,4 pp
0. A < 1.

If C is a convex symmetric set in RP-1, then PA{(xj, * , xp-1) E C, Ixpl _ h} is
nondecreasing in A.
The proof depends heavily on an extension of Anderson's [1] inequality for

the integral of a symmetric unimodal function. Anderson proves that if C is a
convex set, symmetric about the origin, and iff(x) _ 0 is a real valued function
satisfying f(x) = f(-x), {x:f(x) > u} = K. is convex for every u, and
fc f(x) dx < oo, then for any y,

(2.3) u(k) f (x + ky) dx

is nonincreasing in k for 0 _ k . 1.
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This result is strengthened by Sherman [24] as follows. Let f(x) be a real
valued function on RP-1, and IIflI* = max { flfII 1 |fII}. Let IV be the closed
(with respect to || ||*) convex cone generated by indicator functions of convex
symmetric sets in RP- . Sherman proves that f E 6, g E implies f* g E I,
where (f* g)(x) -f(x - t)g(t) dt. Since h(kx) is nonincreasing in k, 0 <
k < oo, for h E if, Anderson's result follows.
REMARK 2.1. It is noted in Gnedenko and Kolmogorov ([10], p. 255), that

the convolution of two univariate unimodal distributions need not be unimodal.
However, the convolution of two univariate symmetric unimodal distributions
is unimodal (Wintner [31]). Sherman's result is a multivariate generalization of
Wintner's theorem.
PROOF OF THEOREM 2.1. Since C can be expressed as the decreasing inter-

section of convex symmetric polyhedrons, it suffices to consider the case where
C is such a polyhedron. Furthermore, the matrix YA has a representation in
which

(2.4) Y1 = MM, 21 = .pp2(0, ** ,0, Ap)M, p > 0.

This, in effect, is the usual transformation to canonical correlations. Because
the transformation (x1, **,xp_1)- (x1, *P M*,x1)M-, xp -. xp/o112 leaves
the hypotheses of the theorem unchanged, we can assume that

(2.5) A= (A A=(0, O, A).

Also, 1A = TATA, where

(2.6) TA A (1 12)1/2).

Let x = yT., so that y has density f(yy'). Partition y as

(2.7) y = Yp- ,Yp);
then

(2.8) PA{(x1, x* ,XP1) E C, Ixpl _ h}
= P{(Y, YP-1) E C, |AYP-1 + (1 - A2)1/2 y < h}
= E[P{(y, yp-,) C, IAyp-I + (1 _ A2)1/2 yp < hiIlyI}]_

Alternatively, we can write the conditional probability in terms of indicator
functions: for IIyll fixed, define

(2.9) (A) = f Xc(Y, Yp1) X[ih,h][AYp_1 + (1 - A2)1/2 yp] d (y),

where S is the surface of the sphere with radius r = IIY, and , is the uniform
surface measure on S.
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Let fin) be the approximate identity on R" given by

(2.10) pn)(X) = (27rs) n2 exp {2 1x1}

If (P = Xc * PP-1), then ?PEeW7, rp, is infinitely differentiable, bounded, has
bounded derivatives, and as E I 0, (p(x) Xc(x), unless x E DC. Similarly,
define

(2.11) e = X[-,,]*f-h X
and let

(2.12) py1)Js e - [Ayp_ + (1 _2)1-2y ] dy(y)

By the bounded convergence theorem, (2()- (2) as s -+ 0. (Note that
( C) = 0, since C is polyhedral.)
We now assert that (e(A) is nondecreasing in 2, and hence (A) is nondecreasing

in 2, thereby completing the proof. To prove this assertion make an orthogonal
transformation

(2.13) yY, (y-p yp) - (u, v) = (yv-p, yP) (1
- 2)1/2 (1

so that

(2.14) (e(A) = X p(Y Au + (1 - 22)1/2V)0e(u) dy(&, u, v).

With the notation Dkf(Z) Of(Z1, Zn,zn)/@zk, we obtain

dA -S Dp_ lpe(Y yp_)(u - v(u - 2y112)i(U) dy(&, u, v)

- Dp_ 1(P -Y 21)(yp(l _ A2)-1/2)

0JA(y_I + (1 _-2)1/2y ) dju (y)

Note that 0,e(Aypi + (1 _ A2)1/2yp) is an even function ofy and Dp_ Yp- 1)
is an odd function of y. We now invoke the divergence theorem as follows.
Suppose x = (xI, * * *, xp), B = {IIxjj _ r}, and g(x) is an odd function. Then
(under appropriate regularity conditions)

(2.16) xig(x) dp(x) - g( ) dx.
S B ~~~~axi
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Applying this to (2.15), we obtain

(2.17) d4.(A)
dA

= r DpP_1(pr + (1 _ 22)1/2Y? ] dyd d

- DP_,pjf£ lu + (1 -22)112V]O(u) dy du dv

X l {(u){1112+V2_l-2DP-I(Pe[Y,AU + (1 - A2)1/2v]d?dydv du

- __ i/4(u) s(u) du.

We now show that dc,(A)/dA > 0 by showing that for each fixed u, 0/(u)s(u) _ 0,
which completes the proof.

As a consequence of Wintner's result [31] 0,(u) is nonincreasing in |u|.
Hence,

(2.18) (u) - 0 if u _ 0, (u) _ 0 if u _ 0.

Next, let w = (1- A2)1/2v, so that
1 r

(2.19) 8(u) _ 2)1/2 IDPiq e(p,w + Au) dydw,

where Q = {(y, w): IIYII2 + W2/(l _ 22) < 1 -U2}. Note that Q is a convex
symmetric set. From the Anderson-Sherman result, Xn * PE e '; therefore,

(2.20) f q(pj, w + ku) dy dw

is nonincreasing in k, 0 < k, so that us(u) _ 0. But u and 0/4(u) also have
opposite signs, and hence, 0fr(u) and s(u) have the same sign. Q.E.D.
REMARK 2.2. This theorem is evidently an extension of the theorem by Sidak

mentioned earlier. We have found the theorem to be very rich in implications.
Just why that is cannot be said in a word, but numerous illustrations will occur
throughout the paper.
A more geometric, and less algebraic, expression of the theorem may be

helpful. Let C* be a cylinder, that is, the Cartesian product of a p - 1 dimen-
sional symmetric convex set C and a one dimensional linear subspace orthogonal
to it. Consider a vector v confined to a fixed circle with center at the origin and
passing through the axis of C*, and consider a slab S, of thickness 2h with its
plane of symmetry passing through the origin and orthogonal to v. As the angle
between v and the axis of C* increases from 0 to n/2, the probability of the inter-
section between C* and S, is nondecreasing. That is precisely equivalent to
Theorem 2.1. Rather evidently, none of its content would be lost ifthe spherically
symmetric measure were taken to be the uniform measure on the surface of the
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unit sphere. If the reader will try to visualize the geometric form of the theorem
for that distribution and for p = 3, he will see that it is plausible though not
obvious.

In the bivariate case there is a very elementary geometrical proof. Un-
fortunately, it is not clear how to extend it to higher dimensions; but because
the proof is so suggestive we give it for the simplest case PI{Ixij < h, Ix2 h} _
PEA{IxlI < h, IX21 _ h}, where

(2.21) (P I AP I1 ) 0. A 1.

Although the proof can be extended to the general bivariate case, where h1 #G h2,
the essential ideas are exhibited here.
Making the two transformations (x1, x2) = [YI, YIP + y2(1 -p2)1/2] and

(Xl,x2) = (YI,YiAP + Y2(1 -_22p2)112),wewishtoshowthatIf(yy2 + y')dy1dy2
taken over the set{Ily < h; lY1P + Y2(1 _ p2)1/21 < h} is larger than or equal
tothesameintegraltakenovertheset {I1_I h; IyIAp + Y2(1i 2p2)1/21 < h}.
We can assume without loss of generality that p _ 0, for if p < 0, we can
replace (xI, x2) by (x1, -x2). Draw a circle with center at the origin with radius
h, draw the tangent lines lyll = h, IYlP + Y2(1 _ p2)1/21 = h, ly1Ap +

Y2( - 22p2)1/21 = h, and draw a circle through the point a as in Figure 1.
p

b

Aa z y Xp + y /1-2p2 =h

a

/ / 5 \> /~~~~~YP + Y 2A h
1 2

r
FIGURE1
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Because the tangent lines are equidistant from the origin we have by circular
symmetry that P{A u B} = P{B u C u D}. Consequently, there is at least as
much probability content in the parallelogram (pqrs) as in the parallelogram
(abcd), which completes the proof. In higher dimensions this geometric argument
would require consideration of many different cases, and this aspect becomes
extremely complicated.

3. Related results and extensions

In this section we discuss the interrelations among results in this area (Section
3.1); a number of complementary and reversal inequalities are given in Section
3.2 and Section 3.3. The comparison of integrals from elliptically contoured
distributions with covariance matrices F. and 12 when 1 - 12 is positive semi-
definite is provided in Section 3.4. Some counterexamples are given in Section 3.5.

3.1. Some extensions and the normal case. First notice that Theorem 2.1
has the following immediate corollary (E is a fixed positive definite matrix).
COROLLARY 3.1. Ifx = (x1, * * , xp) is a random vector with density function
AII112f(xE1x'A), where A = (Al, AP*,I)), 1A = (7ij(A)), aii(&) = ii, aij() =

Ailjuj%, i 7& j, 1 < ij < p, then

(3.1) PA1,...,AP{jxiI - hl, * *, |xpl _ hp}
is nondecreasing in each Ai, 0 < A. < 1. In particular, P(M) _ P(D0), where
D, = diag (a I1, *.* *,aPP).
The inequality P(l) > P(D6) was proved by Dunn [5], [6] for the bivariate

and trivariate normal distributions, and for general p when Y has the special
structure I = D, + a'ax, with D, = diag(r1, * - *, zP) and a = (al, * * *, ap). In
the case of a normal distribution, Corollary 3.1 was proved by Sidak [26] and
by Jogdeo [13]. Both proofs make use of Anderson's theorem [1]-Sidik uses
a conditional argument and Jogdeo uses the differential identity (1.4) to obtain
a short proof. A close examination of Jogdeo's argument shows in fact that in
the case of the normal distribution, Anderson's theorem and Theorem 2.1 are
equivalent. More precisely, the following two assertions concerning a symmetric
set C c RP-i are equivalent.
ASSERTION 3.1. For each a = (a1, * , ap,1) and each p- 1 X p- 1

positive definite matrix TI,

(3.2) u(k) fj 'PI112 exp {--(Y-ka)'P(y -ka)'} dy1 ... dy,l1
is a nonincreasing function of k, 0 _ k.

ASSERTION 3.2. For each p x p positive definite matrix I and each 5 > 0,

(3.3) V(i) = Y [J |.A1/2 exp {- 2x Y1 1 x'} dxl ... dxp- ] dxp

is a nondecreasing function of A, 0 < A < 1, where S1 is defined in Theorem 2.1.
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The equivalence of these assertions is based on the identity (1.4):

(3.4) v'(A) = | | p(x, Y) dxl . *dxp1- Ic iEl ¢ip ^dxA * *dxprv-1

=-2 ip 02(X, " dxl ...dx_,

where x* = (x1, . x. 1,). By completing the square with T = Y,-
-12 y21/Tpp I b =pp exp {-32/pp}, a = 6321/PP,X = (x1, Xp 1

we obtain

(3.5) v'(A)
(P-i ap-1

-2bZpd -[ITPK1- 1/2 exp{-( a)T-l (i -k a)'] fH dxj
Jci=1 'lxj1

2bpp {ITI- /2{ex -ka)T'P(d,~- ka)'} Hl dx.~

U'(A)
= -2bc~pp ,

Thus, v'(i) > 0 if and only if u'(A) . 0.
In Theorem 2.1 the vector x is partitioned into two parts of dimensionp - 1

and 1, respectively. This suggests the conjecture: ifx = (x, x) is a random vector
(with x of dimensionp and xof dimension q) having density ZE -12f(X - 1
and if C1 cfRP and C2 c R7 are convex symmetric sets, then

(3.6) PI{: i Cl, Y C2} >_ PI{I Cl, Y E C2},
where

(3.7) Y= (2 22

Y. (0° 22)

For the multivariate normal distribution-in which case the right side of (3.6)
is simply PI,1 Ee C1}PX22{Ee C2}-Scott [23] used a conditioning argument
in an ostensible proof of a simple case of (3.6). This argument was adopted by
Das Gupta [4] and Khatri [16] in attempts to prove (3.6) in the general
(normal) case. (Khatri's conclusion is reported and applied by Jensen [12],
Corollary 1, p. 145.) Unfortunately, the conditioning argument contains a flaw.
Implicit use is made ofthe "fact" that the conditional distribution ofy - N(O, I),
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given that y lies in an arbitrary subspace containing certain coordinate axes, is
again multivariate normal. However, this is not the case; the condition that y
lies in an arbitrary subspace containing certain axes is a condition on angles,
and such conditional distributions are not normal. For example, if (x, y) -

N2(0, I) has modified "polar" coordinates (R, 0) where -oo < R < oo and
0 E [0, 7r), then the conditional distribution ofR given 0 is not normally distrib-
uted, but has a "double x2" distribution. Thus (3.6) remains unsolved even
for normally distributed variates.

Certain special cases of (3.6) can be obtained when I has a particular
structure. Let

(3.8) El( 1 2 Dz)
\D.,2'21 D, /'

where DA = diag(il,(Al , Aq), D, = diag(T,, * *, Tq), and let x = (x, x where
x~is p dimensional and xF is q dimensional. If x has a density function
:(i)|-1I2f(x(A)-(x') and C is a convex, symmetric set in RP, then as a con-

sequence of Theorem 2.1

(3.9) Pj(A){X E C, |1l _ hl, 1*.* * hq}
is nondecreasing in each _i, 0 <_ i < 1.
For the normal distribution Khatri [15] shows that (3.6) holds when 112 =

Cov (x, i) has rank 1. Actually, Khatri's proof can be extended to the case where
the mean of x is not zero (but is restricted).
THEOREM 3.1. Let x = (x~, x) have the multivariate normal distribution

(3.10) N+q[(I, I2), (ll 112)]

where rank (112) = 1. Suppose there exists a scalar ?1 such that ?12F11 - P11
and 12-22 - /'2/P2 are positive semidefinite and i12 12 = i1 2. Then (3.6) holds
for any two convex symmetric sets C1 c RP and C2 c Rq.

PROOF. Let a = Pll/, / = p2/n (if ?1 = 0 choose any a, ,B such that a', =
12) and choose the random variable z so that (i, x, z) has a (p + q + 1)

variate normal distribution with mean (jIt, /2, i) and covariance matrix

(11 a',
(3.11) = /3'a S222 1-

(The covariance matrix E is positive semidefinite by the hypotheses of the
theorem.) The conditional distribution of (i, x) given z is

(3.12) N,Np+q[(za, z/3), ( 0 /3_22 )1
so that

(3.13) P{x E Ci, x E C2 z}= P{xECu Iz}P{xE C2 I Z}.
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It follows from Anderson's theorem that both factors on the right of (3.13) are
decreasing functions of IzI. Hence, they are similarly ordered, so integration of
(3.13) with respect to z yields (3.6). Q.E.D.

In the bivariate case (p = q = 1) the hypotheses of Theorem 3.1 can be stated
in simpler form, as follows. Let x = (i, x) have the bivariate normal distribution

(3.14) N2[(M11 /'2)' (
I p #

where 0 < p ._ M1/l2 _ l/p or I/p < M1//12 _ p < 0. Then for h, > 0, h2 > 0,

(3.15) P{|x| _ h1, |x| . h2} _ P{jxi < h1}P{Ilj _ h2}-
REMARK 3.1. Theorem 3.1 appears to be the first such inequality for the case

of nonzero means.
The right side of (3.6) suggests a comparison in the general elliptically con-

toured case between

(3.16) P{x E C1, x E C2} and P1{xi E Cl}PE22{eE C2}.

Of course, when the distribution is normal these two expressions are equal.
However, we see that in general no inequality exists even in the simple bivariate
case. To see this, consider the difference

(3.17) PI{I E Cl, X E C2} - PI{ E C1}P1{ie C2}.

When p = q = 1, consider the following figures. In Figure 2, put unit mass

aa

C Ci)' X

IbZZL b,/-, ~
a a

FIGURE 2 FIGURE 3

uniformly on the circle and let the arc lengths a, b, c represent the mass so that
2a + 4b + 2c 1. Then

(3.18) P{lxll _ c1} = 2(a + 2b), P{1X21 _ C2} = 2(c + 2b),

P{IXII _ C1, X21 ._ C2} = 4b,
from which we find that the difference (3.17) is negative. In Figure 3 put mass 2
at the origin and mass 2 uniformly on the circle. Then

(3.19) P{IxIl < c } -' + 2a, P{X21 ._ C2} = 2 + 2b,
P{IX,I _ Cl, IX21 _ C2} = 2-
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For a and b sufficiently small, the difference (3.17) is positive. Although
densities do not exist in these two examples, they may be approximated by distri-
butions having densities.
The inequalities discussed thus far involve a Cartesian product of symmetric

convex sets. We now drop the assumption of Cartesian product, and consider
possible inequalities between PR {X E C} and PI {x E C}, where R is a correlation
matrix and C is a symmetric convex set in RP. Even in a simple case where
C = {x: xi < h2} and x - N(0, I) there is no such inequality. Indeed
ER(xi2) = EI(YxL) = p, so that we cannot have the same ordering between
PR{jXi < h2} and P1{Xx2 < h2} for all h, unless R = I. When p = 2 and
p = 1, the comparison is one between a random variable having a X2 distri-
bution and a random variable having a 2X 2 distribution.

If R1 and R2 are correlation matrices, the difference R1 - R2 is never positive
semidefinite. However, if Z1 and 2 are covariance matrices, then 1 - 2
may be positive definite. When this happens, we do obtain certain inequalities.
(See. Section 3.4.)

3.2. Complementary inequalities. When x has an elliptically contoured dis-
tribution the monotonicity property of

(3.20) PI:, (xI, , xp_ 1) E C, I|xp|I_ cp},
as given in Theorem 2.1 can be used to obtain a monotonicity property for

(3-21) PT{x1 , p 1) 0 C, |xpI _ cp}.

To see this note that

(3.22) P{AB} - P{A}P{B} = P{ACBC} - P{AC}P{BC},

where AC is the complement of A. Furthermore, if x = (x, x) has a density
Iz-1/2f(xE-1x'), then i has a density x11I112g(xEiil'), (see Section 6).
Consequently, if

(3.23) E (i= 21 2')

and

(3.24) A = x: (x1, *,Xp1) E C},B = {P,

then P{A} and P{B} are independent of A, from which we obtain that P{AB}
and P{ACBC} have the same monotonicity properties.

Turning to the normal case, (3.22) implies that ifx = (x1, x2) has a bivariate
normal distribution N(0, 1), then

(3.25) Pz{1Xll _ cl, Ix21 _ c2} _ Pal,{Ixl >_ c1}Pu22{1x21 > C2}.
The extension to more than two dimensions is in general false (notwithstanding
the similar appearance of Corollary 3. 1), as noted by SidAk [27]. However, when
x N(0, 1) with E = Dr +a'a , Dr= diag(TI, * Tp), a= (a,, ap),



ELLIPTICALLY CONTOURED DISTRIBUTIONS 253

Khatri [15] shows that

(3.26) PE{IxlI _ cl, * Ix'I > cp} > H Pa{IxI > cf}.
1

Also by (3.22), if I12 is of rank 1, then for CQ, C2 convex and symmetric,

(3.27) PI{x Cl,&x C2} > PT,1{x 0 Cl}P:22{,p C2}.

3.3. Reversal inequalities. By a reversal inequality we mean a bound in the
opposite direction. In the general elliptically contoured case, reversal inequalities
cannot be obtained. However, if the density has an additional monotonicity
property, a reversal inequality can be found for the inequality P(I) _ P(D6)
(as in Corollary 3.1).
THEOREM 3.2. Let x be a p dimensional random vector with density function

IRI- 112f(xR- x'), where R is a correlation matrix. If f is monotone decreasing
on [0, o), then

(3.28) PR{|x1| _ C1, , |XP| - cp} _ PI |xl| _ c, , |xp| _ }

where y2 = det R(k)/det R(k _ 1), and R(4) = (rij), 1 _ i, j< k.
PROOF. Let R = TT', where T is a lower triangular matrix and y = xT'- .

Then y has a density f(yy') and

(3.29) PR{PXIL < c. i = 1, ,P} = E tjjyj < Ci. i = 1X P

which we may write as

(3.30) | | dy| f(y2 + _.. + yp)
where Q(y) = = (yl, y,Yp-): |I§-1 t.jyjl < ci, i = 1 ,p - 1} is in-
dependent of yp, and where H = {Itp1, YI + * * * + tppyp I < cp}. Iff is mono-
tone nonincreasing, then as a consequence of Wintner's theorem [31]

(3.31) Xf(y2 + *.. + y2) dy, . Jp f(y2 + * + y2) dyp.

By a repetitive argument,

(3.32) PI{ E tjjyj < ci, i = 1, ,p} < PI{tiiyi _ ci, i = 1,** ,p}.

The argument is completed by noting that det R(k) = HI ti, so that tkkk
det R(k)/det R(k 1). Q.E.D.

3.4. Comparisons when one covariance matrix dominates another. The fol-
lowing result was first proved by Anderson ([1], Corollary 3) in the multivariate
normal case.
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THEOREM 3.3. Let the random vector y have a density Frl-2g(yrF-y). If C
is a convex, symmetric set and r2 - rF is positive semidefinite, then

(3.33) Pr=rl {Y E C} _ Pr=r2{yE C}.
For a general elliptically contoured distribution, Theorem 3.3 follows from

Theorem 2.1 and
THEOREM 3.4. Consider the two statements concerning a Lebesgue set

C c= RP-
(a) For the p dimensional random vector x = (i, xp) with density

'I - 112f(XI- lx'),

(3.34) PT{i E C, xp| . h} _ Pl{ax E C, lxpl _ h},
where

(3.35) I = (212)f )' (°1 0-)£11:p-1 x p-1.

(b) For the (p - 1) dimensional random vector y with density |rF|-I12g(yr-1y'),
(3.33) holds.

If the set C is such that (a) holds for allf, all positive definite matrices X, and
all sufficiently small h, then C is such that (b) holds for all g, F, and r2 with
]F2 - r[ positive semidefinite.
PROOF. Let g, rF and r2 be given with lo' rp2g(r2) dr < oo. There exists

a smooth function y with compact support such that

(3.36) j' rp-2 lg(r2) - y(r2) dr

can be made arbitrarily small, so that

(3.37) f Irl-F12lg(yr-'y') - y(yr-'y')I dy

can be made arbitrarily small simultaneously for all r. Thus, it suffices to
assume that g is smooth with compact support. Since r2 - r1 is positive semi-
definite, it may be written as the sum of positive semidefinite matrices of rank 1.
Consequently, we may assume that r2 = rF + a'a, where a = (al, ,ap
and proceed inductively. Let

(3.38) - (F2 o)

and choose c > 0 such that c IE112g(x - x') is a density in RP. That is, let
x = (i, xp) have density cIE - 112g(xE-1x'). By (a), with f = cg,

(3.39) P e{iE C, IxpI . h} _ Pl{x E C, Ix,i . h}.

Note that the marginal distribution of xp is the same under F and X, (see Section
6) and that P{Ixpl < h} > 0. Dividing both sides of (3.39) by P{|xpl _ h} and
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letting h -+ 0, we obtain

(3.40) Pz{iE dC xp = O} > Pj{xe Cj xp = 0}.
But the conditional density of i given xp = 0 under I(!) is IF1L 112g(i1l-1x')
[F2|-12g(x- 1x')] . Hence

(3.41) J2rI1/2g(.I`1i') di Xf I2/2g(iFI-' d,
which.proves (3.33). Q.E.D.
An alternative proof of Theorem 3.4 in a more general context is given by

Fefferman, Jodeit and Perlman [9].
If the set C in Theorem 3.3 is an ellipsoid centered at the origin, the result

can be proved by a direct inclusion argument. There exists a nonsingular matrix
W and a diagonal matrix D = diag(d1, * * *, dp -1), with 0 < di < 1, i =
1, *, p - 1, such that rF2 = WD -1 W',F1 = WW'. Ifwe letthe random vector
z have density g(zz'), then (3.33) becomes

(3.42) PI {z EK} > P,{z E DK},
where K = W- 1C is again an ellipsoid centered at the origin. Since the distri-
bution of z is invariant under orthogonal transformations L, in order to prove
(3.39) it suffices to produce an L such that

(3.43) LDK _ K.

NowK = {x: xQx' < a} andDK = {x: xD 1'QD x' . a}, for some positive
definite Q and a > 0. The inclusion (3.43) holds if for some orthogonal L,

(3.44) x(LD-1QD-1L' - Q)x' > 0.

Let j(A) denote the jth largest characteristic root of the matrix A. From

(3.45) lj(Q) = Aj(DD-1QD-'D) _ A(D2)Aj(D-1QD-1) < Aj(D-1QD-),
it follows that there exists an orthogonal matrix L such that LD- 1QD - L'-Q
is positive semidefinite, which proves (3.43).
REMARK 3.2. This inclusion argument fails in three or more dimensions if C

is an arbitrary convex symmetric set.
As an immediate consequence of Theorem 3.3 for the case of an ellipsoid C,

note that if y has density j] --112g(yr-1y'), if S is a random positive definite
matrix independent of y, and if I`2 - I1 is positive semidefinite, then for any
k > 0

(3.46) Pr=rJ{YS'Y' . k} > Pr=r2{YS-Yy' . k}.
This result is of particular interest when y has a multivariate normal distribution
and S has a Wishart distribution, since the statistic yS- y' is proportional to
the T2 statistic.

3.5. Some counterexamples. The following counterexamples show that the
results already given do not remain valid if (, is taken to be the union of two
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convex symmetric sets (such a C is not convex but is star shaped with respect to
the origin). This holds even in the normal case.

In two dimensions, choose 0 < a and define C1 = {Yi: lyll < a}, C2 =
{Y2: IY21 _ a}, C = Cl u C2. Let y = (Yi, Y2) - N(O, 1(d)) with

(3.47) 17(d) = I1 I

Then for d > 0

(3.48) Pr(o) {Y E C} < Pr(d){Y E C}
so that the conclusion of Theorem 3.3 is no longer valid.
By Theorem 3.4 it then follows that when (X1, X2, X3) has a trivariate normal

distribution with mean zero, it can happen that

(3.49) P{(Xl, X2) E C, X31 _ h} < P{(xI, X2) e C}P{1X31 < h},
so that the conclusion of Theorem 2.1 is no longer valid. Finally, from the
equivalence of Assertions 3.1 and 3.2 in Section 3.1, it follows that the conclusion
of Anderson's theorem is not necessarily valid even for a normal distribution
if C is the union of two convex symmetric sets.

4. Statistical applications

The study of simultaneous confidence regions has prompted the development
of inequalities for sample variances and for Studentized variates. We now
present a number of inequalities which are obtained from our previous results.

Several results are consequences of the following theorem. Let X(k) = Tj
1 _ k . n, be positive definite, i(k) = (,3hk), * * 4X')), 0 < ,j ) < 1, and A =
(A(l) Define

(4.1) A(k) - ( ((k))),

where a¶(i(1(k)) = cy(k) cY(A)(k(k)) = A(ik)A k)af(i) i # j, (see Corollary 3.1).
THEOREM 4.1. If the columns of the p x n matrix X = (xl .... , xn) are

independently distributed, where the kth column has the density function

(4.2) 1S(k) j-112fk(X(j(Ak))) 1X )
and t > 0, then

(4.3) P x{ X It < a i =1
is nondecreasing in each 24), 0 < ,l1') _ 1.

PROOF. By conditioning on x2, * , x,,, we can express (4.3) as

/4.4) E;() 2(. rP) IIX! It < a - E ix;ltit i = 1. pP |X2.* , Xnl
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By Corollary 3. 1, this is nondecreasing in each A"1 ) , A")4. The argument may
be repeated for the remaining A(k). Q.E.D.

Of particular interest is the case t = 2, for then (4.3) becomes

(4.5) Pk{sii < ai, i = 1, * *
-

,p},

where (sij) = S = XX'. If in addition, fk(z) = (2X) Pp2e-zI2, (k) = , and
i(k) = (l, .* .. , A,P) for each k, then S has the Wishart distribution Wp(n, 1)
with E(S/n) = E. As a consequence of Theorem 4.1, we obtain
COROLLARY 4.1. IfS - Wp(n, Z), then

p

(4.6) P.{s11 _ a1, spp < ap,} _ [Pai {sii _ ai}.

Also, by a conditional argument similar to the proof of Theorem 4.1, but
utilizing the inequality (3.26) rather than Corollary 3.1, we obtain
COROLLARY 4.2. IfS Wp(n, Z) and I = Dr+ a'o, then

p

(4.7) Pj{ssI I_ a,, ,spp _ ap} _F|P¢,,i{sii > ail.
1

Again by a similar conditional argument, but now utilizing Theorem 3.3, we
have
COROLLARY 4.3. If S Wp(n, Z) and 12 - El is positive semidefinite, then

(4.8) PE,{s11 _ a1, * * *,spp < ap,} _ P:,{SII < a,, *.*,spp _ ap}.

Perhaps the most important result in terms of applications is the following.
THEOREM 4.2. Let the p dimensional random vector y have a density function

r,1- 112f(yr- ly); let the columns ofX be independently and identically distributed
with density Np(O, 1), and let S = XX'. If I = DT + a'a = (aij) and F = (yij)
then

(4.9) Pr{y2 < kisii, i = 1, ,p} > PDV DG{Y3 < kisii, i = 1 ,p},
where D. = diag (yI l, ypp), Da = diag (aI1 1, * * *,pp),

PROOF. For fixed S, we have from Corollary 3.1 that

(4.10) Pr I .(y2< kisii, i = 1,* ,p S} _ PD, {yiy < kisii, i = 1, * * *, p IS},

and hence (4.10) holds unconditionally. Now condition on y, and by Corollary
4.2,

)PD{Sii > PP1 Y} P-Dy,Da{8ii > k i = 1, Pl|Y}

so that (4.11) holds unconditionally. Q.E.D.
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This result was proved for the bivariate normal case when p = 2 by Halperin
[11], and for general p by gidak [27] when y is normal. As in Theorem 4.1,
Theorem 4.2 can be extended to the case where the columns ofX are not identi-
cally distributed.

Lastly, suppose the columns ofthep x n matrix X = (x1,... ., x") are indepen-
dently and identically distributed, each with density function IZ-12f(x)7 1X/)
(see Corollary 3.1 for notation). Let

(4.12) X = (.), X = (, * , ), = (x ,.. x

THEOREM 4.3. Consider the regions {X E C1} and {x E C2}. If C1 and C2
are sets in R(P 1)n and Rn, respectively, which are convex and symmetric in each
column of X and x, respectively, when the remaining columns are held fixed, then

(4.13) P ,...,AP{X E C1, X E C2}

is monotone nondecreasing in each _i, 0 <°i < 1.
PROOF. The proof is similar to that of Theorem 4.1. By conditioning on

x2, * , x", we can express (4.13) as

(4.14) E[PAI, ,AP{(Xi, , X") E C1, (x 1, Xpn,XP) E C2IX2, * * *,X

For fixed x2, * , x", X E C1 becomes i1 E C; Cl(d2, * , x, where C; is
a set in RP- 1 which, by hypothesis, is convex and symmetric; similarly, x E C2
becomes Ixpj _ h(xp2, * * *, xpn). By Theorem 2.1, the conditional prob-
ability is monotone nondecreasing in Al, and hence, maintains this property
unconditionally. The result follows by repeating the argument with respect to
other subscripts. QE.D.
REMARK 4.1. The proof is valid for a more general formulation of the

theorem in which the columns of X are not identically distributed.
Also note that by specializing C1 to In= 1 xi. _ ai, i = 1 * * *, p, we obtain

Theorem 4.1 for t _ 1.
As a consequence of Theorem 4.3, we have
COROLLARY 4.4. If S - Wp(nl) and A1(S11) _ ... > Ap.(S,) are the

ordered characteristic roots of Sll, where SI, = (sij), 1 _ i,j _ p - 1, then

(4.15) PI: Y_i(SI 1 ) < kl, spp _ k2}

-Pzll {Z1i(Sil) _ ki}PapP{spp _ k2}.

form= 1,2,***,p- .
PROOF. The proof depends on the following characterization of the roots

(von Neumann [30]): if V: n x n is positive semidefinite, then
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m

(4.16) rnax tr UVU'=E (V), m n,
V~~~~~~~

where q is the set of m x n, row orthogonal matrices m _ n.
To complete the proof, we need only show that the set

(4.17) C1 = {X: max tr UXX'U . k1}

is a convex symmetric set in each column of 1X. To see this, note that

(4.18) max tr UXX'U' = max[r U?ii1 U' + E tr U_j

which for fixed x2 * *, x, is a convex, symmetric function of x1. Hence, C1 is
a convex, symmetric set in il, and, by permutation of subscripts, in each Xj.
Similarly, C2 = {<:, _ k2} is convex and symmetric in each xp1, when
the remaining components are held fixed. Q.E.D.

5. The one sided inequality for P+ (1)

In this section, we present a proof based on a reflection-inclusion argument
to provide a generalization of Slepian's theorem to elliptically contoured distri-
butions. Chartres' proof [2], although stated for the normal distribution, can
be modified to treat the general case. In fact, a slightly stronger inequality is
obtained this way. Recall that if x = (x1, * * *, xp) has density jZj-Ll2f(xj-lx')
and if the {il are given real numbers, we define

(5.1) P+(E) = Pj{x1 < {e, * * *, xp _ ep}.
THEOREM 5.1. For any two positive definite (symmetric) p x p matrices

r = (yij) andE = (aij) such that yii = aii, 1 i < p, and yij > aij, 1 _ i < j < p,

(5.2) P+(r) _ P+p.)
Strict inequality holds in (5.2) if yij > aij for at least one pair i < j and the
support off is unbounded, that is, Pi{llxIl _ k} < 1 for all k > 0.
The proof is based on a fundamental geometric lemma:
LEMMA 5.1. Let z = (z1, - * *, zp) have density f (zz'), and let a1, * , ar, b be

a set of (1 x p) vectors such that a1a'l = bb' and a1aj' < baj' for 2 _ j _ r. If
E={zlza'2 - ,e2,za** e},

(5.3) F = {zlza' < e1}
G = {zjzb' . t,}

then P[z E E r) F] . P[z E E n 0]. Strict inequality holds if alaj < ba[j for at
least one j > 2 and the support off is unbounded.

PROOF. (The reader is urged to consider the case p = r = 2 in order to
picture the underlying geometry.) Clearly, we may assume a1 ¢ b. Writing P[H]
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for P[z e H], we have

(5.4) P[E nG]-P[En F] = P[E n c n 0]-P[Enr FnGc].

Since the distribution of z is orthogonally invariant, it suffices to produce an
orthogonal transformation T: RP -+ RP such that

(5.5) T(E n Fn GC) c (E n Fc nG).

Let T be a reflection through the (p - 1) dimensional subspace {z (a -b)z' =O,
that is,

(5.6) T: z-zT=z-2 U = z -2
(uu ) uu'

where u = a1 -b. Note that if a and ,B lie on the same side of {z uz' =0,
that is, (ua') (ufi') _ 0, then

(5.7) (2T)f' = ' - 2 ( <4) '.

Also note that T is self-adjoint, that is, for any a and fi

(5.8) (oT)cf' = a(flT)'.
Furthermore,

(5.9) a1T -b =(a, -b) I 2(al -b)a'1 1 _
L (a,-b)(aI-b)'

where we use the fact that a1a' = bb'. Since T2 = I, we have bT = a,.
To deduce (5.5) suppose z c E nFr Gc, so that zaj < tj, j _ 2, za'1 e4,

zb' > 41. Therefore, uz' < 0, and by hypothesis uaj < 0, j _ 2, so by (5.7)

(5.10) (zT)aj' < zaj <.j;
hence, zT E E. Also zT e FC, since by (5.8) and (5.9)

(5.11) (zT)a' = z(a,T)' = zb' > 4l.
Similarly, zT e G, so zT e (E n FP. rn G), proving (5.5). The statement concerning
strict inequality follows from the fact that

(5.12) (ErFCnG) - T(EnFn Gc)

is a nonempty unbounded polyhedral wedge (consider the case p = r = 2).
QB.D.
PROOF OF THEOREM 5.1. First we show that the problem can be reduced to

the case where a12 < Y12 and cij = yij if (i,j) 76 (1, 2). The set M of p x p
positive definite (symmetric) matrices A = (bij) having fixed diagonal elements
bij = aii, 1 < i _ p, is an open convex subset of RP(P- 1)/2 (with coordinates
{bij: 1 _ i < j _ p}). Since I e M and F e M, the closed line segment (in
Rp(p- 1)/2) between I and F lies totally inside M, and hence, is bounded away
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from the boundary of M. Therefore, since aij < y,, for 1 < i < j _ p, there
exists a polygonal path HI with vertices

(5.13) A(-)= A"), A.,(n- &(n) = r

such that H c M and for each k = 1, n,Mn,c5i ) < (ik) with strict inequality
holding for exactly one pair i < j (depending on k). Proceeding stepwise, it
thus suffices to treat the case where I and F differ in exactly one position, say
a12 < Y12, (and its symmetric counterpart a21 < Y21).
Now write E = AA' and F = BB', where A and B are nonsingular p x p

matrices, and partition

al b2
(5.14) A a; (X2)' B= B2}

with A2 and B2: (p -1) x p. By the assumption of the preceding paragraph
A2A' = B2B, so there exists a p x p orthogonal matrix L such that B2 =
A2L; hence, bj = ajL forj > 2. Furthermore, by assumption, ala'2 < blb'2 and
a,aj = blbM forj # 2. These facts are now used to obtain (5.2).

Let z be a random vector with density f(zz'), so that

(1) = P{za' _ 4j, * * -, zap _
(5.15) P+(F) = P{zb'1 _.1 *zb4 _ .p.
However, the distribution of z is the same as that of zL, so

P+(F) = P{zLb' _ 4l, zLb'2 -2, * -* , zLb' _.p}
(5.16) = P{zLb' < I, za'2 _.2, , zap. ep}.
The proof is completed by applying Lemma 5.1 with b = b IL' and r = p. Q.E.D
REMARK 5.1. Under the assumptions of Theorem 5.1, x and -x have the

same distribution, so also

(5.17) Pzj{xl 1e, * XXp._p} -Pr{Xl 1.e, * * * , xp _1p}.

When aij = yij for (i, j) :6 (1, 2) and a12 < Y12, a modification of Chartres'
argument [2] extends Theorem 5.1 as follows:

(5.18) P1(XI _.I, X2 . '2, (X3, *,Xp)E) F)

_ .(XI< {l, X2 _ e2, (X3, ,Xp) E F),
where F is any measurable set in RP - 2. To see this, write x) = (x1, x2), x(2) =
(X3, * * *, xp), {(1) = (4l, 62) and

(5.19) E (Y l 2)1 112 -211 -1
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where E1 is 2 x 2. Setting = ((2 ) = (1) - 1

(t5.20) Jz{x(l) < JFT{x(2)EF}

=0~~~fYfxlx')dx
{X(l)< ,O)

= J [I f±(w(1)1- W(l) + X(2)z-21X(2)') dw(1)] dx(2).
F2

{w(

X
_ {((2)

Now, fix x and note that F12 = X12. F22 = X22. Setting k x
=

22
to establish (5.18) it suffices to show that for each

{,

(5.21 ) I) _6 f(1W(1)l2W(l) + k)dw(l)
{w(t)~~~(1_f} 1)

'S f('l'r(w (1)' k)dw

f{w(l)<f

The proof of (.5.21) is accomplished by setting 11*2 = AA': 2 x 2, Fl1.2=
BB': 2 x 2 and arguing as in the proof of Theorem 5.1 for the case of p = 2.
This argument shows that to prove Theorem 5.1, it suffices to establish the
result for the case p = 2.

6. Some characterizations for elliptically contoured distributions

The family of elliptically contoured distributions has been considered in great
detail by Kelker [14]. If x has a density 99(x) given by

(6.1) 27(x) j-j-l12f(Xy-lx')
and we partition x = (x, x) and

(6.2) E(ll YX12)
(6.2) (~~~~E21 E22)

conformably. then

(6.3) (x) = 1 'I - 112g( 'x')'

where

(6.4) g(u) = J1122-2(u + 2x2-1.1') dx = Jf(u + xi') dY,

and -22-1 = -22 -21-1E12. This follows by noting that

(6.5) X -x ='X j xUi + (x - d 11 1 2)'22.1(& -x 11 I 2)'.

The characterization proved by Kelker is that if, for any marginal distribution,
f and g are equal up to a constant, then x has a normal distribution. A similar
characterization holds for conditional distributions.
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It is easily verified that ifx has finite second moments thenEx = 0, Ex'x = cX.
Also, if y = xA, where A: p x k is of rank k, then

(6.6) y (y) = IA'A -112g(Y(A'YA )-1y).
We now obtain another characterization, namely, that the only elliptically

contoured family, with finite second moments, which is closed under con-
volution is the normal distribution. More precisely:
THEOREM 6.1. Let x = (xi, *.. xp) and y = (yl, yp) be independently

distributed, and z = x + y. If the components of x and y have finite second
moments, S(x) = IAiK"1/2f(xA 1x'), S(y) = IA2-12f(yA -y'), and Y(z)
IA3 -1/2f(zA 1z'), thenf(u) = exp {-±mu}, where m is apositive constant.
PROOF. Note that zO' = xO' + yO' for all 0. From (6.6),

~'(x0') = 0 lg( )12 ), f(yo') = lg((02)
(6.7) (Z)= 2

where a2 = OA, l', /32 = 0A20', v2 = OA30'. However, from the equality of
second moments, y2 = OC2 + 32. Letting (p(t) = E(exp itx), it follows that
(p(yt) = (p(at)(p(f3t). But this is a characterizing property of the normal distri-
bution due to P6lya [22]. Hence xO' is normal for all 0, so that x is normal.
Q.E.D.
REMARK 6.1. The result of P6lya [22] was also obtained by Vineze [29] and

generalized to an infinite product by Laha, Lukacs, and Renyi [17]. Its most
general version is given by Eaton [8] for the multivariate case, which also pro-
vides a proof of Theorem 6.1 as follows. Let

(6.8) x = x1/2F, Y = yA -"2 F2, F = ZA- 1/2

where A 1/2 is any square root of A, and F1, F2 are orthogonal matrices chosen
so that 1jAjl'2A- 1/2 = Sj, j = 1, 2, are positive definite (symmetric). Conse-
quently, Y(f) = Y(xS1 + 0S2), with S2 + S2 = I, from which the conclusion
follows from Eaton ([8], Theorem 2).

It was noted previously in (1.4) that if x is normally distributed with density
4(Ex = 0, Ex'x = X), then 02 /dxidxj = (1 -26j)0910ui j. This result for
p = 2 appears to be an old one; for general p Plackett [21] gives a proof using
characteristic functions. The following provides both an alternative proof and
a characterization of the normal distribution, namely, that the normal distri-
bution is the only elliptically contoured distribution for which the differential
equality holds.
THEOREM 6.2. Let TPl(x) IZK-12f(xy-x'), then

(6.9) e = (1 -

for all i, j = 1, *,p, if and only if f(u) = c exp {-4u}.



264 DAS GUPTA, EATON, OLKIN, PERLMAN, SAVAGE, AND SOBEL

PROOF. Notethat(dE-) =

a aj(6.10) a-(xE-x') = 0 (tr X-'x'x), |E- 0l =

where X-' = (u&j). A direct calculation then yields

,dS)p = _ I-1/2 (E - X,XZ- 1)f, _ E -1/2YE- 1f,

(6.11) 2( ) = 2 -1/"2Xf' + 4 XK112(-'x'xE-1)f",
(axiaxj)

where f' = df(u)/duIu=x.- '.'. Consequently, property (6.9) becomes, after
simplification,

(6.12) -'(f + 2f') + 2(E-Yx'x '-)(f' + 2f") = 0.

Iff(u) = c exp {-u}, then it is immediate thatf' + 2f = 0 andf' + 2f" = 0,
so that (6.12) holds.

If (6.12) holds, then becausef, f', f" are functions of x -1x', we can choose
two vectors x for which xE- 'x' is constant. Since the first term in (6.12) remains
fixed, the second term must be zero, from which it follows that f + 2f' = 0.
Hence f(u) = c exp {- -u}, where the constant c is determined so that f is a
density. Q.E.D.
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