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1. Introduction

The purpose of this paper is to discuss some stochastic aspects of successive
processes of controls in connection with optimizing procedures. Various opti-
mizing procedures have been treated by several authors in connection with
several different areas belonging to production processes. Thus the response
surface analysis aiming to attain an optimal combination of levels of controlled
factors was developed by Box, Hunter, and their colleagues [1], [2], and they
advocate a certain method for proceeding from some starting point to the
optimal point or its neighborhood. The evolutionary operations program intro-
duced by Box [3], [4] has the feature of moving from a routine point of produc-
tion conditions to a better point in the light of data to be accumulated during
the production. The mathematical aspects of response surface analysis and
evolutionary operations programs can be formulated more definitely than these
authors [1], [2], [3] have done, and indeed we discussed certain mathematical
formulations in our two previous papers [21], [22]. It is our viewpoint that,
although not all our procedures in these areas can be given in mathematical
formulation, there are certainly many situations for which, at least approxi-
mately, we can give a rigorous mathematical formulation of our procedure
which will lead us to an objective criterion to judge how far our procedures are
adequate and efficient.
On the other hand, the recent developments in automatic controls in the pro-

duction process of plants of various industries are now raising various problems
about optimizing procedures which can be defined objectively at least in their
main aspects and hence can sometimes be described in mathematical formula-
tions, so far as controlling procedures can be carried out by automatically con-
trolled apparatus. Thus certain rules have been advocated in these areas for
changing from a combination of the levels of factors to be controlled to a new
combination of them, always aiming to become nearer to an optimal point and
to attain it or reach a certain neighborhood of it as fast as possible, that is, with
the smallest number of steps needed before realizing its aim. In this connection
references can be given to numerous recent works such as Brown [6], Brandon
[5], Cosgriff and Emerling [8], Gorn [10], I-looke and van Nice [12], and
Lefkowitz and Eckman [25].
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Our viewpoint in this paper is to describe such optimizing procedures as
successive processes of controls with two emphases. The first emphasis is based
upon our recognition of the fact that in current situations our choice of control
depends upon information obtained through our observations which, in most
real situations of production processes, are under the strong influence of dis-
turbing conditions and circumstances which cannot be fully controlled. Our
first emphasis is consequently placed on how to describe the nondeterministic
aspects of our processes. This paper is concerned with the situations where
stochastic approaches can be expected to have some value in overcoming the
nondeterministic aspects of production processes under certain conditions of
mass production.
Our second emphasis is to pick out Markov properties from various procedures

of our controls. It is obvious that even some of the simplest optimizing proce-
dures cannot be formulated as Markov chains. Nevertheless there are certainly
other procedures which are of the Markov type, and it is worthwhile to start
with those of the Markov type at least as one possible attack on automatic
optimizing procedures.

It shall also be pointed out here that this paper has two particular references.
The first reference is to extend the uses of Markov processes to statistical con-
trols to be met in practice, which we started in our previous paper [20]. The
second reference is to give a mathematical formulation to the optimizing con-
trolling procedures by logical circuits discussed by Hirai, Asai, and Kitajima
[11], who invented electrical apparatus realizing their ideas.
In connection with the first reference it should be added that the uses of

Markov processes are advocated by several psychologists [7] in component and
pattern models of the mathematical theory of learning. From the cybernetical
point of view it is not surprising that our problems derived from engineering
circles and others derived from psychological ones may have common aims and
common techniques for solving their respective problems, possibly with different
emphases placed upon different forms of transition matrices.

In concluding the Introduction the author would point out that this paper is
a continuation of his works since 1952 on successive processes of statistical con-
trols. The logical aspects of these works are mentioned in [23]. Although no
particular references are made to our previous papers [117] and [19] and to those
by our colleagues, Kano [13], [14] and Seguchi [27], these previous papers as
well as the present one belong to the same frame of thought emphasizing suc-
cessive processes of statistical controls in its general sense. Connections with
stochastic approximation [26], [9] are also pointed out in our previous paper [19].

2. Controlling procedure of the Markov type
Let a set of all the possible controlled states of our production process be

{P1, P2, - - , Pn}. Let us assume that to each state Pi there corresponds a

certain decision rule Di by which to determine the transition to a new point Pi
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with 1 _ j _ n for the next instance. Our decision rule Di is defined in principle
in the following way.

(i) There corresponds to the point Pi, a set of mi states si = {Pi,, Pi2y, ,
Pi.j , where 1 < ii < i2 < ... < ini _ n.

(ii) Let us form a statistic xii with j = 1, 2, * , mi at each state Pi, belong-
ing to si in virtue of one or more observations on our production process when
the state of its controlled factors is assigned to be in the state Pi,, and let us
define xi = (xi,, xi2, * - . xi,,,) as an mi-dimensional vector.

(iii) A decision function d[x; Pi] = [d1(x; Pi), d2(x; Pi), * , dn(x; Pi)]
attached to the state Pi as a function of statistic x is defined for which there is
one and only one j = ji(x) such that dj(x; Pi) = 1 and d1(x; pi) = 0 if I 0 j in
the sense that the transition from the state Pi to the state Pi is implied in view
of the statistic x.
Our decision function is a statistical one, because its value depends upon

statistics having their respective statistical distribution. Our successive process
of statistical controls is now defined as a stochastic process starting from any
assigned state to move to another state, which may be or may not be the same
state, for the next instance, according to each decision function attached to
each of the possible states.
Our successive process of statistical controls is said to be of the Markov type,

if the following assumptions are valid.
(1) A sequence of the states {P(t)} with t = 0,1, 2, * is defined according

to each decision rule attached to each of the n possible states, that is, the prob-
ability for the event that P(t + 1) = Pj under the condition P(t) = Pi is given
by the value P{dj[x(t); Pi] = 1} by means of the statistic x(t) obtained at the
state P(t) for the time point t.

(2) Each of the n functions d[-; Pi] with i = 1, 2,***, n is independent of
the time t.

(3) The set of statistics {x(t)} with t = 1, 2, * is a set of mutually inde-
pendent statistics.
Our decision rule will be defined in view of our aim to be attained by means

of successive processes of controls. Our aim must be naturally concerned with
the populations Hi attached to each of n controlled states Pi, on which observa-
tions are made giving statistics {xi}. Let ai be the population mean of the
population Hi. A maximizing (or minimizing) procedure is one of the procedures
formulated in this paragraph in which our aim is to find out the state which will
yield us the maximal (or minimal) value of ai with i = 1, 2, * * *, n. In the fol-
lowing paragraphs several examples are given which illustrate maximizing
procedures in various cases.

3. One-dimensional controlling procedure of the Markov type
Let us begin with two examples of general controlling procedure of the Markov

type mentioned in section 2.
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EXAMPLE 1. A neighborhood si attached to each state Pi is defined by

S1 = {P1, P2},
(3.1) Si= {Pi-, Pi, P+i}, 2 _ i < n - 1,

Sn = {Pn-il Pnl X

that is, si consists of a set of three consecutive states except for the two extreme
states i = 1 and i = n, where each two consecutive states are implied respec-
tively.
Let our state be Pi at a time point t. Then let us make independent observa-

tions, each one at each state belonging to si, which will give us three statistics
(xi-,, xi, xi+,) for 2 < i n - 1, and two independent statistics (xl, x2) and
(x-,1, x") for i = 1 and i = n respectively.

Various decision functions for maximizing procedures can be defined with
reference to the set of these statistics. In what follows, for the sake of simplicity,
let us consider the situations where all statistics {Xh} for h E si, can be assumed
without essential loss of generality, to have different values.
CASE 1. There is one and only one k(i) such that k(i) E si and Xk(i) = maxhe

{Xh}. For any assigned values of statistics {Xh}, k(i) = k(i; x) is hence uniquely
determined as a function of these statistics. Now we define dk(i)(X; Pi) = 1 and
d1(x; Pi) = 0 for 1 5 k(i). For each pair i, with i, j = 1, 2, *.. , n, we can define
pij= P{dj(x; Pi) = 1} and hence the matrix of transition probabilities
T,= (pi,j), with i, j = 1, 2, * *, n, is defined.
CASE 2. Our decision functions are here defined in the following way.
(i) For 1 _ i_ n and Ii-il _2, dj(x; Pi) O0.
(ii) For 2 _ i _ n - 1, we have

di+1(x; Pi) = 1 if xi+1 > xi,
(3.2) di_l(x; Pi) = 1 if xi,i > xi _ xi+,,

di(x; Pi) = 1 if xi _ max(xi+,, xi-,).

(iii) For i = 1, we have

3.3) C1d2(x; Pl) = 1 if x2 > xl,
(3.3) di(x; Pi) = 1 if xl > x2.

(iv) For i = n, we have

(3.4) d^_1(x; P) = 1 if xn >x> X.
It is to be noted that we can design a sequential procedure of experiments in

making observations for obtaining statistics {xij. For instance, for each i in
2 _ i _ n - 1 we can proceed in the following way.

(i) Make observations giving us statistics xi and xi+,.
(ii) If xi+, > xi, then we move the state Pi to the state Pi+1.
(iii) If xi+, _ xi, then make independent observations giving us the statistic

xi-1-
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(iv), If xi > max(xi-1, xi+,), then we remain at the state Pi.
(iv)2 If xi-, > xi > xi+1, then we move the state Pi to the state Pi-,.
In either of these two cases the matrix of transition probabilities has the form

PI,1 P1,2 0 0 0 ... 0 0

P2,1 P2,2 P2,3 0 0 ... 0 0
O P3,2 P3,3 P3,4 0 ... 0 0

(3.5) (pi,j) = 0 0PO43 P4,4 P4,5 ... 0 0

O ° 0 0 ...P* -l,n-2 Pn-l,n-1 pn-l,n
_O O 0 0 ... 0 Pn,n-I Pn,n

In order to discuss our maximizing procedure it is natural to assume the ioth
state for which pio,io = 1.
The state pi. is an absorbing state in the Markov process. Such a type of

matrix has an intimate connection with the matrices which have been discussed
in the simple birth and death process. Indeed we can apply some results obtained
by Ledermann and Reuter [24] and those by Karlin and McGregor [15].
EXAMPLE 2. A neighborhood si attached to each state Pi is defined by

Si = {PI, P2, P3},
S2 = {P1, P2, P3, P4},

(3.6) Si = {Pi-2, Pi-1,Pi, Pi+1, Pi+2}, 3 < i _ n - 2,
Sn-I = {Pn-3, Pn-2, Pn-1, Pn},
Sn = {Pn-2, Pn-1, Pn}.

Associated with each state belonging to si is a statistic x. The following two
cases 3 and 4 correspond to cases 1 and 2 respectively.
CASE 3. Let xj(i) = maxhG,i {Xh} and let us define d,(i) (x; Pi) = 1 and

d1(x; Pi) = 0 for 1 - j(i). Let us put pi,j = P{dj(x; Pi) = 1}. Then the matrix
of transition probability (pij) is defined for which pij = 0 for Ji - il > 3.

CASE 4. Our decision functions are here defined in the following way.
(i) For 1 <i_n and li-il > 3, dj(x; Pi) = 0.
(ii) For 3 < i _ n - 2, we have

di+i(x; Pi) = 1 if xi+1 > xi,
di.1(x; Pi) = 1 if xi_i > xi 2 xi+i,

(3.7) di+2(x; Pi) = 1 if xi+2 > xi _ max(xi-1, xi+,),
di_2(x; Pi) = 1 if xi-2 > xi _ max(xi+2, xi-,, Xi+i),
di(x; Pi) = 1 if xi > max(xi-2, xi+2, xi-,, xi+,).

(iii) For i = 2, we have

d3(x;P2) = 1 if x3 > X2,

(3.8) di(x; P2) = 1 if xI > X2 _ X3,
d4(x; P2) = 1 if X4 > X2 2 max(x1, X3),
d2(x; P2) = 1 if X2 _ max(x4, xl, X3).
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(iv) For i = n - 1, we have

dn(x; P,-l) = I if xn > xn_1,
(3.9) d,,-2(x; P"_1) = 1 if xn-2 > x,_ _ xn,

dn3(x; Pn-1) = 1 if xn-3 > xn_1 _ max((xn2, xn),
dn-i(x; Pn-1) = 1 if x,.- _ max(xn-3, x,.2, xn).

(v) For i = 1, we have

d2(x; PI) = 1 if x2 > xl,
(3.10) d3(x; Pi) = 1 if X3 > X1 _ X2,

di(x; P1) = 1 if xi _ max(x3, x2).

(vi) For v = n, we have

dn_l(X; Pn) = 1, X.- > X,,
(3.11) dn-2(X; Pn) = 1, Xn-2 > Xn _ X.-I,

dr(x; Pn) = 1, xn, _ max(Xn.1, X.).
It is to be noted that we can design a sequential procedure of experiments in

making observations for obtaining statistics, as was done in case 2.
In either of cases 3 and 4 the matrix of transition probabilities has the form

P1,1 P1,2 P1,3 0 0 0 ... 0 0
P2,1 P2,2 P2,3 P2,4 0 0 ... 0 0
P3,1 P3,2 P3,3 P3,4 P3,6 0 ... 0 0

(3.12) 0 P4,2 P4,3 P4,4 P4,5 P4,6 ... 0 0
(Pij) = ............................................................

0 0 0 ... Pn-2,n-4 Pn-2,n-3 Pn-2,n-2 Pn-2,n-1 Pn-2,n
0 0 0 ... 0 Pn-l,n-3 Pn-l,n-2 Pn-l,n-1pt -i,n
0 0 0 ... 0 0 Pn,n-2 Pn,n-i Pn,n

4. Two-dimensional controlling procedures of the Markov type

Let us consider a set of states being defined by two controlled factors, which
we label by a pair of integers P(i, j) where 1 < i < m and 1 _ j < n. These
possible states will be arranged in a series of mn numbers so that P(i, j) corre-
sponds to the number i + (j - 1)m. One of the simplest two-dimensional con-
trolling procedures of the Markov type will be discussed in the following example.
EXAMPLE 3. A two-dimensional neighborhood s(i, j) attached to each state

P(i, j) is defined by

(i) s(1, 1) = {(1, 1), (2, 1), (1, 2)},
(ii) 1s(i,1) = {(1,(),(j (1, 1) ,( 1,j +1)(i,2) 2 < i < m -1,
(iii) s(m 1) = (,1), (m -1, 1), (m, 2)}
(iv) s(l, j) ={(1, j), (2, j), (1, j- 1), (1, j + 1)}1, 2 < j < n-1



STATISTICAL OPTIMIZING PROCEDURES 413

(v) s(1, n) = {(1, n), (2, n), (1, n -1),
(vi) s(i, n) = {(i, n), (i + 1, n), (i, n -1), (i - 1, n)}, 2. i _mi 1,
(vii) s(m, j) = {(m, j), (m, j- 1), (mi- 1, j), (m, j + 1)}, 2 < j <n -1,
(viii) s(m, n) = {(m, n), (m, n - 1), (m - 1, n)},
(ix) s(i, j) = {(i, j), (i + 1, j), (i, j - 1), (i - 1, j), (i, j + 1)},

2 . i _ m- 1, 2 . j _ n -1.

In short we may say that the state (h, 1) belongs to the set s(i, j) if and only
if 1 _ h _ m, 1 < 1 < n and Ih - il + l-jjl < 1, for each (i, j) in 1 _ i < m
and 1 _ j < n.

Neighboring states are defined with reference to two-dimensional arrange-
ment, while the numbers of states are referred to the serial number i + (j - 1)m.
Thus for case (ix) the number of states belonging to s(i, j) are i + (j - 1)m,
i + 1 + (j- 1)m, (i- 1) + (j- 1)m, i + jm, i + (j-2)m, where the
former three are adjacent while the latter two have great distance from each
other and from the former three points.

Let our state be (i, j) at the time point t. Then let us make independent
observations, at each state (h, 1) belonging to s(i, j), giving us a statistic X(h,l) at
each state (h, 1). As in example 1, let us consider the following two cases.
CASE 1. There is one and only one k(i, j) = ki(i, j), k2(i, j) such that

k(i, j) E s(i, j) and xk(i,i) = maxhe(, {Xh}. We define

(4.1) dk(i,,) [x; P(i, j)] = 1,

(4.2) d(h,l)[x; P(i,j)] = 1, (h, 1) # k(i,j),

and
(4.3) P(i,J (h,l) = P{d(h,l) [x; P(i,j)] = 1}-

It is evident that P(ij),(h,l) is the transition probability for the controled state
to move from the [i + (j - 1)m]th state (i, j) to the [h + (1 - 1)m]th state
(h, I).
CASE 2. Our decision functions are here defined similarly as in example 1,

case 2. Thus we have d(h,l) [x; P(i, j)] = 0 except for (h, 1) belonging to the set
s(i, j). Now we have classified all the possible states into nine sets (i) to (ix)
according to the contents of s(i, j), which may consist of three [(i), (iii), (v)
and (viii)]; four [(ii), (iv), (vi), and (vii)]; and five [(ix)] states. Let us now
illustrate a set which consists of five states.

For 2 _ i < ml- and 2 < j < n- 1, we have

(a) d(i+l,j) [x: P(i, j)] = 1, if X(i+±1j) > x(i@j).
(b) d(ij+l)[x;P(i, j)] = 1, if X(i,j+1) > X(i,j) _ X(i+1 j).
(c) d(i_1,,)[x; P(i,j)] = 1, if x(i. 1j) > x(ij) > max{x(i,j+1), x(i,j+1)}.
(d) d(ij,-l) [x; P(i, j)] = 1,

if x(i,j-) > x(ij) _ max{x(i_1,), x(i,j+1), x(i,j+l)}.
(e) d(i,) [x; P(i, j)] = 1, if x(iy,) > max{x(iy,_-), x(i_i,), x(ij+i), x(i,j+i)}.
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In either of cases 1 and 2 the matrix of transition probabilities among mn
states can be written in the form

A1 F1 0 0 0 ... 0 0
G2 A2 F-2 0 0 ... 0 0
O G3 A3 F3 0 *--0 0

(4.4) T= 0 0 G4 A4 F4... 0 0
................................................

O 0 0 0 ... Gn-, An-, F1-,
O 0 0 0 ... 0 G. An

where

alf bff 0 0 0 0 0
c4 a2`f b2t) 0 0 0 0
O cff) aW) b3') 0 0 0

(4.5) Ai= 0 0 c,2) a4t) ) . 0 0
. ...................................................

0 0 0 0 ca. aff1 b"_
O O 0 *0O O Cm2 a't'

Ff~ 0 0 .. 01
10 f2T 0 ... 0

(4.6) Fi= 0 fit) ... 0
...........................

0g~ 0 0 01.
10 O 0 ... 0(-SU) ...*-0 92) 0 *-

(4.7) Gi= 0 0 gy) ... 0
............................

Lo 0 0 gm2
and 0 in (4.4) means the n X n matrices whose elements are all equal to zero.
The constants {aj')}, {b5')}, {cjt)}, {fi")}, and {gj('} mean the following prob-

abilities respectively.
(4.8) P{d(c,j) [x; P(i, j)]} =a- )

(4.9) P {d(j+ I,j) [x; P(i, j)]} = bj(),
(4.10) P{d(i-l,j) [x; P(i, j)]} =C-t),
(4.11) P{d(i,j+,) [x; P(i, j)]} = ff ,

(4.12) P{d(i,j- 1l)[x; P(i,3)]} =gjft
for 1 _ i < m and 1 < j _ n.
EXAMPLE 4. A two-dimensional neighborhood s(i, j) attached to each state

P(i, j) is now defined in the following manner: a state (h, 1) belongs to the set
s(i,j) if and only if 1 _< h <_ m, 1 < I _ n and Ih-il + 11-ji _ 2. More
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definitely we may enumerate all the possible cases according to the combination
of i and j, as we have donie in example 3, which however we omit here. Two cases
will be mentioned here, each of which corresponds to each of the cases 1 and 2
in example 3 respectively.
CASE 1. This can be defined quite similarly as in case 1 of example 3, except

for the difference of the set s(i, j).
CASE 2. Let X(h,l) be the statistic obtained from observations performed

under the controlled state (h, 1) belonging to s(i, j). Let us give an ordering of
all the sets belonging to s(i, j) which begin with the state (i, j).

For instance, let, our ordering beginning wvith the number 0 be given in the
followinig mannler: 0: (i, j);

1: (i+ l,j); 2: (i,j±+ ); 3: (i-2,.j); 4: (i,j- I);
r): (i + 2, j); 6;: (i, j + 2); 7: (i - 2, j); 8: (i, j -2).
Let us write for the moment x(k) = X(h,l), provided that k is the number of the

order corresponding to (h, 1). Further, let us define x*(k) = max -x(1), x(2),
x(k)} with 1 < k _ 8. Now our decision functions are defined by means of the
statistic x*(k) in the following way:

(a) d(l)[x;P(i,j)] = 1, if x(1) > x(O).
(b) d(2)[X;P(i,j)] = 1, if x(2) > x(O) _ x*(1) = x(l).
(e) d(k)[x;P(i,j)] = 1, if x(k) > x(O) _ x*(k-1) for3 _ k _8.
(d) d(o)[x; P(i, j) ] = 1, if x(O) _ x*(8).
In either of the cases 1 and 2 the matrix of tranisition probabilities among 7717l

states can be written in the form
A1 F1 FO 0 O O * 0 0
G2 A2 F2 F2°0 0 0 0 0
G3 G3 A3 F3 F3 0 0 0 0

( Go4 G4 A4 F4 F4 0 0 0
(4.13) 0 0 Go G5 A5 F5 Fs 0 0

O O 0 0 0 G'1 G-1 An_l Fn_l
O O 0 0 0 0* O G' G. An

where
al b'f bli'') 0 0 0 0 0
c'2 a'f b(f) b2'(' 0 0 0 0
3 c3f a3fj bW) b3(') 0 0 0

(4.14) AC - 0
C ) a( b4)f b4'(f) 0 0

0 0° O a.5 bn') b5'() 0

0 0 0 0 cn-1 cnt1 anP bn(
O OO * * * O O ~~~~~~~~~~~~Cl() Cn an4-0 0 0 0 0 n n~a~

and Fi, Ft, Gi, and Gt are n X n diagonal matrices defined similarly as those in
(4.6) and (4.7).
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5. Monads governing translations and rotations in two-dimensional areas

In our two-dimensional controlling procedures of the Markov type in the
previous paragraph we are concerned with the decision functions and allied
transition probabilities among the states belonging to the set s(i, j) associated
with a state P(i, j). The decision functions are so formulated as to decide the
next state to which the present state will be moved as a translation under each
one of the specified, mutually exclusive conditions. In some controlling proce-
dures our decision procedure has to be considered from another point of view,
that is, with reference to a local system of state coordinates in which notions of
rotations as well as translations are explicitly introduced. In order to avoid the
complexity of our controlling procedure in its totality and to give insights into
its local aspects, it is adequate and convenient to define a localization of the
given controlling procedure satisfying the following two conditions.

(a) To describe the same local procedure with that of the original two-
dimensional controlling procedure of the Markov type.

(b) To give a separation of the controlling procedure within the set of states
s(i, j) from other states which do not belong to the set of states s(i, j).
We shall call such a local mechanism of controlling procedure a neuronic

monad associated with each state of a controlling procedure. Since there are mn
states in a two-dimensional controlling procedure of the Markov type, there
exist mn neuronic monads in total.
The reason why we use a tentative terminology "monad" (in an incompletely

specified way) is that any two neuronic monads cannot be directly connected
with each other, and that they can be modified so as to form a net system of
neurons which will represent the whole aspect of two-dimensional controlling
procedure of the Markov type with regard to their global behaviors as well as
to their local behaviors.

In the present paragraph we shall illustrate a formulation of neuronic monads.
EXAMPLE 5. With reference to the terminologies used in example 3, let us

consider a state P(i, j) such that 2 _ i _ m - 1 and 2 _ j _ n - 1, that is,
a state belonging to P(i, j). The other cases (i) to (viii) can be discussed quite
similarly. Five states belonging to the set s(i, j) will be numbered as follows:

TABLE I

1 2 3 4 0 1' 2' 3' 4'

1_1_ 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0
4 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
1' q, 0 0 0 qo 0 q2' 0 0
2' 0 r2 0 0 ro 0 0 ra, 0
3' 0 0 SS 0 So 0 0 0 S4'
4' 0 0 0 t4 to tl, 0 0 0
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0: (i,j); 1: (i + 1,j), 2: (i,j + 1); 3: (i - 1,j); 4: (i,j - 1). The transient
states implying the four rotations around the four points 1, 2, 3, and 4 are num-
bered in the following way: 1': (1 -2); 2': (2-3); 3': (3-4); 4': (4-1).
The set of nine alternatives 0, 1, 2, 3, 4, 1', 2', 3', and 4' is called a set of local
states associated with the state 0: (i, j). Let us consider the table of the transi-
tion probabilities, shown in table I. Here we have

(5.1) ql+ qo + q2=1, qj _ O, j = 1,0, 2',
(5.2) r2 + rO + r3' = 1, r _ 0, j = 2, 0, 3',
(5.3) 8S3+So+84'= Sj 2!0,j=3,0,4',
(5.4) t4 + to + tl' =1, tj > 0, j = 4, 0, 1',
Here each of the transformations 0 -- i for i = 1, 2, 3, 4 is a translation, and

each of the transformations i -- (i + 1) for i = 1, 2, 3 and 4 -+ 1 is a rotation.
The matrix given in table I gives us the monad associated with the state 0.
A set of decision functions on the basis of which these transition probabilities

are given may be defined in various different ways. However, we are here con-
tent with giving one possible way.

(1A) Let our controlled state be 0: (i, j). Then we move our state to the
state 1'.

(2A) Let us make observations at two controlled states 0: (i, j) and 1: (i + 1, j)
which will give us statistics xt) and x2+) jj respectively.

(3A) If xzPl+ j) > x2>n, then we move our state 1' to the new state 1: (i + 1, j).
(3B) If x41,)j= x'1.?i, then we move our state 1' to the state 0.
(3C) If x + .1J) < xO1?j , we move our state 1' to the state 2'.
(4A) For the case (3C) let us make new observations at two controlled states

0: (i, j) and 2: (i, j + 1), which will give new statistics x((f3) and x('li+ 1).
(5A) If x.+l) > xf, then we move our state 2' to the state 2: (i, j + 1).
(5B) If x(+1) = x12, then we move our state 2' to the state 0: (i, j).
(5C) If xi +l) < x(Q), then we move our state 2' to the state 3'.
(6A) For the case (5C), let us make new observations at two controlled

states 0: (i, j) and 3: (i - 1, j), which will give new statistics X(() and X(U3)1-
(7A) If X(3?) 1, > X(3,) then we move our state 3' to the state 3: (i-1, j).
(7B) If x(t)1 = x), then we move our state 3' to the state 0: (i, j).
(7C) If x4?Lr < x(') , then we move our state 3' to the state 4'.
(8A) For the case (7C) let us make new observations at two controlled states

0: (i, j) and 4: (i, j - 1), which will give us new statistics xQ) and xfj -1)
respectively.

(9A) If x((,!-l) > x((fli), then we move our state 4' to the state 4: (i, j - 1).
(9B) If X.(t4-1) = X((t, then we move our state 4' to the state 0: (0, j).
(9C) If x() -1_) < x<(I, then we move our state 4' to the state 1'.
Consequently we have

(5.5) P{xPl) j) > XLj?b} = ql(i, j),
(5.6) -{x j)1 = x(1')n} = qo(i,j),
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(5.8) P{xzl),>0< ', = q i )
(5.7) P{X(,)j+l) < X(t,j)} = ro(i, j),

(5.1) P {x(2,"+l) <X).(('} = r0(i, j),
(5.12) Pp{X((2+l,) = X(2)} = s(i, j),

(5.13) P {x) , < X,) = sir(i, j),
(5.14) P{X(4, -) > X(j)} = t4(i, j),

(5.15) P{x(4j 1) IX(4))} = to(i,j),
(5.16) P{x(-1) > X(tK } = t1'(i, j),

where we have written qk(i,j)p rk(ij), Sk(, j), and tk(i,Sj) instead of qk, j Sk,
and51 respectively in order to show that these probabilities may in general
depend upon the state (i, I).

Let us denote the matrix defined by table I by L(i, j) or simply by L. Then
we have

(5.17) AL()tXE -L(i, j)

= (X- p1)4 X -1 0 0 0

-qO X -q2' 0 0
0rO ) -r3~ 0

-SO 0 0 X -84
j-to -tl' 0 0 X

In particular, when qo = ro = so = to = 0, we have

(5.18) AL(X) = (XG-1)O4(X4-q2'r3's4't1').
The matrix L(i, j) defines an absorbing Markov chain having absorbing bound-
aries consisting of 1: (i + 1,j), 2: (i,j + 1), 3: (i-i1,j), and 4: (i,jO-1). The
various well-known theorems regarding an absorbing Markov chain can be
directly applied to a discussion on the mean number of steps for our state 0: (i, j)
and to each one of the four absorbing states 1, 2, 3, and 4 respectively (see [16],
chapter III). Some of these means may be infinite according to the values of
q, r, s, and t. For instance, when q2' = r3t = 84' = 1, we have an infinite sequence
of rotations among the four states 1', 2', 3', and 4' if we start with any of the
five states 0, 1', 2', 3', and 4'. On the other hand, for the situation when all q2',
r3s, 84', t1' < 1, one or more of the four translations, that is, movements from
the states 0: (i,j) to the states 1: (i + I,j), 2: (i,j + 1), 3: (i-l,j), and
4: (i, - =1)will become dominant, that is, a probability for the state to move
from 0 to either one of the states 1, 2, 3, and 4 will become large.
EXAMPLE 6. With reference to example 4, let us consider a state (i, j) such

that 3e i _ m-2 and 3 _ j < ng-2. The other cases having s(i,j), in
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which the number of elements is less than nine, can be treated quite similarly.
Now the eight transient states implying the eight rotations around the eight
states 1, 2, 3, ... , 8 are numbered in the following way: i': (i -- i + 1) for
i = 1, 2, ... , 7, and 8': (8 -- 1). Now we have the set of 17 alternatives in the
order 1, 2, 3, 4, * *, 8, 0, 1', 2', 3', , 8', which is called a set of local states
associated with the state 0: (i, j). Now let us define the 17 X 17 matrix of the
transition probabilities such that

(5.19) L(i, j) L(i, j) L3(0i,j)

where Li(i, j) is the 8 X 8 unit diagonal matrix having units as the diagonal
elements and zero elsewhere, 0 is the 8 X 9 zero matrix whose elements are all
zero, while L2(i, j) and L3(i, j) are defined by

(5.20) L2(i, j) = q2'2 33 0 0 0 0 0

O O O O O O O q818_

Po Pi' P2' P3' P4' P5' P6' P7' P8'
qi'o 0 ql'2' 0 0 0 0 0 0
q2'0 0 0 q2'3' 0 0 0 0 0
q3'0 0 0 0 q3'4' 0 0 0 0

(5.21) L3(i, j) q4= 0 0 0 0 0 q4'5' 0 0 0
q5'0 0 0 0 0 0 q5'6' 0 0
q6s0 0 0 0 0 0 0 q6c'7 0
q7'0 0 0 0 0 0 0 0 q7'8'

_q8'o q8l1 0 0 0 0 0 0 0

We have

(5.22) A,(X) XA' - L(i,j)I
(X - 1)8(X - po)IXE - L3(i,j)l.

In particular, when qj'o = 0 for i = 1, . , 8, we have

(5.23) AL,(X)-IXE - L3(i, j) = X9 - ql'2'q2'3'q3'4' - - q7'8'q8'1
Similar observations on the matrix L(i, j) can be readily obtained as in

example 5.

6. Two-dimensional controlling nets of neurons

The neuronic monads introduced in section 5 are in some sense isolated from
each other. We now give some examples of two-dimensional controlling proce-
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dures based upon nets of neurons. By a net of neurons we mean a set of local
mechanisms of controlling procedures each of which is associated with one state
(point) of the two-dimensional lattice, and has neuronic functions governing
both translations and rotations at the point which bear a certain relation to
each other. Let us illustrate our method by the following example.
EXAMPLE 7. Let us consider a matrix of transition probabilities which is of

the form defined in (4.4) to (4.7) in its global connection, with the important
difference that ajt), bjlf, cjt), fj,), gt)) for i = 1, 2, - * *, n; j = 1, 2, , m are now
not constants, but 5 X 5 matrices. Indeed, let us now define

I >o) (ii)p )
I

p )

q.fo) O q;'2 O O
(6.1) a= ril) 0 0 rA3 0

SIt) 0 0 0 S I4D
LtSO) tSil) 0 0 01

o 0 0 0 o
j" 0 0 0

(6.2) b;{'= 0 0 0 0 °

L0 0 0 0-0 0 0 0 0

[0 0 0 0 o
0 00 0

(6.3) =j U 0 0

SJ3 00 0

0 0 0 0 o
0 0 0 0

(6.4) P' j2) 0 0 0
0 0 0 0
-0 0 0 0 0

0 0 0 0 o
0 0 0 0

(6.5) gi() =0 0 0 0

0 0 0 0tj4) 0 0 0 0

In fact we can now denote each of 4mn possible alterniatives by a set of tllrcc
integers (i, j, k) such that 1 .< i ._ m, 1 <_ j <_ n, 0 _< k < 4, and the alternative
(i, j, k) has the order 5m(j - 1) + 5(i - 1) + kc + 1 in the ordering previously
introduced. Now a~', bi"), cj'), fj%) and gj() are concerned with the transformations
of the set of the alternatives {(i, j, k)} (0 _

kc . 4) into the sets {(i, j, k)} (0 :!

kc . 4), {(9i + 1, j, k)} (0 . k . 4), {(i - 1, j, k)} (0 < kc < 4), {(i, j + 1, ko)}
(0 < kc < 4), and {(i, j - 1, k)} (0 . kc 4) respectively.
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7. Two-dimensional net of stimulated input-output neurons
without path memory
Let us associate with each point (x, y) five vectors O(x, y), li(x, y), tl(x, y),

tl(x, y), and t(x, y), each of which has its endpoint at the point (x, y). li(x, y)
is the vector of unit length whose origin is located at the point (x + 1, y),
which we shall denote by tl(x, y) = (x + 1, y) -- (x, y). Similar notations will
be used to define tl(x, y) = (x, y + 1) - (x, y), tl(x, y) = (x - 1, y) - (x, y),
tl(x, y) = (x, y - 1) - (x, y), while t(x, y) = (x, y) -+ (x, y). We call these
the five input vectors associated with the point (x, y). Now the output vectors
associated with the point (x, y) are the five vectors each of whose origin is
located at the point (x, y) such that q1l(x, y) = (x, y) -* (x + 1, y), 112(x, y) =
(X,Y)- (X, Y + 1),73(X, Y) = (X,Y)- (X - 1, Y), X4(X, Y) = (X, Y)-(X, -1)
while 70(x, y) = (x, y) -- (x, y), which is identical with eo(x, y).
The uses of these notions are concerned with controlling procedures regarding

two-dimensional states. Decision functions governing input and output rela-
tions are now defined as follows.

Let an input be given by hl(x, y). For instance, we understand by the input
vector (I (x, y) the fact that we are now in the state (x, y) and that we were in
the state (x + 1, y) at the previous step. Let the four neighboring states of
the state (x, y) be 1: (x + 1, y); 2: (x, y + 1); 3: (x - 1, y); 4: (x, y - 1)
respectively.
By a state h we mean a state k such that h - k (mod 4), where 1 _ k _ 4.

We shall begin with the definition of decision functions associated with the state
(x, y). Let our input state be (h(x, y). We proceed in the following sequential
way.

(1) Let us make observations at the state 0 and at the state h + 2 which
will give us statistics xo and Xh+2 respectively.

(2A) We have an output vector nJh+2(x, y) if Xh+2 > XO.
(2B) If Xh+2 _ xO, then let us make observations at the state h + 3 which

will give us statistic Xh+3.
(3A) We have an output vector X1+3(X, Y) if Xh+2 _ XO < XL+3.
(3B) If max (Xh+2, Xh+3) < xo, then let us make observations at the state h + 1

which will give us statistic XA+l.
(4A) We have an output vector 77h+i(x, y) if max (Xh+2, Xh+3) _ XO < Xh+l.
(4B) If max (XA+2, Xh+3, Xh+1) _ xo, then we have an output vector 7°0(x, y).
We adopt an abbreviated notation to state each of the conditions given in

our sequential steps as follows.
(2A) xO <Xh+2 by 0(h + 2).
(3A) Xh+2 . xO < Xh+3 by (h + 2)0(h + 3).
(4A) max (Xh+2, Xh+3) _ xO <Xh+1 by (h + 2)(h + 3)0(h + 1).
(4B) max (x,+2, Xh+3, Xh+l) _ xo.by (h + 2)(h + 3)(h + 1)0.
Let us denote by 0 the impossibility of a transition and by 1 its complement,

a transition certainty. Then the conditions for the transitions are given in
table II.
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TABLE II

0 1111
I70 771 772 773 774

to 1 4 4 4 4
t (243)0 4 02 ()-3 204
td (134)0 01 4 103 (Th)04
t1 (412)0 401 (4)02 4 04
t4 (1m)0 (X)01 302 03 4

We shall now describe the whole aspect of combining these neurons governing
input and output vectors associated with each state of the whole domain. In
order to state the relation among these neurons, we conventionally introduce
a set of identifications such that

(7.1) nl(x, y) _3(X + 1, y),
(7.2) 72(x, y) -4(X, y + 1),
(7.3) 13(x, y) (x- 1, y),
(7.4) 1(X, y)-) (x, y -1),

(7.5) 700(X, y) ,(x, y).
Under these conventions to each state (x, y) corresponds the 5 X 5 matrix

whose columns as well as rows consist of eo(x, y), (1 (x, y), 82(x, y), t3(x, y), and
41(x, y) in ascending order from 0 to 4.
Let us consider the domain consisting of lattice points such that 1 < x _ m

and 1 < y < n. The domain must be divided into nine sets just as in example 3,
and certain modifications of definitions of input and output vectors must be
introduced for the other domains (i) to (viii) similar to those in example 3. Since
five vectors are associated with each one of the mn states, we have now a
5mn X 5mn matrix similar to (4.4) with the essential differences that each of
ai , b'J, fill, and g'j) are not constants, but now 5 X 5 matrices such as

SO (i, j) (l( j) 61(i I i) 61(i, j) Ni(i, j)

o(i,i) _ * * * * *

(iJj) * 0 0 0 0O
(7.6) a(n = ,2(i, j) *0 0 0

61(i, j
L

* 0 0 0 0
01(i, j) 0 0 0 0

t°0(i + 1, j) v, (i + I, j) 61 (i + I, j) 63(i + 1, j) (41(i + I, j)
C8(i,j) -0 0 0 0 0 1

(7.7) 1(i, j) 0 0 0 0 0
bY( = 2(i, j) 0 0 0 * 0

SW(i, j) 0 0 0 * 0
01(i, j) L 0 0 0 * o j
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to(i- I ,- ) t1i(i. - II j) 6 (i - Ili) 63(i - 1,jP (i - 1 j)
to(i, j) 0 0 0 0 0

(7.8) tl(i, j) 0 * 0 0 0
ctL)= t(i,j) O 0 0 0

t3(i,j) 0 0 0 0 0
tl(i, j) L O * O O O j

t(i + ] l (i, j + 1) t2l (i, j + I ) 3(i, j + 1) Gi (i, j + 1)
°o(i [ 0 0 0 0 0 1

(7.9) 'i(i, j) 0 0 0 0 *
A'>' = W(i,j) 0 0 0 0 O

(i, j) 0 0 0 0 *
d(i,j) 0 0 0 0

eo(ilj ti){(i,ji- 1) 61 (i i - 1) SW3(i, 1) 4(l i,j 1)
to(i, i) F 0 0 0 0 0 1

(7.10) '1(i,j) 0 0 * 0 0
g =12(i,j) 0 0 * 0 0

t(i, j) 0 0 * 0 0
t(i, j) L O oO o J

where * means certain constants which may not be zero.

8. Two-dimensional net of stimulated input-output neurons
with path memory

Let us associate with each point (x, y) nine vectors eo(x, y), th(x, y) for i = 1, 2;
h = 1, 2, 3, 4, each of which has its endpoints at the point (x, y), where the upper
suffix i denotes the length of the vector and the lower suffix h denotes one of the
4 directions given in section 7. For instance tA(x, y) is identical with tl(x, y)
introduced in section 7, and 3(x, y) = (x - 2, y) -- (x, y). These nine vectors
are called input vectors associated with the point (x, y). The nine output vectors
associated with the point (x, y), which we denote by 17°(x, y) and 7qh(x, y) for
i = 1, 2; h = 1, 2, 3, 4, are defined similarly. For instance the vector q4(x, y) =
(x, y) - (x, y - 1) and q4(x, y) = (x, y) - (x, y - 2).
We are now concerned with a walk of a particle from one point to another

when the rule is given by a set of decision functions which have peculiar features
different from those given in section 7 in the sense that it will take account of
the previous two points (states) occupied by the particle-that is, it will have a
certain memory of its history of walking route. In consequence our input state
is not one input vector, but a combination of two connected input vectors rep-
resenting the two previous positions of the particle. Now two connected input
vectors associated with the point (x, y) will be denoted by tih(x, y), eto(x, y),
and t8ot(x, y) respectively, and are called input states.
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Let us denote by 4,6'(x, y) the starting point of an input vector t^(x, y), and
by 6O(x, y) the endpoint of an output vector 'q(x, y).
Hence t{th(x, y) is the ordered connection of the two input vectors tJ[44(x, y)]

and th(x, y) in this order, tot(x, y) that of the two input vectors eo [4&i(x, y)] and
th(x, y), and 8to(x, y) that of two input vectors 81[#,(x, y)] and o(x, y).

Similarly our output states are two connected output vectors, an output
vector connected with the last vector of an input state; that is, each output
state is a combination of one of the nine input vectors t8(x, y) and th(x, y) with
one of the nine output vectors 71(x, y) and 71(X, y), which we denote by tS711(x, y),
th'?(x, y), th'j(x, y), and 8u700(x, y) respectively.
A neuron associated with the point (x, y) gives us a decision rule by which we

decide the transformation from one of the input states associated with the point
(x, y) to one of the output states associated with the point (x, y).
Let us give the table of all possible output states with reference to a given

output state. For this purpose we have to give a set of decision rules governing
the transitions among input vectors and output vectors. There are various
possible decision functions. The following is one example.

(a) For the input state 1l(x, y): the input state consists of two input vectors
th(x, y) and th[4I+(x, y)] and hence of one route connecting three points
14[&,1(x, y)], hl(x, y), and (x, y).

(1) Make observations at the state (x, y) and at the state Oh+2(x, y) which
will give us statistics z°(x, y) and za+2(x, y) respectively.

(2A) If zh+2(x, y) > z°(x, y), we have the output vector ha+2(x, y) and hence
the output state ht^+2(X, y).

(2B) If z2h+2(x, y) _ z°(x, y), then let us make observations at the state
eh+3(x, y) which will give us the statistic Zh+3(X, y).

(3A) If z2+2(x, y) _ z°(x, y) <hz+3(x, y), we have the output vector qh +3(x, y)
and hence the output state t+3(X, y).

(3B) If max [zh+2(x, y), zh2+3(x, y)] 5 z°(x, y), then let us make observations
at the state 0h+h(x, y) which will give us the statistic zh+1(x, y).

(4A) If max [zh+2(x, y), zh+3(x, y)] < z°(x, y) < zh+1(x, y), we have the
output vector h2+1(x, y) and hence the output state h+1(x, y).

(4B) If max [z2h+2(x, y), zh+3(x, y), z2+1(x, y)] < z°(x, y), then let us make
observations at the state OA+2(x, y) which will give us the statistic zh+2(x, y).

(5A) If max [z2+2(x, y), z2+3(x, y), zh+1(x, y)] . z°(x, y) < zh+2(x, y), we
have the output vector nqh+2(x, y) and hence the output state thmqh+2(x, y)-

(5B) If max [z2+2(x, y), zh+3(x, y), z2+1(x, y), zh+2(x, y)] 9 z°(x, y), then let
us make observations at the state Oh+3(X, y) which will give us the statistic
Zh+3(X, y)-

(6A) If max [z2+2(x, y), z2+3(x, y), Z2+1(x, y), zh+2(x, y)] < z°(x, y) < zh+3(x, y),
we have the output vector nhl+3(X, y) and hence the output state thXqh+3(x, y).

(6B) If max [z2+2(x, y), Zh+3(X, y), zh+l(x, y), zl+2(x, y), zh+3(x, y)] _ z°(x, y),
then let us make observations at the state Oh+1(x, y) which will give us the
statistic zh+I(x, y).
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(7A) Ifmax Le, +2 Y), Z'h+3(X Y), Zh+I (X Y), Zh+2(ZX Y), Zh+3(X, Y) z0(x, y) <
zh+1(x, y), we have the output vector qhl+±(x, y) and hence the output state
thqh'+ 1 (X, Y).

(7B) If other cases occur, that is, max [zh+2(x, y), Zh+3(X, y), Zh+I(X, Y),-*,
zh+1(x, y)] < z°(x, y), we have the output vector O(x, y) and hence the output
state h'O(x, y).
Our decision rule can be summarized in the abbreviated table III.

TABLE III

OUTPUT STATES FOR THE INPUT STATE eh1h

Output
Cases State Conditions for Decision

1 2(2A) 6h7h+2 O(h + 2)2
1 2

(3A) h77h+3 (h + 2)20(h + 3)2
(4A) 677h+1 (h + 2)2(h + 3)20(h + 1)2
(5A) 6717 +2 (h + 2)2(h + 3)2(h + 1)20(h + 2)
(6A) th1h+3 (h + 2)2(h + 3)2(h + 1)2(h + 2)0(h + 3)
(7A) 617h+ (h + 2)2(h + 3)2(h + 1)2(h + 2)(h + 3)0(h + 1)
(7B) tho (h + 2)2(h + 3)2(h + 1)2(h + 2)(h + 3)(h + 1)0

Now we proceed to other cases having other input states. We may and shall
use the abbreviated summaries of our decision rules by means of the notations
just used for the case (a) having (th(x, y) as input state.

(b) For the input state t+lth(x, y) with i = 1, 3, see table IV.

TABLE IV

OUTPUT STATES FOR THEI INPUT STATE Zh+Jth(X, Y)

Cases Output State Conditions for Decision

(2A) thlh+2 0(h + 2)
(3A) 627h+3 (h + 2)0(h + 3)
(4A) 677h+ (h + 2)(h + 3)0(h + 1)
(5A) tho (h + 2)(h + 3)(h + 1)0

(c) For the input state gg with j = 1, 2; 1, h = 1, 2, 3, 4, 1 id h. The decision
rules are the same as for the case (a) so far as they are concerned with the steps
(1) to (7A). We must modify the case (7B) so as to be able to add the cases
shown in table V to table III.
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TABLE V

OUTPUT STATES FOR THE INPUT STATES dth(x, y)

Cases Output State Conditions for Decision

(7)2h 22( 32( +1)( +2)h 3_(7A) 677h (h + 2)2(h + 3)2(h + 1)2(h + 2)(h + 3)Oh
(8A) e"1h+1 (h + 2)2(h + 3)2(h + 1)2(h + 2)(h + 3)hO(h + 1)
(8B) d0 (h + 2)2(h + 3)2(h + 1)2(h + 2)(h + 3)h(h + 1)0

(d) For the input state I with 1 = h, h + 1, h + 3.
The input state of this type implies that we have already made observations

at the corresponding states Oh+2(x, y) and 6h(x, y) with the consequences that
zh+2(x, y) < z°(x, y) and z'(x, y) _ z°(x, y). Consequently our decision rules
are much simplified as verified by table VI.

TABLE VI

OUTPUT STATES FOR THE INPUT STATES L h(X, y)

Cases Output State Conditions for Decision

(2A) thth+3 0(h + 3)
(3A) tht+ (h + 3)0(h + 1)
(3B) tho (h + 3)(h + 1)0

(e) For the input states e8lo and 0oo8.
An input state of this type implies that some observations on the states in a

neighborhood of the state (x, y) have already been made, with the consequence
that z°(x, y) is not less than any statistic corresponding to each state in the
neighborhood. At first sight it seems that no further observations are needed
and that we should conclude that we have reached the state which is at least
locally optimal. Indeed we may make this conclusion under certain circum-
stances, particularly when all of the following conditions are satisfied.

(i) No change of production conditions will occur in the future.
(ii) There is some reason which assures us our local optimality is sufficient

for our optimizing purpose.
(iii) Our statistics have small sampling fluctuations so that no repeated

samplings will be required to ascertain our conclusions.
So far as not all of these three conditions are satisfied, our controlling proce-

dure should continue to make observations and decisions. We here give one
possible decision procedure: make a choice by a chance mechanism by which to
decide an input vector from all the set of th(x, y) with h = 1, 2, 3, 4.
For the input state t8o(x, y), the same decision rule is used.
(f) For the input state too£ with j = 1, 2; h = 1, 2, 3, 4.
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We define the decision rule for the input states ot' and eo2 to be the same
with those of §tl with 1 # h, h + 2, and with those of { with 1 # h, h + 2
respectively.
Among all 64 (= 2 X 2 X 4 X 4) combinations of the suffixes i, j, h, and I such

that i, j = 1, 2, and h, I = 1, 2, 3, 4, the cases when I = h + 2 with h = 1, 2, 3, 4
are impossible, hence the number of all the possible input states of the types
tth'(x, y) are 48 (= 64 - 16). Furthermore, we have to add the input states such
as tot 8,t8ooe with j = 1, 2; 1 = 1, 2, 3, 4 whose number is 17 (= 1 + 8 + 8).
Consequently the total number of all the possible input states is 65.
Now let us turn to the output states. To each point there are associated the

output vectors 711(x, y) with k = 1, 2; p = 1, 2, 3, 4 and 11(x, y). We define our
output state by a combination of each one of the first vectors of th(x, y) and
to(x, y) with each one of the second vectors q(x, y) and 71(x, y). Some combina-
tions are impossible.
But our principal device in dealing with output states associated with a point

is to think of each output state as an input state associated with its endpoint.
For instance, let our output state be the connection of the end vector {'(x, y)

of the input state t3jth'(x, y) with t77(x, y). As an output vector 77(x, y) has its
origin (starting point) at the point (x, y) and as its endpoint 4"(x, y). Our device
is first to notice that qk(x, y) = tk[4t(x, y)] and then to think of the connection
as php+2[#k(x y)]. This device makes it possible to give the matrix of the transi-
tion probabilities among the input states. Let the coordinate of a point be de-
noted by (x, y) in 1 < x < m, 1 < y _ n. With each point (x, y) let there be
in general associated 65 input states. Hence we can define now a matrix of the
transition probabilities among the total input states. Each input state can be
given by the coordinate (x, y, u), where (x, y) is the coordinate of the point and
u is the order number of the input state within 65 input states associated with
the point (x, y).

Let our ordering of the states be such that an input state (x, y, u) is ranked in
the [65(x - l)(y - 1) + 65(x - 1) + u]th order. It is noted that each of all
the possible output states associated with the point (x, y) is transformed to an
input state associated with a certain point (x', y') belonging to the set of points
(x -+ 1, y), (x i 2, y), (x, y i 1), and (x, y i 2).
Consequently it is obvious that our matrix of the transition probabilities has

the form of the matrix (4.13) with the specifications of (4.14) and with the dif-
ference that a(t) bjf) b"

I cYn, c}(" fl), f t) gl) and gj(i) are now not the constants
but in general the 65 X 65 matrices respectively.

9. Simplified aspects of global behaviors of controlling procedures
In section 8 a transition matrix is given which will enable us to describe the

whole aspect of certain controlling procedures in their global behaviors as well
as in their local behaviors. However, these complete descriptions do not give us
direct observations on the global behaviors of our controlling procedures, and
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some device must be introduced to facilitate us in obtaining a simplified and
sufficiently approximative picture of controlling procedures. A few techniques
are indicated in this section for this purpose.

(1) Simplified and approximate transition matrix regarding transitions among
the vector directions. In the previous sections detailed descriptions of decision
functions appealing to statistics based upon observations at different controlled
states were given in which both translations and rotations were taken into
consideration. These considerations lead us to neurons governing translations
and rotations without memory or with memory and to a net system of such
neurons located at each point in the two-dimensional lattice domain. In their
simpler cases transitions are concerned with the points in that domain, and in
their more complicated cases we have to discuss transitions among the input
states each of which can be characterized by the location of the input point,
the directions and the lengths of two component vectors. Two input states
having the same direction and the same length of two corresponding vectors
have to be distinguished from each other provided they have different input
points. Similar remarks are valid for the formulation in section 7. These dis-
tinctions are required in general because two such states may have in general
different matrices of transition probabilities, so far as their input points are not
identical. In spite of these general assertions, a device may sometimes give a
substantial simplification of our descriptions of controlling procedures.

Let us now be concerned with transitions among vector directions. F'or
instance, we now have the identity relations to the effect that for any pair of
(x', y') and (x, y)

(9.1) th(X, y) = hJ(X, y'),
(9.2) 7rh(x, y) = h(x', y'),
for h = 1, 2, 3, 4. In addition to these, the conventions used in (7.1) to (7.4)
simplify our situation so that our concern with vectors can now be reduced to
four vector directions: (0, 0) - (1, 0); (0, 0) - (0, 1); (0, 0) -* (-1, 0);
(0, 0) -* (0, -1), which we denote tentatively by 1, 2, 3, and 4. Vector direc-
tions will not give us, however, any substantial contributions unless the corre-
sponding elements of the transition matrices associated with every point of the
interior of a certain domain are all equal to each other, that is, matrices of
transition probabilities have space homogeneity. This condition is rather too
severe to be satisfied throughout the whole domain of the state points under
consideration. Nevertheless, a restriction of our state points to some suitable
subdomain may secure us the condition for an approximate space homogeneity.
Under this assumption we may and shall confine our attention to the transitions
among the four vector directions.

Let us assume that an approximate space homogeneity is valid within a cer-
tain subdomain, that is, as our reference state point moves within the interior
of the subdomain, very small numerical changes of elements of the transition
matrices are expected so that a common constant transition matrix (independent
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of its reference state point) can be used within the interior of the subdomain, in
order to give an approximate picture of our controlling procedures in its sufficient
accuracy of approximation.

Let us begin with examples for which our device will serve to simplify observa-
tions on the successive behavior of our controlling procedures.
EXAMPLE 8. Prevailing flows with rotations. Let the matrix of transitions

among four vector directions be given by

1 2 3 4
1 [a b+u c d

(9.3) T =
2

- a b c +c u d+u
T3 Iab d u

4(32 a+u b c d

One of the possible interpretations may be given as follows. There is a pre-
vailing flow of transitions with a fixed set of probabilities a, b, c, d valid for all
points within the interior of the subdomain where (a, b, c, d) are independent
of the previous direction along which we have proceeded just before we reach
the point.
On the other hand, there is one additional possibility of changing the previous

direction into another one such that our particle will move along the vector
direction (h + 1) with a certain probability u when it has come along the vector
direction h. This possibility may imply in some instances the admissibility of
rotations. We have a, b, c, d, u 2 0 and a + b + c + d + u = 1. By virtue of
the direct applications of simple Markov chains we can handle the various types
of controlling problems. For instance, the evaluation of the mean number of
steps for our particle to attain the boundary of our subdomain for the first time
is fundamentally important for controlling procedures. It is noted that since
we have

(9.4) AT(X) IXE - T = (1 - 1)(X3 + X2U + XU2 + U3)
we can write out by the method in our previous paper [20] the iteration Tn by
means of the characteristic values of T, which will give us direct and explicit
evaluations of the probabilities of absorption at the boundary. Our example
includes the particular cases when u = 0 and u = 1 respectively. When u = 1,
there happens a route of cyclic rotations around four states.
EXAMPLE 9. Prevailing flows with rotations under sequential experiments.

Let the translation matrix of transitions among four vector directions and
stopping of steps be given by

0 1 2 3 4
0 ee+u a b c dl
1 e a b+u c d

(9.5) T = 2 e a b c+ u d
3 e a b c d+u
4 _e a+u b c d J
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The maini difference between the presenit example and the previous example 8
is the introduction of the new degenerate vector 0 which means no step in any
direction. The transition probabilities (e + u, a, b, c, d) may be based upon our
decision rule regarding our experiments to decide (i) whether we proceed in any
vector direction or we remain at the same point and (ii) to which direction we
proceed in the former case. Consequently, the probability e + u can be under-
stood as implying the possibility that we appeal to a new experiment when we
are placed in the situation 0. Other aspects of our interpretationis of the matrix
are similar to those in example 8. We have now

(9.6) a + b + c + 1 + + u .

It is to b)e iioted that

(9.7) AT(X) = IXE' - T7 = (X - l)(X4 - a4)

is different from (9.-i). B3esides any answers to the questions to be discussed
about example 8, we may have to discuss the mean numbers of replicated
experiments for our particle to reach the boundary of the subdomain for the
first time.

(2) Transitions among global subdomain.s. In order to have information
about the global behavior of transitions of our states, it is sufficient to separate
the set of all states into a system of subsets of states. For instance the states
corresponding to the mn points in the domain 1 < x < m, 1 < y _ n are
divided into the system of a, B, C, D, 8, 3, 9, 3C, and x, as shown in table VII.

TABLE VII

SUBDIVISION OF THE W\HOLE DOMAIN

l< x _ i1, l < y _ t

INTO NINE SUBDOMAINS

S C 5__

As an illustration let us consider example 3 with the matrix of transition prob-
abilities given in (4.4) to (4.7), which gives us its expression with reference to
the present separation as shown in table VIII. Here the 0 denote the matrices
whose elements are all zero, while the * mean certain matrices which are not 0.
In table VIII the matrix corresponding to the combination of 3c in the column
and 'y in the row will be written by Jcj; such as aa, aD, 3:D, 5WC, 3F and so on.
The contents of each of these matrices aa, M. -. ¢x and ax can be readily
obtained by means of description in example 3. Let us now discuss the transition
from the set Mi + O + * * * + q + x to the set G. For this purpose the absorbing
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TABLE VIII

TRANSITION MATRix AmoNG NINE: SUBDOMAINS

ai BS e 9 5 5

a * 0 * 0 0 * 0 *

(B 0 * * 0 0 0 0 * 0
C 0 0 0 0 0
fD 0 0 * 0 0 0 *

9 0 0 0 0 * * 0 * 0
3C * 0 0 0 * * * 0 0

0 0 0 0 0 *
& 0 0 * 0 0 * 0

* 0 0 * 0 0 * 0 *

Markov chain is introduced in which (t is defined to be an absorbing boundary.
Its transition matrix therefore has the form

(9.8) Ta =[I 0

where I is the identity matrix,

0

(9.9) R =
0

and
(B (Be 0 0 0 0 mB8 0
elm Ce eD 0 0 0 0 0
o De DD 0 0 0 0 wIY

(9.10) Q o o 0 99 93C 0 9R8 0
(9.10) ~~0 0 0 3C9 5C3C je'W 0 0

0 0 0 0 'wc3 3CaC 0 JCoF
863 0 0 89 0 0 88 0
0 0 5D 0 0 5F3C 0 5;F

Then the fundamental matrix for our absorbing chain is defined by
(9.11) N = (I -Q).

In order to have an expression for the inverse of I - Q, let us write

-K, 0 LI ~La -
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where

FI-& -G8C 0O
K, =D _ ,ICt

_ I-DC I _

0
(9.13)K2[ c933[ i

_0 3esc I-SC3C_0

(9.14)0 = = = O , L4=

(9.15) Ml = (-ES 0 0), M3 = (-89 0 0)
M2= (0 0 -YO), M4= (O 0 -Sc)

K - [K, 01 L- [L, L3
(9.16) Lo K2= - LL2 L4N I

In consequence, we have

(9.17) N = (I- Q)-1 = [K-1 + XZ-1Y - XZ-']

where X = K-1, Y = MK-1, and Z = N - MK-'L, provided that Z-1 exists.
Consequently, the problem of finding the inverse of the matrix I - Q is now
reduced to that of evaluating Z-, Klf', and Kr'. We can proceed to the further
reduction of our problem to the evaluation of the inverses of matrices of smaller
orders. These procedures may be said to be intolerably tedious and laborious
for a general transition matrix. It is however to be expected that, for our par-
ticular transition matrix, tremendous simplification may sometimes be given in
calculating its minor submatrices.

10. Game-theoretic approach and application of Monte Carlo method

Our formulation of successive processes of statistical optimizing procedures
in terms of the Markov chains implies the necessity for establishing some prob-
abilistic theorems by which to make clear not only the local but also the global
behavior of iterated products of the transition matrix P. Results obtained in
our previous paper [20] which are based on reduction theorems and analysis of
routes may serve to facilitate the calculation of the characteristic roots of
A(x) 8XE - PI = 0. However, in addition to probabilistic approaches there
is a possibility of attacking our problem from game-theoretic approaches. This
derives from the fact that the transition matrices now under consideration are
determined by two conditions. The first condition is concerned with our process
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of statistical optimizing procedures, that is to say, with our chosen strategy.
The second condition is determined by a set of populations associated with each
point of the one- or two-dimensional lattice set on which we have incomplete
information. This situation may permit us to formulate a game-theoretic
approach in which one player is the control engineer while the other is nature,
who chooses a setup of populations. For instance, in the case of a two-dimensional
lattice let a(x, y) be the population mean of a population associated with the
lattice point (x, y). Under our formulation we have incomplete information
about a(x, y), irrespective of whether the assumption a(x, y) may be a deter-
ministic function or a sample function from some stochastic processes. In this
sense our solution to the problem of giving a strategy for choosing a process of
statistical control among the set of possible processes may be adequately formu-
lated under a decision function approach which takes into consideration game-
theoretic aspects and which may belong to stochastically approximative analysis
in the sense of [18].

Experimental approach also will be suggestive in developing our theoretic
considerations for the comparison of the merits and deficiencies of various
optimizing procedures. Some experimental results are given by Hirai, Asai, and
Kitajime [11] which treat the case when a(x, y) = (322 - x2 - y2)1/2 and no
observational errors are involved. The introduction of observational errors in
such model experiments may lead us to an application of the Monte Carlo
method, which is probably indispensable to our theoretic considerations in
giving us empirical grounds leading to conjectures as to the asymptotic behavior
of the powers of P.
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