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Chapter 7

Deformation spaces of hyperbolic
structures on 2-orbifolds: Teichmüller

spaces of 2-orbifolds

In this section, we define the Teichmüller space of 2-orbifolds as the deformation

space of hyperbolic structures. (In some sense, the space should be called a Fricke

space when we are talking about hyperbolic structures but not conformal structures,

following Goldman.) We discuss the geometric cutting and pasting operations and

the relation to the deformation spaces. The decompositions of 2-orbifolds into

elementary 2-orbifolds are introduced. Elementary 2-orbifolds are pieces that cannot

be decomposed further into negative Euler characteristic 2-orbifolds. We discuss the

deformation spaces for elementary 2-orbifolds. (See the beginning of Section 7.3 for

definition of elementary 2-orbifolds.) Using the geometric construction, we describe

the Teichmüller spaces of 2-orbifolds of negative Euler characteristic. This follows

Chapter 5 of the book [Thurston (1977)]. (See also the papers [Matsumoto and

Montesinos-Amilibia (1991); Ohshika (1985)].)

Recall that the boundary of an orbifold is a suborbifold. The boundary compo-

nent of a 2-orbifold is either a boundary full 1-orbifold or a simple closed curve.

Theorem 7.0.1 (Thurston). Let Σ be a closed 2-orbifold of negative Euler char-

acteristic. The deformation space of hyperbolic structures T (Σ) is homeomorphic

to an open cell of dimension

−3χ(XΣ) + 2k + l + 2n

where k is the number of cone-points, l the number of corner-reflectors, and n is

the number of boundary full 1-orbifolds of Σ.

7.1 The definition of the Teichmüller space of 2-orbifolds

A hyperbolic structure on a 2-orbifold is a geometric structure modeled on H2 with

the isometry group PSL(2,R). (Or it should be the disk B2 ⊂ RP2 with PO(1, 2)

acting on it more closely to our spirit.) The Teichmüller space T (M) of a 2-orbifold

M is the deformation space of hyperbolic structures on the 2-orbifold with geodesic

boundary. As before, we reinterpret the space as
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• the set of equivalence classes of diffeomorphisms f : M → M ′ for a 2-

orbifold M and a hyperbolic 2-orbifold M ′ with geodesic boundary where

• f : M →M ′ and g : M →M ′′ for hyperbolic 2-orbifolds with geodesic are

equivalent if there exists a hyperbolic isometry h : M ′ →M ′′ so that h ◦ f
is isotopic to g.

A necessary condition for a 2-orbifold to have a hyperbolic structure with

geodesic boundary is that the orbifold Euler characteristic is negative: Let the

2-orbifold have a hyperbolic structure with geodesic boundary. The 2-dimensional

Gauss-Bonnet theorem states that the integral of a Gaussian curvature times the

area form is −2π times the Euler characteristic. (See Theorem 4.4.4 in Chapter 4.)

We can prove the sufficiency by decomposition into elementary 2-orbifolds and

finding explicit hyperbolic structures on these and pasting back the results. This

process will be clear from the proof of Theorem 7.0.1 in this chapter.

7.2 The geometric cutting and pasting and the deformation spaces

Recall that the interior and boundary of a 2-orbifold in the orbifold sense may be

different from the interior and boundary of the underlying surface. (See Remark

4.2.5.) Given a compact hyperbolic 2-orbifold Σ with geodesic boundary, we have

that a geodesic segment is either transversal to the boundary components or is

contained in it. A compact geodesic 1-suborbifold l without boundary points in

Σ either is a closed geodesic in the interior or entirely in the silvered boundary

component of |Σ| or is a segment with two silvered points as the end points which

are either at silvered edges or cone-points of order two. The topological interior l is

either in the interior of the topological interior of |Σ| or entirely in the boundary of

|Σ|. The geometric isomorphism classes are classified by length and the topological

type. Such a geodesic 1-orbifold is covered by a closed geodesic in some cover of

the 2-orbifold, which is a surface. (See Section 5.1.2 also.)

Note that geodesic 1-suborbifolds are always essential. (See Section 5.2.2.2)

The Teichmüller space T (I) for a 1-orbifold I is defined as the product of the

space of lengths R+s for all components of I. We technically define T (∅) as a

singleton.

7.2.1 Geometric constructions.

Recall from Chapter 5, the topological splitting and pasting constructions. In this

chapter, we will do these geometrically.

Recall from Chapter 5: Let Σ be a 2-orbifold with boundary. The pasting map

f is defined on open neighborhood U in an ambient open 2-orbifold S′ of the union

of the associated boundary components in ∂Σ. Let S̃′ be the universal cover of S′.
Now, f satisfies the equation f̃ ◦ ϑ = ϑ′ ◦ f̃ where f̃ is a lift of f defined on Ũ the
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inverse image of U in S̃′ and ϑ and ϑ′ are respective deck transformations acting

on two components of the inverse images in S̃′ of boundary components of ∂Σ to

be pasted by f . In the hyperbolic structure case, it is necessary and sufficient that

f is an isometry and the boundary components to be glued have the same length.

Recall that a slide reflection of H2 is an isometry acting on a geodesic l as a

nontrivial translation but exchanges the two components of H2 − l.
We will describe how to construct hyperbolic structures on a larger 2-orbifold

from smaller ones. Recall the type of topological constructions with 1-orbifolds.

Suppose that they are boundary components of 2-orbifolds whose components have

negative Euler characteristics. We can do the following operations:

(A)(I) Pasting or crosscapping along simple closed geodesics.

(A)(II) Silvering or folding along a simple closed geodesic.

(B)(I) Pasting along two geodesic full 1-orbifolds.

(B)(II) Silvering or folding along a geodesic full 1-orbifold.

Now we suppose that the simple closed curves and 1-orbifolds are geodesic and try

to obtain geometric versions of the above.

Suppose that the involved 1-orbifolds are geodesic boundary components of a

hyperbolic 2-orbifold. We will look at the inverse image of the 1-orbifold in the

universal cover. We consider each component of the inverse image. The above

operations correspond to reglueing these components with respect to each other.

(A)(I) For pasting two closed geodesics, it is necessary and sufficient that their

lengths match. Also we have an R-amount of isometries to do this. They

will create hyperbolic structures inequivalent in the Teichmüller space.

The cut and pasting-back constructions are so-called Fenchel-Nielsen twist.

(Here the lengths of two closed geodesics have to be the same. ) By tak-

ing very good covers, the inequivalence reduces to a classical fact. (See

[Johnson and Millson (1987)] for example.)

(A)(I) For cross-capping, we have a unique isometry. The isometry has to be a

unique slide reflection of distance equal to the half the length of the closed

geodesic. (There is no condition on the boundary component lengths.)

(A)(II) For folding a closed geodesics, we have an R-amount of isometries to do

this. They will create hyperbolic structures inequivalent in the Teichmüller

space. The choice depends on the choice of two fixed points of the pasting

map. The distance is half of the length of the closed geodesic. (There is no

condition on the boundary component.) The inequivalence can be shown

as in (A)(I) by double-covering the 2-orbifold so that the folded part lifts

to a simple closed curve.

(A)(II) For silvering, we have a unique isometry to do this; that is, the reflection

about the boundary component of the universal cover will do. (There is no



July 30, 2012 15:46 World Scientific Book - 9.75in x 6.5in msjbooksub0729

124 Geometric structures on 2-orbifolds: Exploration of discrete symmetry

! ’

’""

l’l

!

Fig. 7.1 Pasting: The actions here are isometries on the hyperbolic plane seen in the Klein model.
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Fig. 7.2 Folding: The actions here are isometries on the hyperbolic plane seen in the Klein model.

condition on the boundary component.)

(B)(I) For pasting along two geodesic full 1-orbifolds, it is necessary and sufficient

that their lengths match. We have a unique way to do this. The lengths of

the orbifolds have to be the same.

(B)(II) For silvering and folding, we have a unique isometry to do this. (No condi-

tion)

7.3 The decomposition of 2-orbifolds into elementary 2-orbifolds.

Suppose that Σ is a compact hyperbolic 2-orbifold with χ(Σ) < 0 and geodesic

boundary.

Simple closed geodesics and/or simple geodesic segments with endpoints in sin-

gular locus in a hyperbolic 2-orbifolds intersect minimally; i.e., they meet the mini-

mal number of times that they can up to isotopies: a disk bounded by two geodesic

segments cannot exists in Σ.
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Fig. 7.3 Pasting full 1-orbifolds. The actions here are isometries on the hyperbolic plane seen in

the Klein model.

Let c1, . . . , cn be a mutually disjoint collection of essential simple closed curves

or full 1-orbifolds so that the orbifold Euler characteristic of the completion of each

component of Σ − c1 − · · · − cn is negative. Then c1, . . . , cn are isotopic to simple

closed geodesics or geodesic full 1-orbifolds d1, . . . , dn respectively where d1, . . . , dn
are mutually disjoint. Here ci is isotopic to di for each i, and hence ci is a full

1-orbifold if and only if di is one. Also, the isotopy could be chosen simultaneously.

See [Choi and Goldman (2005)] for details.

We call such a collection decomposing 1-orbifolds.

For example, a 2-orbifold of negative Euler characteristic based on a Möbius

band admits a decomposition to an orbifold of negative Euler characteristic based

on annulus by decomposing along a simple closed curve in the Möbius band.

Thus, we can decompose Σ into 2-orbifolds of negative Euler characteristic that

cannot be applied any more geometric splitting operations; that is, there are no more

1-obifolds decomposing it further into 2-orbifolds with negative Euler characteristic.

We call such 2-orbifolds elementary 2-orbifolds.

A neatly embedded full 1-orbifold in a 2-orbifold is of mirror-type if it ends at

mirror points only, is of cone-type if it ends at cone-points only, and is of mixed-type

if it ends at a mirror point and a cone-point.

Theorem 7.3.1 (Thurston). Let Σ be a compact hyperbolic 2-orbifold with

χ(Σ) < 0 and geodesic boundary. Then there exists a mutually disjoint collection

of simple closed geodesics and mirror- or cone- or mixed-type geodesic 1-orbifolds

so that Σ decomposes along their union to a union of elementary 2-orbifolds with

geodesic boundary or such elementary 2-orbifolds with some boundary 1-orbifolds

silvered additionally.

For the proof, see Chapter 5 in [Thurston (1977)] and the proof of Theorem 4.3 of

[Choi and Goldman (2005)]. The basic strategy is as follows:
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• For simplicity assume that Σ is closed and has an orientable surface as the

underlying space.

• We can take a disk that contains all the cone-points of Σ unless |Σ| is

homeomorphic to a 2-sphere. If there are two cone-points of order two,

then we take a full 1-orbifold l ending there. Then we decompose Σ along

l to obtain a 2-orbifold with a closed geodesic boundary. Thus, we can

assume that all cone-points have order > 2 with at most one exception.

Unless there is just one cone-point, we can find a closed geodesic bounding

all of the cone-points. Then we can decompose the surface further along

the closed geodesic to obtain a pair-of-pants, an annulus with a single cone-

point, or a disk with two cone-points one of which has order ≥ 3.

• For each boundary component of Σ with corner-reflectors, we can take a

closed geodesic homotopic to it bounding a 2-orbifold with negative Euler-

characteristic based on an annulus unless Σ is a disk bounded by silvered

edges and with corner-reflectors with at most one-cone point.

• The results are much easier to decompose.

7.3.1 Elementary 2-orbifolds.

The underlying space of an elementary 2-orbifold has to be homeomorphic to a 2-

sphere, a 2-disk, an annulus, or a pair-of-pants since otherwise there is an essential

simple closed curve in the interior not freely homotopic to a boundary component

just by the topology.

Note that we can also alter some boundary components by silvering it and giving

corner-reflector structure of order 2 at the endpoints. The results are still considered

to be an elementary 2-orbifold of the same type.

We remark that a Möbius band with some singularities is not elementary as we

can use a simple closed geodesic to decompose it further.

We classify elementary 2-orbifolds up to diffeomorphisms by Theorem 5.1.1 and

the above decomposition methods.

(P1) A pair-of-pants. (χ = −1.)

(P2) An annulus with one cone-point of order n. (A(; n), χ = −1 + 1/n. )

(P3) A disk with two cone-points of orders p, q, one of which is greater than 2.

(D(; p, q), χ = −1 + 1/p+ 1/q.)

(P4) A sphere with three cone-points of order p, q, r where 1/p + 1/q + 1/r < 1.

(S2(; p, q, r), χ = −1 + 1/p+ 1/q + 1/r)

(A1) An annulus with one boundary component a union of a singular segment and one

boundary-orbifold. (We call it two-pronged crown and denote it by A(2, 2; ),

and we have χ = −1/2. It has two corner-reflectors of order 2 if the boundary

components are silvered.)
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(P1)

(A4)

(D4)(D3)(D2)(D1)

(A3)(A2)
(A1)

(P4)(P3)(P2)

Fig. 7.4 The elementary orbifolds. Arcs with dotted arcs next to them indicate boundary com-

ponents. Black points indicate singular points.

(A2) An annulus with one boundary component of the underlying space in a singular

locus with one corner-reflector of order n, n ≥ 2. (The other boundary com-

ponent is a closed curve which is the boundary of the 2-orbifold. We call it a

one-pronged crown and denote it by A(n; ), and χ = −(n− 1)/2n.)

(A3) A disk with one singular segment and one boundary 1-orbifold and a cone-point

of order n greater than or equal to three (D2(2, 2; n), χ = 1/n− 1/2.)

(A4) A disk with one corner-reflector of order m and one cone-point of order n so that

1/2m + 1/n < 1/2 (with no boundary orbifold). (We have n ≥ 3 necessarily,

and denote it by D2(m; n), and we have χ = −1/2 + 1/n+ 1/2m.)

(D1) A disk with three silvered edges and three boundary 1-orbifolds. No two bound-

ary 1-orbifolds are adjacent. (hexagon, D2(2, 2, 2, 2, 2, 2; ), χ = −1/2)

(D2) A disk with three silvered edges and two boundary 1-orbifolds on the boundary

of the underlying space. Two boundary 1-orbifolds are not adjacent, and two

silvered edges meet in a corner-reflector of order n, and the remaining silvered

one a segment. (pentagon, D2(2, 2, 2, 2, n; ), χ = −1/2(1− 1/n). )

(D3) A disk with two corner-reflectors of order p, q, one of which is greater than or

equal to 3, and one boundary 1-orbifold. The singular locus of the disk is a union

of three silvered edges and two corner-reflectors. (quadrilateral, D2(2, 2, p, q; ),

χ = −1/2 + 1/2p+ 1/2q).)

(D4) A disk with three corner-reflectors of order p, q, r where 1/p + 1/q + 1/r < 1

and three silvered edges (with no boundary orbifold). (triangle, D2(p, q, r; ),
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χ = −1/2 + 1/2p+ 1/2q + 1/2r.)

7.4 The Teichmüller spaces for 2-orbifolds

7.4.1 The strategy of the proof

We first prove:

Proposition 7.4.1. For each elementary 2-orbifold S, T (S) is homeomorphic to

T (∂S), where T (∂S) is the product of R+ for each component of ∂S corresponding

to the hyperbolic-metric lengths of components of ∂S.

Note here the rigidity of some closed elementary orbifolds, i.e., elementary orbifolds

of type (P4), (A4), and (D4).

Then to obtain the deformation space of a bigger 2-orbifold, we use the above

result about the Teichmüller spaces under geometric decompositions.

7.4.2 The generalized hyperbolic triangle theorem

A generalized triangle in the hyperbolic plane is one of following:

(a) A hexagon: a disk bounded by six geodesic sides meeting in right angles labeled

A, β,C, α,B, γ.

(b) A pentagon: a disk bounded by five geodesic sides labeled A, β,C, α,B where

A and B meet in an angle γ, and the rest of the angles are right angles.

(c) A quadrilateral: a disk bounded by four geodesic sides labeled A,C,B, γ where

A and C meet in an angle β, C and B meet in an angle α and the two remaining

angles are right angles.

(d) A triangle: a disk bounded by three geodesic sides labeled A,B,C where A and

B meet in an angle γ and B and C meet in an angle α and C and A meet in

an angle β.

For generalized triangles in the hyperbolic plane, we have

(a) coshC =
coshα coshβ + cosh γ

sinhα sinhβ

(b) coshC =
coshα coshβ + cos γ

sinhα sinhβ

(c) sinhA =
cosh γ cosβ + cosα

sinβ sinh γ

(d) coshC =
cosα cosβ + cos γ

sinα sinβ
(7.1)

In (a), (α, β, γ) can be any positive numbers. In (b), (α, β) can be any positive

numbers and γ in (0, π/2]. In (c), (α, β) can be any positive real numbers in

(0, π/2] satisfying α + β < π, and γ any real number. In (d), (α, β, γ) can be any
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Fig. 7.5 A hexagon, a pentagon, a quadrilateral, and a triangle in the hyperbolic space with our

labels.

real numbers in (0, π/2] satisfying α+β+γ < π. One can use continuity arguments

and some geometry to verify these. (These facts are shown in the book [Ratcliffe

(2006)] for example.)

7.4.3 The proof of Proposition 7.4.1.

The following lemmas imply Proposition 7.4.1.

Lemma 7.4.2. For elementary 2-orbifolds of type (D1), (D2), (D3), and (D4),

silvered edges are labeled by the capital letters A,B,C. Assign to each vertex an

angle of the form π/n where n > 1 is an integer, for which it is a corner-reflector of

that angle. Each edge labeled by Greek letters α, β, γ is a boundary full 1-orbifold.

Then in cases (D1), (D2), (D3), and (D4), F : T (P ) → T (∂P ) for each of the

above orbifolds P is a homeomorphism; that is, T (P ) is homeomorphic to an open

cell of dimension 3, 2, 1, or 0 respectively.

Proof. For (D1), we simply notice that we can assign the boundary lengths α, β, γ

freely using the equation (a). For (D2), assign γ = π/n. Then α and β can be

freely assigned. For (D3), assign α = π/p and β = π/q for q > 2. Then γ can

be freely assigned with A and B obtained by equation (c). Then the construction

of quadrilateral is done. For (D4), we assign α = π/p, β = π/q, γ = π/r where

1/p+ 1/q + 1/r < 1. Such a triangle always exists uniquely. �

For each of hyperbolic elementary orbifolds of type (P1),(P2),(P3), and (P4),

there exists an isometric involution acting on each boundary component and the
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quotient orbifold is of type (D1),(D2),(D3), and (D4): The involution can be con-

structed explicitly by considering the fundamental domains. That is, we draw short-

est geodesics between the appropriate boundary components and/or cone-points to

obtain an isometric pair of hexagons, one of pentagons, one of quadrilaterals and

one of triangles. Then each involution is given by sending the interior of one domain

to the other fixing the geodesics.

Conversely, a hyperbolic orbifold of type (D1)-(D4) is covered by one of type

(P1)-(P4) by an orientable double-cover construction of Section 4.6.1.2. The hyper-

bolic structure is simply obtained by local-lifts of the metrics on ones on (D1)-(D4)

or induced by the covering map. (See Sections 6.1 and 2.3.1.) Hence in fact, there is

a homeomorphism between the deformation spaces T (S)→ T (S′) where S double-

covers S′. Furthermore T (∂S)→ T (∂S′) is a homeomorphism in these cases.

Hence, F : T (S)→ T (∂S) is a homeomorphism for the type (P1)-(P4) orbifolds

S.

Lemma 7.4.3. Let S be an elementary 2-orbifold of type (A1), (A2), (A3), or

(A4). Then F : T (S) → T (∂S) is a homeomorphism. Thus, T (S) is an open cell

of dimension 2, 1, 1, or 0 when S is of type (A1), (A2), (A3) or (A4) respectively.

In case (A4), T (S) is a singleton.

Proof. Here again elementary orbifolds of type (P1), (P2), (P3), and (P4) double-

cover orbifolds of type (A1), (A2), (A3), and (A4). Here the involutions are different

from the above ones. For (A1), (A3), and (A4), the involutions are about vertical

axes and the perpendicular plane containing the vertical axis respectively. (See Fig-

ure 7.4.) For (A2) the involutions are about the essential simple closed curve passing

the cone-point (See Figure 7.4.) The involutions are realized as isometries uniquely

by considering the fundamental domains by drawing shortest geodesics of appro-

priate relative homotopy classes. This is again sufficient to imply the conclusions

here. �

7.4.4 The steps to prove Theorem 7.0.1.

We say that a 2-orbifold Σ, each component of which has negative Euler character-

istic, is in a class P if the following hold:

(i) The deformation space of hyperbolic structures T (Σ) is homeomorphic to an

open cell of dimension

−3χ(XΣ) + 2k + l + 2n

where k is the number of cone-points, l the number of corner-reflectors, and n

is the number of boundary full 1-orbifolds.

(ii) There exists a fibration

F : T (Σ)→ T (∂Σ)
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with fibers homeomorphic to an open cell of dimension dim T (Σ)−dim T (∂Σ).

Here F is the map induced by the restriction of the hyperbolic structures to

the metric structures of ∂Σ.

First of all, elementary orbifolds satisfy these properties.

Let Σ be a compact 2-orbifold whose components are compact orbifolds of neg-

ative Euler characteristic, and it splits into an orbifold Σ′ in P. We suppose that

(i) and (ii) hold for Σ′, and show that (i) and (ii) hold for Σ. Since Σ eventually

decomposes into a union of elementary 2-orbifolds where (i) and (ii) hold, we would

have completed the proof of Theorem 7.0.1 by Proposition 7.4.1.

The proofs of the above statements follow by going through each of the con-

structions. (For details, see [Choi and Goldman (2005)].) The dimension counting

here is easy by knowing that taking diagonal drops dimensions as expected.

(A)(I)(1) Let the 2-orbifold Σ′′ be obtained from pasting along two closed curves

b, b′ in a 2-orbifold Σ′. The map resulting from splitting

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a principal R-fibration, where ∆ is the subset of T (Σ′) where b and b′ have

equal lengths. Then R acts by the twisting the gluing of b and b′ by isometries.

(The operations of cutting along a closed geodesic and re-gluing with nontrivial

twists are called Fenchel-Nielsen twists in the hyperbolic surface theory.) Since

F : T (Σ′)→ T (∂Σ′)

is a fibration, F|∆ is a fibration onto ∆′ the subset of T (∂Σ′) where b and b′

have the same lengths. By forgetting about b and b′, we obtain an R-fibration

∆′ → T (∂Σ′′). Composing with SP, we obtain a fibration

F : T (Σ′′)→ T (∂Σ′′)

with fibers homeomorphic to an open cell of the desired dimension.

(A)(I)(2) Let Σ′′ be obtained from Σ′ by cross-capping. The resulting map

SP : T (Σ′′)→ T (Σ′)

is a homeomorphism. There is an R-fibration T (∂Σ′)→ T (∂Σ′′) by forgetting

the boundary component involved in cross-capping. By composing with SP,

we obtain the fibration

T (Σ′′)→ T (∂Σ′′).

(A)(II)(1) Let Σ′′ be obtained from Σ′ by silvering. The clarifying map

SP : T (Σ′′)→ T (Σ′)

is a homeomorphism.
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(A)(II)(2) Let Σ′′ be obtained from Σ′ by folding a boundary closed curve l′. The

unfolding map

SP : T (Σ′′)→ T (Σ′)

is a principal R-fibration.

For each of these, the fibration designated by F can be shown to exist as in (A)(I)(2)

above.

(B)(I) Let Σ′′ be obtained by pasting along two full 1-orbifolds b and b′ in Σ′. The

splitting map

SP : T (Σ′′)→ ∆ ⊂ T (Σ′)

is a homeomorphism where ∆ is a subset of T (Σ′) where the lengths of b and

b′ are equal. F is again shown to exist as in (A)(I)(1).

(B)(II) Let Σ′′ be obtained by silvering or folding a full 1-orbifold. The clarifying

or unfolding map

SP : T (Σ′′)→ T (Σ′)

is a homeomorphism. F is again shown to exist as in (A)(I)(2).

7.5 Notes

The Teichmüller theory for 2-orbifolds was created by Thurston in Chapter 5 of

[Thurston (1977)] and were written up also in [Matsumoto and Montesinos-Amilibia

(1991); Ohshika (1985)]. (See also [Kapovich (2009)].) The materials here are from

the papers [Choi (2004); Choi and Goldman (2005)]. We also mention that for

examples of the study of 3-dimensional orbifolds and their geometric structures,

one could see the books [Cooper, Hodgson, and Kerckhoff (2000); Boileau, Maillot,

Porti (2003)].


