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On the structure of special rank one groups 

Franz Georg Timmesfeld 

§1. Introduction 

A group X generated by two different nilpotent subgroups A and B 
satisfying: 

( *) For each a E A# there exists a b E B# satisfying A b = Ba and vice 
versa 

is called a rank one group. The conjugates of A (and B) are called 
the unipotent subgroup of the rank one group X and the conjugates of 
H = Nx(A) n Nx(B) will be called the diagonal subgroups. If A is 
abelian X is called a rank one group with abelian unipotent subgroups, 
abbreviated AUS. Moreover, if for each a E A# and b E B# which 
satisfy ( *) above, also 

holds, X is called a special rank one group. 

Rank one groups with abelian unipotent subgroups played a fundamental 
role in the theory of "abstract root subgroups" [Til]. Indeed by (3.18)(3) 
and (4.15) of [Til] all rank one E-subgroups occurring in a group gener­
ated by a class E of abstract root subgroups of "higher rank" are special. 
A theory of arbitrary rank one groups was developed in §2 of [Ti2]. In 
both papers one is not able to say very much about the structure of rank 
one groups, but one has to live with properties of such groups. 

By Proposition (2.1) of [Ti2] the following are equivalent: 

(i) X = (A, B) is a rank one group. 
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(ii) The group Y is doubly transitive on a set 0 with 101 2: 3, such 
that for some a E 0, Yc, contains a nilpotent normal subgroup 
A= A,., which is regular on 0\{a} and X= (A9 I g E Y). 

Namely if X = (A, B) is a rank one group one may set 0 = Ax and 
Y =X. Then it is easy to see that Y satisfies (ii). The reverse direction 
is also immediate. This shows that the notion of rank one groups and 
groups with a split EN-pair ofrank one are equivalent. (Since Nx(A) = 

AH, An H = 1, X has a split EN-pair of rank one!) 

Moreover, if X= (A, B) is a rank one group, for given a E A# the ele­
ment bE B# satisfying Ab = Ba is by (2.2) of [Ti2] uniquely determined 
and so will be called b(a). Further, if for given bE B# we call a(b) the 
unique element of A# satisfying Ba(b) = Ab, then the maps 

a---+ b(a), b---+ a(b) 

are bijections of A# onto B# resp. B# ---+ A#. If we denote by x 
both maps, then xis a bijection of A# onto B#, B# onto A# satisfying 
x 2 = id and 

With this notation we can formulate the main results of this note: 

Theorem 1. Let X = (A, B) be a special rank one group with A US. 
Then the following hold: 

(a) Either 
(i) A is an elementary abelian p-group for some prime p. 

or (ii) A is torsionfree and divisible. 
(b) For all a E A# and bE B# we have 

where in case (i) n E IN with (p, n) = 1, while in (ii) n E IN is 
arbitrary. 

(Here a11n denotes the unique a E A with a;n =a!) 

Theorem 2. Let X = (A, B) be a special rank with A US. Then one of 
the following holds: 

(a) If A is an elementary abelian p-group, then (a,b(a)) ~ (P)SL2 (p) 
for each a E A# (and of course also (b, a(b)) ~ (P)SL2 (p), bE 
B#!) 
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(b) If A is torsionfree and divisible, a E A# and b = x(a) E E# set 

A(a) amfn I m,n E ll.,n =/:- O,a0 = 1} 

B(b) bmfn I m, nEll., n =/:- 0, b0 = 1} 

(amfn is well-deft ed by amfn = (a1 fn)m and Theorem 1). Then 
A( a)~ (<Q, +) ~ (b) and X(a) =(A( a), B(b)) is a factor group 
of the universal pe feet central extension of SL2 (<Q). 

Here (P)SL2 denotes any center factor group of SL2 • It will beshown in 
§2 that the universal per£ ct central extension of SL2 (k), k a field with 
lkl > 4 and lkl =1- 9, is a pecial rank one group with AUS. So in some 
sense, theorem 2 is the b st possible. On the other hand, as the large 
list of examples in §2 sh ws, it seems unlikely that one can determine 
the exact structure (iso orphism type) of arbitrary special rank one 
groups with AUS, also t ere are some results in this direction under 
additional hypotheses. (i .. A acts quadratically on some ll.X-module, 
see Theorem 1 of [Ti3]). ince arbitrary rank one groups occur in many 
situations in group theor for example as classical groups of Witt-index 
1, see [Ti2, (2.15)], or as a subgroup generated by two opposite root­
subgroups on a Moufang building, see [Ti2, (2.12)], and since there is 
a connection between ar itrary rank one groups and special rank one 
groups with AUS (i.e. c nditions under which (Z(A), Z(B)) is special 
[Ti2, (2.9)]), I believe th t any result on the structure of special rank 
one groups is of interest. 

§2. Examples and kn wn properties of rank one groups 

In this section we discus certain examples of special rank one groups 
and state, for the conveni nee of the reader, basic properties which will 
be needed for the proof f theorem 1 and 2. These results are, with 
exception of (2.3), contai ed in §2 of [Til] and [Ti2]. 

(2.1) Example ([Til, (2. )]). Let R be a ring with one element 1 and 
L ~ R satisfying: 

(1) ditive subgroup of R. 
(2) All elements of L* e units of Rand L* is closed under inverses. 
(3) If t, c E L, then tct E L. 
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Let A {C 1 ) I c E L},B = {CD I c E L} and X = (A,B) 
(considered as subgroup of GL2 (R)!). Then X is a special rank one 
group with AUS. Further, if ILl > 3, then X is quasisimple. Abusing 
notation we call this group SL2 (L). 

A concrete example is given by: R a division ring, a an antiautomor­
phism and L = { c E R I c = ca } . 

(2.2) Example ([Ti3]). Let K be a division ring or a Cayley division 
algebra, V = K 2 and X= SL2 (K) be the subgroup of Aut(V) generated 
by the maps a(t), b(t), t E K that act on Vas follows: 

(c, d)a(t) = (c + dt, d) (c, d)b(t) = (c, ct +d). 

· Then X is a special rank one group with AUS with unipotent subgroups 
A= {a(t) It E K} and B = {b(t) It E K}. Further, if IKI > 3, then X 
is quasisimple. 
(If L ~ K satisfying (1) - (3) of (2.1) one obtains similar examples as in 
(2.1). These will be contained in a forthcoming book of the author on 
"Abstract root subgroups".) 

(2.3) Example. Let k be a field with lkl > 4 and lkl =f. 9 and let X 
be the universal perfect central extension of SL2 (k) in the sense of [St]. 
Then, by theorem 10 of [St], X is the group generated by symbols 

a(t), b(t); t E k 

subject to the relations: 

(A) a(t)a(T) = a(t+T),b(t)b(T) = b(t+T);t,T E k. 
(B) a( u)n(t) = b( -t-2u); u E k and t E k* 

where n(t) =a( -t)b(r1 )a( -t). 

(n(t) is defined slightly different as in §6 of [St]. This is necessary since 
we conjugate in the usual group-theoretic fashion, i.e. xY = y-1xy.) 

Now it is easy to see that the relations (A) + (B) are equivalent to (A) 
+(B'), where 

(B') a(u)bW 1
) = b(-r2u)a(t);u E k,t E k*. 

If now t E k* is fixed, then k = { -r2u I u E k}, whence 

Ab(r 1
) = Ba(t) for A= {a(u)}, B = {b(u)}. 

Further 
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Hence, setting b(a(t)) := b(r1 ), it follows that X is a special 
rank one group with AUS. 

Notice that if lkl = oo usually X is different from SL2 (k), see §7 of [St]. 

For the rest of this section we assume that X = (A, B) is a special rank 
one group with AUS. We state some properties of such an X, which will 
be needed for the proof of theorem 1 and 2. 

(2.4) Let 0 = Ax. Then X= (C, D) = (C, d) for all C f= D E 0 and 
dE D#. Further Nc(D) = 1. 

(2.5) For a E A# and bE B# one has 

x(a-1 ) = x(a)-I, x(b-1 ) = x(b)-1 . 

(2.6) Let N :::1 X. Then either N ~ Z(X) or X = N A. Especially X is 
quasisimple if X= X'. Moreover, X is not nilpotent. 

These results are contained in §2 of [Til]. Notice that, together with 
theorem 2, (2.6) implies that X is quasisimple, except when p ~ 3 in 
case (a)(i) of theorem 1. Now by (2.10) and (2.12) of [Til] we have 

(2.7) One of the following holds: 

(a) X~ SL2(2) or X ~ (P)SL2(3). 
(b) X= X' A, X' quasisimple and I[A, H]l > 3. 

Actually I believe that either case (a) of (2.7) holds or X is quasisimple. 
A proof of this would simplify the known simplicity proofs for classical 
and Lie-type groups, which are not defined over GF(2) or GF(3). (See 
Theorem (3.17) of [Til]!) 

§3. Proof of theorem 1 

Assume in this section that X = (A, B) is a special rank one group 
with AUS with unipotent subgroups A and B. For each n E lN let 
An= {a E A I an= 1} and An= {an I a E A} and similarly Bn,Bn. 
If for some a E A# there exists a unique a E A# with an = a we write 
a = a1fn and similarly for b E B#. We first show: 

(3.1) Suppose there exists an a E A with a2 f= 1. Then the following 
hold: 

(a) A2 = 1 and A= A2. 
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(b) For each a E A# and bEE# we have 

(X as defined in the introduction. Notice that A and B are conjugate in 
X, so (a) also holds forB!) 

Proof. It suffices to prove (b) only for a E A#, since then it holds 
by symmetry also for b E E#. 

Pick a E A# with a 2 -1- 1 and set b = x(a). Then, as ab = b-a we 
have o(b) = o(b-1 ) = o( a) -/= 2. Hence there exists a unique a E A with 
A b2 = Ba:. This implies b2 = x(a) and, since X is special, 

Further by (2.5) 

Ba (Ab)b = Bab = Bab = B(b-l)a = Ba-lb-la 

Ab-lb-la = Ab-za = Ba-la 
' 

since by (2.5) b- 1 = x(a- 1). We obtain Ba2 a-l =B. Hence a2 a- 1 E 

NA(B) and thus a2 = a by (2.4). Since a= x(b2) (as x2 = id!) we 
obtain the equation: 

(*) a= x(x(a?)2 for each a E A# with a 2 -1-1. 

Now ( *) shows that each element of A with a 2 -/= 1 is a square in A. 
This implies A = A2 U A2 . Since no group is the union of two proper 
subgroups this implies A= A2 . 

Suppose a E A# has even order. If o(a) -/= 2, then there exists by ( *) an 
a E A with a2 =a and a= x(x(a2)). Since the elements a and x(a)-1 
are conjugate in X by definition of x, this implies 

o(a) = o(x(a2 )) = o(a) 2 ' 

which obviously contradicts a2 = a. 
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This shows that each element of even order in A# has order 2. But as 
A2 =A, this implies that there exists no element of order 2 in A, whence 
A2 = 1 which proves (a). 

Now (a) and(*) imply that a= x(x(a) 2 ) is the unique element of A 
with a2 = a. Hence by definition a = a112 = x(x(a?), which proves 
(3.1). Q.E.D. 

Next we show 

(3.2) Suppose A is an elementary abelian q-group for some prime q. 
Then we have for all mE 1N with (m, q) = 1 and for all a E A#, bE B#: 

Proof. We first show, that it suffices to prove (3.2) for m ::=; q- 1. 
Namely let m = n · q + r, r ::=; q -1. Then, since A and Bare elementary 
abelian q-groups, we have x(a)m = x(aY and if x(x(aYY = a, then 
also x(x(a)m)m =a. Hence (3.2) holds form if it holds for r. 

We now prove (3.2) for m ::=; q- 1 by induction on m, the induction 
assumption m = 2 being (3.1). So suppose that (3.2) holds for n < m. 
Pick a E A# and let a= x(x(a)m). Then we have with b = x(a): 

since (3.2) holds for m - 1. 

Now, as aba- 1 = b-1, we have (a1/m-1 )ba- 1 

(al/m-1)b = ((b-1)1/m-1)a. This implies 

Ba B(a1/=-1)b = B((b-1)1/=-1)a = Ba-1(b-1)1/=-1a 

Ab-1(b-1)1/=-1a = A(b-"')1/=-1a 

by (2.5) and since 

b-1(b-1)1/m-1 = (b-1)1+1/"'-1 = (b-1)m/m-1 = (b-m)1/m-1. 

Now, since a= x(bm), (2.5) implies 

and thus applying X to this equation b-m = x(a- 1 ). We obtain: 
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by induction assumption and since x2 = id. Substituting this in the 
above equation, we obtain 

Baa-l= A(b-"')lf=-1 = Ax((a.-1)"'-1) = B(a.-1)"'-1 

and thus Ba"'a-1 = B. Hence a=a-1 E NA(B) = {1} by (2.4) and 
a"' = a. This implies a = a 11m, which proves (3.2) by definition of 
a. Q.E.D. 

(3.2) shows that Theorem 1 holds if A is an elementary abelian q-group 
for some prime q. So we assume from now on that this is not the case. 
We show next: 

(3.3) Let p be a prime and a E A with aP "I= 1. Then the following holds: 

(i) Ap = 1 and A = AP, Bp = 1 and B = BP. 
(ii) For each a E A# and bE B# we have: 

a11v = x(x(a)P), b11v = x(x(b)P). 

Proof. If p = 2 (3.3) is (3.1). Proceeding by induction assume that 
p is the smallest prime for which (3.3) is false. Then it holds for all 
primes q < p. In particular, we obtain: 

(1) If q <pis a prime, then q )'o(a) for all a EA. 

Indeed if q I o(a) for some a E A then some power of a has order q. But 
then A = Aq, since we assume (3.3) holds for q. This contradicts the 
assumption we made for the rest of section 3. 

From (1) we obtain 

(2) If n ~ p- 1 then the following hold: 
(i) An= 1 and A= An. 

(ii) a11n = x(x(a)n), b11n = x(x(b)n) for all a E A# and b E 
B#. 

Indeed (2) holds for each prime q I n. Hence immediately A= An and 
An= 1. To prove (ii) let n = q · r,(q,r) = 1 and q > 1,r > 1 and, 
proceeding by induction, we may assume that (ii) holds for q and r. 
Pick a E A# and le~ a 1 = a11r,a2 = a~fq. Then 

Further, by induction assumption: 
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a11n ai1q = x(x(al)q) = x(x(a11r)q) 

x((x(anq) = x(x(arq) = x(x(a)n) 

since x2 = id. 
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We now lead the existence of p to a contradiction. Let a E A with 
aP =/= 1. Then by (2)(ii) aP-1 =/= 1 and a11P-1 = x(x(a)P-1 ). Now we 
argue as in the proof of (3.2). Let a= x(x(a)P). (Since a and x(a)-1 
are conjugate, also x(a)P =I= 1!) Then we have forb= x(a): 

Ba AbP = Abp-lb = Balfp-lb = B(alfp-l)b 

B(b-1/p-l)a = Ba-lb-1/p-la = Ab-lb-1/p-la 

A (b-l)pfp-1 a = A (b-p)lfp-la 

Hence Ba:a- 1 = A(b-p)lfp-1 . Now arguing as in (3.2) a= x(bP) implies 

by (2.4) 

and so, since x2 = id 

Now by (2) (ii) applied to x(a-1) we obtain: 

(b-p)1/p-1 = x(a-1)1/p-1 = x((a-1)p-1). 

Substituting this in the above equation we get 

Hence Ba:Pa- 1 = B and aP =a by (2.4). This shows that we have: 

(*) x(x(a)P)P =a for all a E A# with aP =1= 1. 

Next we show, as in the proof of (3.1), that if pI o(a) for some a E A#, 
then o( a) = p. Namely if o( a) =I= p then ( *) holds for a. But since a 
and x(a)-1 are conjugate we have o(a) = o(x(a)) and thus by the same 
argument 

o(x(x(a)P) = o(x(a)P) = o(a), 
p 
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which obviously contradicts ( *). This shows that each a E A# with 
o(a) i p satisfies (o(a),p) = 1 and thus is arrpower. Hence A= ApUAP 
and so as in (3.1) A= AP. If now a E A has order p, then because of 
A = AP we know that a is a rrth power. But this is impossible since 
each element whose order is divisible by p has order p. Thus Ap = 1 
and (3.3)(i) holds. But then a11P exists for each a E A# and(*) implies 
a11P = x(x(a)P) which proves (3.3). Q.E.D. 

Now (3.3) implies that Ap = 1 and A= AP for each prime p. Namely 
if Ap i 1, then A = Ap by (3.3) contradicting our assumption. This 
shows that A is torsionfree and divisible by each prime p, whence it is 
divisible. Now it follows from (3.3)(ii) with the same argument as in the 
proof of (2)(ii) that 

a11n = x(x(at) for each a E A# and n E IN. 

Hence Theorem 1 holds. Q.E.D. 

§4. Proof of theorem 2. 

Pick a E A# and set b = x(a). If A is an elementary abelian rrgroup, 
set 

Ao = {am I m ~ p} and Bo = {bm I m ~ p} 

while in case A is torsionfree and divisible set A0 = { amfn I m, n E 

ll., n i 0} with the convention a0 = 1 and similarly B0. We treat both 
cases (a) and (b) of theorem 2 together, with the convention that, if A is 
an elementary abelian rrgroup, all exponents m, n, e, k occurring in the 
proof are elements of ll.P. Then by definition of (a) 1fn,a; E A# we have 

(am)lfn = amfn = (alfn)m, n i 0. 

Hence 

for m i 0 i n and thus: 

This implies that the map u: f/m -t alfm is an isomorphism of (<Q,+) 
(resp. (ll.p, +)) onto A0. We next show that: 

(*) x(amfn) = bn/m for all n i 0 i m. 



On the structure of special mnk one groups 

Now to prove ( *) it suffices to show that: 

x(a"') = x(a)1fm 
(+) for all a E A# and m =f. 0. 

Indeed if these equations hold, then 

x((a1/nr) = x(a1fn)1fm = (x(a)n)1/m 

x(a)nfm = bn/m. 
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Now, as x2 = id, the second equation in (+) is a consequence of part 
(b) of theorem 1. Let b = x(a). Then also by theorem 1 

x(a)11m = b11m = x(x(b)m) = x(a"'). 

Hence ( *) holds, which shows that x induces a bijection of A~ onto 

B~ (and also Btf onto A~). Now for A = mjn, n =f. 0 set a( A) = 
amfn and b(A) = bmfn. Then the group X 0 = (Ao,Bo) is generated by 
elements a( A), b(A) where A E <Q (resp. A E Zp)· Further, since a is 
an isomorphism, the relations (A) of (2.3) are satisfied. Hence to prove 
theorem 2, it suffices to show that also the relations (B') are satisfied. 
(We may assume p > 3, since otherwise A~ = {a, a-1 }, Btf = {b, b-1 }, 

whence {A0 } U B~0 is X 0-invariant.) 

Now ( *) can be expressed as: 

(**) x(a(A)) = b(A-1), A E <Q* resp. z;. 
Hence we have 

Now let A = n/m and p, = r / s with n =f. 0 =f. m and r =f. 0 =f. s. Then 
a(A) = a(p,)sn/rm. Hence we obtain: 

(a(p,)sn/rm)b(!-'- 1 ) = (b(p,-1)-a(l-'))sn/rm 

(b(-p,-1)snfrm)a(l-') = ((b-1y'nfr2 m)a(l-') 

b(- A2 )a(!-')' 
1-L 

Since as shown in the proof of {3.2) we have for all a E A#: 
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This shows that the relations (B') are also satisfied which proves theorem 
2. Q.E.D. 
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