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The Shape of the Classification 
of the Finite Simple Groups 

Ronald Solomon 

This is a general survey of the Classification of the Finite Simple 
Groups with particular emphasis on the current project of Gorenstein, 
Lyons and Solomon (GLS) directed towards the revision of a substantial 
segment of the Classification proof. 

There are two principal strategies at present directed towards a Clas­
sification proof. The one employed in the first successful proof and also, 
with certain modifications, in the GLS proof, I shall refer to as the 
Semisimple Approach to the Classification. The other, which has been 
the object of considerable activity recently, I shall refer to as the Unipo­
tent Approach to the Classification. Each has its advantages and its 
drawbacks and neither is, at present, completely independent of the 
other. In unison they provide a complete proof of the Classification 
Theorem. A question at present is the natural domain for each of these 
methods. Of course the future may bring entirely new and wonderful 
approaches to the subject. 

The modern history of the Classification began around 1950 when 
several mathematicians- notably Brauer, Suzuki and Wall- began to 
investigate simple groups of even order satisfying certain local condi­
tions. This work eventually congealed into the Brauer-Suzuki-Wall The­
orem [BSW] characterizing the two-dimensional projective special linear 
groups over finite fields. Brauer in particular championed the strategy 
of characterizing finite simple groups of even order by the centralizer of 
an involution. Suzuki, on the other hand, established the nonexistence 
of finite simple CA-groups of odd order [S1]. (A group G is a CA-group 
if the centralizer of every nonidentity element of G is abelian.) This 
result was the inspiration for the Feit-Thompson Theorem proving the 
nonexistence of nonabelian finite simple groups of odd order. 

Meanwhile Suzuki pursued the classification of transitive permuta­
tion groups of odd degree in which the stabilizer of a point has a regular 

Received May 27, 1999. 
Revised June 16, 2000. 



380 R. Solomon 

normal subgroup and a cyclic complement of odd order [S2]. This formed 
the foundation for the later classification by Bender of finite groups G 
with a strongly 2-embedded subgroup M. (M is a strongly p-embedded 
subgroup of G if M is a proper subgroup of G of order divisible by p 
such that M n MY has order prime to p for all g E G - M.) 

We remark that the Odd Order Theorem [FT] of Feit and Thomp­
son can be regarded as a strong embedding result as well. Indeed the 
Feit-Thompson Theorem together with the Suzuki-Bender Theorem [B2] 
establish the following result. 

Theorem. Let G be a finite simple group and let p be the smallest 
prime divisor of IGI. If G has a strongly p-embedded subgroup, then 
p = 2 and G is isomorphic to SL(2, 2n), Sz(22n-l) or PSU(3, 2n) for 
some n 2 2. 

Clearly this is a corollary of the Feit-Thompson and Suzuki-Bender 
Theorems. As remarked in [So], the Feit-Thompson Theorem is an easy 
consequence of the above theorem, although this observation does not 
seem to afford a route to a new proof of the Feit-Thompson Theorem. 

The Feit-Thompson and Suzuki-Bender Theorems form the two 
principal Background Results underlying the GLS proof of the Classifi­
cation Theorem. (Also in the background is the theory of linear algebraic 
groups, the determination of the Schur multipliers of the finite simple 
groups, and the existence, uniqueness and local structure of the sporadic 
simple groups. And in the "foreground", i.e. essential to the complete 
proof but not included in the GLS series, is the forthcoming proof of the 
Quasi thin Theorem by Aschbacher and Smith.) 

Chapter I. Semisimple Approach 

When Brauer did specific characterizations of finite simple groups by 
the centralizer of an involution, the groups were almost always classical 
groups defined over fields of odd characteristic. (Of course Mn also 
arose, having an isomorphic involution centralizer to PSL(3, 3).) This 
focus continued in the work of Brauer's students, Fong, Wong and Harris, 
who (along with Phan) systematically pursued the characterization of 
the finite simple groups of Lie type over fields of odd characteristic via 
the centralizer of an involution during the 1960's. 

Of course, when the characteristic is odd, an involution is a semisim­
ple (indeed split semisimple) element of the Lie type group G. Thus it is 
reasonable to expect (and indeed is true) that the characterization the­
orems established in particular by Wong and Phan can be generalized 
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to characterizations of finite simple groups of Lie type in any character­
istic via the centralizer of a semisimple element of prime order, or more 
precisely via the centralizer of a suitable element x of prime order con­
tained either in the split maximal torus of Gorin a "half-split" maximal 
torus, i.e. a torus which splits in a quadratic extension of the field of 
definition of G. Such a characterization over fields of characteristic 2 
was accomplished by Gilman and Griess in [GG]. 

In order to convert this fact into a strategy for the classification, it 
is useful first to give a definition of a semisimple element for an abstract 
group, not simply for a group with a preferred linear representation. As 
our attention will focus on centralizers of such elements, it is natural that 
the definition should reflect a fundamental property of their centralizers. 
In the context of a semisimple linear algebraic group G, it is well-known 
that the centralizer C of a semisimple element is a reductive group, i.e. 
the product of a semisimple group and a torus (which is central in C if G 
is simply connected). Extending the work of Fitting, Bender in 1970 [B1] 
defined the appropriate subgroups of a finite group needed to formulate 
the analogous structural hypotheses. We recall some definitions. 

Definition. A finite group K is quasisimple if K = [K, K] and 
K/Z(K) is a nonabelian simple group. A finite group E is semisimple 
if E is the commuting product of certain quasisimple subgroups, called 
its components. 

Definition. Let H be a finite group. The join of all normal nilpo­
tent subgroups of His called the Fitting subgroup of H, F(H). It is the 
unique maximal normal nilpotent subgroup of H. Similarly the join of 
all normal semisimple subgroups of His denoted E(H). It is the unique 
maximal normal semisimple subgroup of H. Moreover E(H) and F(H) 
commute with each other. Their commuting product is called the gen­
eralized Fitting subgroup of H, F*(H). 

We can now identify a characteristic property of the centralizers of 
many semisimple elements in linear groups and make this a definition in 
an arbitrary finite group. 

Definition. Let G be a finite group. We call an element x of G 
semisimple if E(Ca(x)) =1- 1. 

We remark that if G is a classical linear group, then for every unipo­
tent element y of G, E(C0 (y)) = 1, as a corollary of the Borel-Tits 
Theorem. On the other hand typically many of the semisimple (in the 
linear group sense) elements of G will also be semisimple in the above 
sense. However not all will be because for certain linear semisimple 
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elements x, Ca(x) will be a torus. In an extreme case like SL(2, q), 
no noncentrallinear semisimple element will be semisimple in the sense 
of the above definition. This reflects a fundamental limitation on the 
semisimple approach: it does not work for "very small"simple groups. 
(A good replacement for the term "very small" is quasi thin, as we shall 
see below.) 

The first goal of the semisimple approach to the Classification is to 
search for a semisimple element x such that E(Ca(x)) has a component 
K of maximum possible order. This corresponds in the context of lin­
ear groups to the search for a semisimple element with an eigenspace of 
maximum possible dimension. When chosen judiciously this component 
K will be a slightly smaller version of the target group G. Moreover 
by making a similar choice of a semisimple element y inside K- Z(K), 
one can find a second large component, L, of E(Ca(y)) such that K 
and L generate G. Indeed it is possible not only to find generators for 
G but also to infer sufficient relations to characterize G via theorems of 
Coxeter, Steinberg or Curtis and Tits. This strategy was implemented 
for semisimple involutions by Aschbacher in his Classical Involution Pa­
per [A2] and for semisimple elements of odd prime order by Gilman and 
Griess [GG]. 

However there is an important reason to modify this strategy 
slightly. It is extremely important to control the embedding of such 
subgroups as CK(Y) in Ca(y). More specifically it is desirable to know 
that 

E(CK(Y)) :S E(Ca(y)). 

It is not however possible to achieve an a priori proof of this fact because 
of the following type of example: 

Let H = SL(V) with V a 6-dimensional vector space over the finite 
field F of odd order q. Let G = V H be the semidirect product with 
the natural action of H on V. Let x be an involution in H with a 
4-dimensional -1-eigenspace. Then E(Ca(x)) = K ~ SL(4,q). Next 
let y be an involution in K with a 2-dimensional !-eigenspace on V, 
contained in the -!-eigenspace for x. Then E(CK(Y)) = L1 * L2 with 
Li ~ SL2(q) acting on the (-l)i-eigenspace for yon V. We can easily 
compute that L1 ::; E(Ca(y)) but L2 i E(Cc(y)). 

Of course in the example G is far from being a finite simple group. 
However it is precisely the problem of detecting from local information 
that such a G is not simple which constitutes one of the major chapters of 
the Classification proof. (A local subgroup of a group G is the normalizer 
of a non-identity p-subgroup of G. Local information is information 
about the structure of the local subgroups of G.) 
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Gorenstein and Walter [GW] discovered an important "gravitational 
principle", called L-Balance concerning a subgroup closely related to 
E(H). 

Definition. Let p be a prime and H a p-local subgroup of G. 
The p-layer of H, Lp' (H) is the smallest normal subgroup of H covering 
E(H/Op'(H)), where Op'(H) denotes the largest normal subgroup of H 
of order relatively prime to p. 

The £-Balance Theorem. Let G be a finite group all of whose 
proper simple sections satisfy the (weak) Schreier Conjecture. Let p be 
a prime and let x and y be commuting elements of G of order p. Let Lx 
and Ly denote the p-layers of C0 (x) and C0 (y) respectively. Then 

In the vernacular, the £-Balance Theorem asserts that the p-layer 
of a p-local subgroup of G always sinks into the p-layer of G. Hence 
it is a kind of gravitational (or non-buoyancy) principle. The proof of 
the L-Balance Theorem depends on a weak version of the following old 
conjecture. 

Schreier's Conjecture. Let S be a finite simple group. Then 
Aut( S) / S is a solvable group. 

Schreier's Conjecture is a fairly easy corollary of the Classification 
Theorem. No independent proof is known. I shall not bother to state 
the weak version of the Schreier Conjecture here but I note that it was 
proved when p = 2 by Glauberman as a corollary of his Z*-Theorem 
[Gl]. Thus for p = 2 the hypothesis on proper simple sections of G may 
be omitted. In the context of an inductive proof of the Classification 
Theorem, proper simple sections always satisfy the Schreier Conjecture 
and so the £-Balance Theorem may be used for all primes p. 

Notice that the £-Balance Theorem provides a correct analogue of 
the wished-for property of Bender's subgroup E(H). Inspired by this, 
we reformulate our semisimple strategy in the following language: 

Definition. Let G be a finite group and p a prime. A p-element 
x of G is said to be weakly semisimple if Lp'(Cc(x))-=/= 1. 

Of course every semisimple element of prime power order is weakly 
semisimple. The converse statement is false in general as is easily seen, 
for instance, by modifying the example above slightly. Take G* = V H* 
where H* = S L± (V), the group of linear transformations of determinant 
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±1. Then an involution t with a !-dimensional -!-eigenspace is weakly 
semisimple but not semisimple. However the converse statement is true 
(and deep) for finite simple groups. For the prime p = 2 it was first 
formulated by Thompson, who called it the B-Conjecture. Its proof for 
p = 2 forms a major chapter in the proof of the Classification Theorem 
and weak analogues of it for all primes p also play a pivotal role in the 
work of Gorenstein and Lyons [GL] on the classification of simple groups 
of characteristic 2-type (roughly speaking, groups in which no involution 
is semisimple). As a corollary of the Classification Theorem, we obtain 
the full B-Theorem. 

B-Theorem. Let G be a finite simple group. For all primes p, 
every weakly semisimple p-element of G is semisimple. 

We can now formulate a somewhat over-simplified version of the 
Semisimple Strategy for the Classification of Finite Simple Groups based 
on the Feit-Thompson and Suzuki-Bender Theorems. 

Step 1. Find a prime p for which G has a weakly semisimple of 
prime order p. Choose p = 2, if possible. 

Step 2. Establish the Bp-Theorem for G, i.e. that every weakly 
semisimple p-element of G is semisimple. 

Step 3. Among all semisimple p-elements of G choose one, x, with 
some component K of E(Ca(x)) as large as possible. 

Now the Component Theorem comes into play. This theorem was 
established first by Aschbacher [Al], extending an earlier result of Powell 
and Thwaites [PT]. It was reproved shortly thereafter by Gilman [Gi]. 
For a minimal counterexample to the Classification Theorem, analogues 
were established for all primes p by GLS [GLS2]. 

Component Theorem. Let G be a finite simple group and x a 
semisimple element of G of prime order p chosen with some component 
K of E(Ca(x)) as large as possible. Suppose that the p-rank of K is 
greater than 1. Then K does not commute with any G-conjugate of K. 
Moreover a Sylow p-subgroup of Ca(K) is either cyclic or of maximal 
class (with p = 2 in the latter case). 

A typical example to imagine is G = SL(V) and x a diagonal ele­
ment with one eigenspace W of codimension 1 or 2. Then SL(W) will 
be the unique large component of E(Ca(x)) and its centralizer will have 
cyclic Sylow _rrsubgroups for odd p and a cyclic or quaternion Sylow 
2-subgroup. A slightly different example arises when G = An and x is 
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a product of two transpositions. Then the Sylow 2-subgroup of the cen­
tralizer of the large component (isomorphic to An_4 ) is a Klein 4-group. 

The point is that the Component Theorem assures us that the cen­
tralizer of x is almost precisely determined, the possibilities for K being 
afforded by the induction hypothesis. This permits us to proceed to the 
final step. 

Step 4. Identify G, given the approximate structure of Ca ( x), via 
the methodology developed by Brauer, Fang, Wong, Phan and Harris. 

This constitutes the Semisimple Strategy for the Classification of 
Finite Simple Groups, modulo one serious problem and one difficult 
theorem which I have swept under the rug. The difficult theorem is 
the Strongly rr Embedded Theorem, the analogue for odd primes of the 
Suzuki-Bender Theorem. 

Strongly rrEmbedded Theorem. Let G be a finite simple group 
and p a prime such that G has p-rank at least 3. If M is a strongly p­
embedded subgroup of G, then G is a finite simple group of Lie type of 
Lie rank 1 and M is a Borel subgroup of G. 

For odd primes p, this theorem is proved only as a corollary of 
the Classification Theorem. However a weak version of this theorem is 
required for the Classification proof, in particular for the proof of the B­
Theorem. A sufficient theorem was established by Aschbacher [A3] and 
a slightly more general variant has been established recently by Stroth. 
Both proofs are quite long and difficult, and even the statements of the 
theorems established are long and obscure. 

Let's move on from the difficult theorem to the serious problem: 

What if G does not contain any weakly semisimple elements of prime 
order? 

The answer to this question is: G is quasithin. 

Definition. Let G be a finite simple group. We say that G is 
quasithin if either G has 2-rank at most 2 or every 2-local subgroup of 
G has p-rank at most 2 for every odd prime p. 

In the usual definition of quasithin, G is assumed to be of charac­
teristic 2-type (or even type) and to have 2-rank at least 3. We use the 
extended definition here for expository purposes. 

Klinger-Mason Theorem. Let G be a finite simple group with 
no weakly semisimple elements. Then G is quasithin. 
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The proof relies on an easier version of some of the signalizer func­
tor analysis used in the proof the the B-Theorem. The principal new 
ingredient is a lovely and elementary argument of John Thompson in 
[T2], which was later elaborated slightly in [KM] and has henceforth 
been known as the Klinger-Mason Method. Thompson's argument es­
tablishes easily under the given hypotheses that either G is quasithin or 
G contains an involution x such that F*(Ca(x)) is a 2-group of sym­
plectic type (indeed extraspecial) and Ca(x) has p-rank at most 2 for 
all primes greater than 3. Indeed with the extra help of the Thompson­
Bender Signalizer Lemma, it is possible to rule out the extraspecial case 
as well. (See [GLSl; 23.3; §24].) 

The occurrence of extraspecial 2-groups in the Klinger-Mason ar­
gument reflects the proximity of many of the larger sporadic simple 
groups such as the sporadic Suzuki group, the Conway groups, the Fis­
cher groups, the Harada group, the Thompson group, the Baby Monster 
and the Monster, as well as certain small classical linear groups. Al­
though these groups do not satisfy the hypotheses of the Klinger-Mason 
Theorem, they are quite close. Indeed with slightly weakened hypothe­
ses, Gorenstein and Lyons proved an analogous result whose conclusion is 
roughly that either G is quasi thin or G is one of the large sporadic groups 
mentioned above or a small classical linear group. The full classification 
of simple groups containing an involution x such that F*(Ca(x)) is a 
2-group of symplectic type was accomplished in the mid 1970's largely 
through the efforts of Timmesfeld [Ti] and was rightly recognized by 
many as bringing down the final curtain on the search for sporadic sim­
ple groups. 

I find the resulting Trichotomy Theorem, implicit in the work of 
Gorenstein and Lyons, to be one of the more elegant justifications for 
the Semisimple Approach to the Classification. 

Trichotomy Theorem. Let G be a finite simple group. Then one 
of the following holds: 

(1) There is a prime p such that G has p-rank at least 3 and G 
contains generic weakly semisimple elements of order p; or 

(2) G is quasithin; or 
(3) G is on a {short) finite list including A12 , eleven sporadic simple 

groups and several small classical groups defined over F2 or F3 . 

In the statement above, the term generic reflects a restriction on the 
allowable components in the centralizers of the semisimple elements of 
order p. In particular the centralizer of a generic semisimple element 
of order p must have a component which is not a group of Lie type in 
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characteristic p. For p = 2 or 3, most sporadic components are likewise 
not allowed. 

Chapter II. Unipotent Approach 

The Semisimple Approach to the Classification runs aground on the 
rocks of the Quasithin Problem. The Classification proof is rescued 
at this juncture by the Unipotent Approach, which evolved from the 
methods developed by Thompson in his classification of simple groups 
all of whose local subgroups are solvable [Tl]. (Clearly such a group 
has no non-identity weakly semisimple element.) In brief the Unipotent 
Approach, instead of studying semisimple elements, seeks to identify the 
characteristic of the finite simple group G by finding a prime p for which 
G has a rich supply of p-local subgroups of "parabolic type". 

Definition. Let G be a finite group and p a prime. We say that 
a p-local subgroup H of G is of parabolic type if H contains a Sylow 
p-subgroup of G and F*(H) is a p-group. 

Definition. Let G be a finite group and p a prime. We say that G 
is of characteristic p-type if every p-local overgroup of a Sylow p-subgroup 
of G is of parabolic type. G is of connected characteristic p-type if G is 
of characteristic p-type and G is generated by the overgroups of a fixed 
Sylow p-subgroup P of G. 

When G has no semisimple involutions one is close to knowing that 
G is of connected characteristic 2-type. The final ingredient is provided 
by "pushing-up theorems" established in the mid 1970's by Baumann, 
Glauberman, Niles, Aschbacher and others, which establish that either 
G is of connected characteristic 2-type or G has a strongly 2-embedded 
subgroup. 

Once G is known to be of connected characteristic p-type, the Unipo­
tent Strategy in brief is to study, in the spirit of Tits, the coset geometry 
determined by the p-local subgroups of parabolic type and to recognize 
this geometry as that of a split EN-pair of rank at least 2. (Of course 
there are exceptions arising from the sporadic simple groups of charac­
teristic p-type.) As noted above, many of the ideas for this approach 
originate in Thompson's N-group paper, whose main theorem may be 
paraphrased as: 

N-Group Theorem. Let G be a non-abelian simple group all of 
whose local subgroups are solvable. Assume that G has 2-rank at least 3 
and G does not have a strongly 2 -embedded subgroup. Then G ~ 2 F4 ( 2 )', 
i.e. G is the Tits group. 
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The idea of identifying simple groups of characteristic 2-type as split 
EN-pairs was initiated in the late 1960's by Suzuki [S3] and his students. 
This approach was temporarily sidetracked by the Gorenstein Program 
for the Classification announced in the early 1970's, which featured the 
Semisimple Approach. It was however pursued in the context of qu­
asithin groups and uniqueness groups by Aschbacher, Gomi [Gm] and 
others. Later Goldschmidt developed a variant Amalgam Method [Go] 
aimed at a new proof of the N-Group Theorem, which was eventually 
obtained by Stellmacher. 

In the Semisimple Approach to the Classification, the Unipotent 
Method is required to treat the Quasithin Problem and the Strongly p­
Embedded 2-Local Problem. The latter appears in published work of As­
chbacher and the former is currently being completed by Aschbacher and 
Smith. There is however a program underway, spearheaded by Meier­
frankenfeld, Stellmacher and Stroth, to apply the Unipotent Method to 
all groups of connected characteristic p-type (possibly using a slightly 
different definition than the one given above). 

As a strategy aimed at a complete proof of the Classification The­
orem, the Unipotent Strategy collides with obstacles at two ends. One 
obstacle is the Strongly p-Embedded Subgroup Problem. At present 
the Unipotent Strategy presupposes that G is generated by the p-local 
subgroups containing a fixed Sylow p-subgroup P. Except when p = 2, 
there is no known approach to the case when P is contained in a unique 
maximal subgroup M of G. In particular this problem includes (and can 
probably be reduced to) the case when M is a strongly p-embedded sub­
group of G. This is of course similar to the Strongly p-Embedded 2-Local 
Problem confronted by the Semisimple Approach and solved in that con­
text by Aschbacher and later by Stroth using unipotent methodology. 
Conceivably a Unipotent Proof of the Classification could be structured 
in such a way that a solution of a similar nature would be possible. 

A hybrid strategy which assigns to the Unipotent Approach pre­
cisely the task of classifying finite simple groups of characteristic 2-type 
would rely only on the Strongly Embedded Theorem of Suzuki-Bender. 
From my perspective this hybrid strategy is attractive inasmuch as it 
bypasses the morass of complicated definitions and difficult theorems re­
lated to groups with a strongly (or almost strongly) p-embedded 2-local 
subgroup. Of course a revolutionary new classification of groups with a 
strongly p-embedded subgroup would change the landscape for both the 
Semisimple and Unipotent Strategies, ironically improving the cases for 
each of them. 

It is impossible to conjecture a flowchart for a Unipotent Approach 
to the entire Classification Theorem without an answer to the following 
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question: 

What if the simple group G is not of characteristic p-type for any 
prime p? 

In this case of course G would be full of semisimple elements and the 
Semisimple Approach would be effective. The problem is that we are 
missing an analogue ofthe Klinger-Mason Reduction which would tell us 
that the residual semisimple problem was "bounded" in some good sense. 
For example one would like a comparatively short proof of a theorem of 
the following type. 

Theorem. Let G be a finite simple group of2-rank at least 3 which 
is not of characteristic p-type for any prime p. Then for some involution 
t of G, there is a component K of E(Cc(t)) such that KjZ(K) is an 
alternating group. 

Indeed the only simple groups with no characteristic are alternating 
groups and J 1 . If one could give a proof of this fact of comparable 
length and elegance to the Klinger-Mason argument which rounds off 
the Semisimple Analysis, then there would be a strong argument for 
preferring the Unipotent Approach to the Classification proof. Even 
without it, there is great value in pursuing the Unipotent Analysis to its 
logical conclusions. If successful, it will bring to satisfying completion 
Michio Suzuki's program for the classification of finite simple groups of 
characteristic 2-type via the unipotent methods he helped to pioneer. 
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