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Integrability of Infinitesimal Zoll Deformations 

Chiaki Tsukamoto 

1. A Riemannian metric on a sphere sn (n>2) is called a Zoll 
metric when all the geodesics are closed and have a common length 21!". 
The metric of constant sectional curvature 1 is a well-known example of 
a Zoll metric, but we further know that this standard metric go is deform
able by Zoll metrics (Zoll [8], Guillemin [3]; see also Besse [1]). 

A symmetric 2-form h on sn which is a direction of a Zoll deform
ation of go satisfies 

(Ll) 52< 

o hCio(s), to(s))ds=O 

for every geodesic ro of go parametrized by its arclength s, where to is the 
tangent vector of roo Conversely, if h is a symmetric 2-form satisfying 
(1.1) for every geodesic of go, then the geodesics of gt=go+t.h are nearly 
21!"-periodic in the first order of t. We call such a symmetric 2-form on sn 
an infinitesimal Zoll deformation, which we abbreviate as IZD. We say 
an IZD h is integrable if there exists a family of Zoll metrics gt with go 
being the standard one such that h=agt/at[t=o' 

V. Guillemin proved in [3] that every IZD on a 2-dimensional sphere 
is integrable. On the other hand, K. Kiyohara ([4], [5]) showed that the 
situation is quite different in higher dimensions; not all the IZD are inte
grable, and, moreover, the set of integrable IZD does not even form a 
linear subspace. 

They both studied the IZD of conformal type. Up to trivial IZD, 
they are the only possible IZD on S2 (Funk [2]). But there exists another 
type of IZD in higher dimensions, as we have seen in [7]. In this paper, 
we shall exhibit that this type of IZD are not integrable, using a represen
tation theoretical counterpart of Kiyohara's argument. The problem to 
determine which IZD is integrable is not yet resolved for the mixture of 
these two types of IZD, though we get some information by our argument. 

2. We first recall how the condition (1.1) is deduced. Let gt be a 
family of metrics on sn with go being the standard metric. We fix a point 
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P E sn and a direction e in Tpsn. Let rt(s) be the geodesic of gt starting 
from p in the direction e, parametrized by its arclength s with respect to 
gt. We denote by ttCs) its tangent vector at rtCs). Differentiating an 
obvious identity 

(2.1) f2< 
o g,CttCs), tt(s))ds=2rr 

with respect to the parameter t and setting t = 0, we get 

(2.2) f 2< hCto(s), to(s))ds+~[f2< goCt,(s), ttCS))dS] I =0, 
o at 0 '=0 

where we set h=ag,/atlt=o. If gt are Zoll metrics, rt are a1l2rr-periodic, 
and hence the second term in (2.2) vanishes, for it is a variation of energy 
of 2rr-periodic curves around a geodesic ro parametrized by its arclength. 
Thus a direction h=agt/atlt=o of a Zoll deformation gt satisfies (1.1) for 
every geodesic ro of go. 

We will always regard (sn, go) as a unit sphere in a Euclidean space 
Rn+l. Then the set of all oriented geodesics of (sn, go), i.e., great circles, 
is identified with an Grassmann manifold of oriented 2-planes in Rn+1, 
which we denote by GeodSn • We define a mapping d from g'2(sn), the 
space of symmetric 2-forms on sn, to ff(GeodS n), the space of functions 
on GeodS n , by 

The space of IZD is nothing but the kernel of the mapping d. 
A Lie derivative of the standard metric go by a vector field X, denoted 

by 2? xgo, is an integrable IZD, since it is a direction of a trivial Zoll 
deformation cP,[go, where CPt is a family of diffeomorphisms generated by X. 
We call such an IZD trivial and denote the space of trivial IZD by:T. 

Let a be the antipodal mapping on (sn, go): a(x) = -x(x E snCRn+I). 
Another type of symmetric 2-forms which are easily seen to be IZD are 
those of the formJ-go, wherefis an odd function on sn with respect to a. 
We call them of conformal type and denote the space of IZD of conformal 
type by f{j'. 

We shall study what happens to the geodesics r, of g,=go+t.h for 
an IZD h, in order to see that an IZD is in fact worth its name. By,the 
way, we prepare notations for the second order condition for integrability. 

We take an orthonormal basis XI = to(O) , X 2 , "', Xn in Tpsn and 
extend them parallel with respect to go to vector fields along roo They 
turn out to be 2rr-periodic. We define a normal coordinate near ro by 
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Writing down the equations of geodesics with respect to gt in this coordi
nate and taking the differential at t=O, we get an equation of a variation 
vector field ~(s)=(Brt/Bt)(s)lt=o along ro: 

(2.3) {d2~I/ds2= _[31= -(l/2)dhll/ds, 

d2~t/ds2+~t= -[3t (i*I), 

where the indices mean the component with respect to our normal coordi
nate and we set 

(2.4) {
[3i(S) = (Bhli/Bs - (1/2)Bhll/Bst) (s, 0, ... , 0), 

hll(s)=hll(s,O, .... , 0) (=h(to(s), to(s»). 

Notice that {[3i} corresponds to the variation of Levi-Civita connections. 
Since every r t starts from the same point in the same direction, the 

initial condition for ~ is given by 

The solution of (2.3) with this initial condition is explicitly written as 

{~I(S)= -(1/2) f: hl!(u)du, 

~i(S) = - f: [3i(U) sin (s-u)du (i1= 1). 

When a family of metrics gt consists of Zoll metrics, the variation 
vector field ~ is 21t'-periodic, and hence so is each component ~i. The 
component ~I is 21t'-periodic if and only if 

f2" 

~1(21t')= -(1/2) 0 hll(u)du=O, 

which is the same condition with (1.1). The component ~i (i * 1) is 21t'
periodic if and only if 

(2.5) 
{ f2" 

~i(21t')= 0 [3i(u)sin u du=O, 

(d~i/ds)(21t')= - f:" [3t(u)cos u du=O. 
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It is easily s~en that the above conditions for the periodicity of ~ do not 
depend on the choice of a starting point p of a geodesic ro, but only on 
the symmetric 2-form h and the geodesic ro as an element of GeodSn • 

Now the following lemma holds. 

Lemma 2.1. Let h be an IZD. Take any geodesic ro of go and define 
fit by (2.4) using a prescribed normal coordinate associated with roo Then 
the condition (2.5) is satisfied. 

Proof Suppose an IZD h is even with respect to a (a*h=h). Then 
h is considered as a symmetric 2-form on a real projective space pn(R) 
and satisfies 

for every geodesic ro of go. By Michel's theorem ([6]), such an IZD h is 
trivial; it is written as .!l' xgo on pn(R), where X is a vector field on pn(R) 
and go is considered as a metric on pn(R). Obviously h is also trivial on 
sn, and therefore h satisfies (2.5) because a trivial IZD is integrable. On 
the other hand, if h is odd with respect to a (a*h= -h), then fit (i* 1) are 
even functions on Sl ({3t(s+rr)={3t(s», and hence (2.5) is satisfied by h. 
Since each IZD h is a sum of even and odd parts with respect to a and 
since the condition (2.5) is linear in h, our lemma follows. 

Thus, if h is an IZD, the variation vector field for the metric deform
ation gt=go+t·h is always 2rr-periodic, which implies that a family of 
curves rt (gt-geodesics) are nearly 2rr-periodic in the first order of t. 

We now examine the second order condition for integrability. 
Differentiating (2.1) twice in t and setting t=O, we get a formula satisfied 
by h=ogt/otlt=o and k=o2gt/ot 2It=o when gt is a Zoll deformation: 

(2.6) 
(l/2rr) s:% k(fo(s), i'oCs»ds=(1/4rr) s:% {hl1(s)yds 

-(l/rr) ~ s:~ ds {3t(s) s: {3i(u)sin(s-u)du. 

We define for two IZD h(') and h(2) a function /Ji(h('), h(2» on GeodS n by 

(2.7) 
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where ,sb[,s12)] is defined by (2.4) for h(I)[h(2)] using a normal coordinate 
associated with roo It is easily seen from Lemma 2.1 that the right hand 
side of (2.7) does not depend on the choice of a starting point p of roo 
We also notice that the bilinear mapping fJI is symmetric, i.e., fJI(h(I), h(2) 
=fJI(h(2), h(I)). 

The formula (2.6) means that, if an IZD h is integrable, then there 
exists a symmetric 2-form k such that d(k)=fJI(h, h) (e ff(GeodS n)). It 
is a non-trivial condition for integrability, for the mapping d is not surjec
tive for n~3. 

Proposition 2.2. Let h be an IZD. If fJI(h, h) is not contained in 
1m d, then it is not integrable. 

3. Our argument on integrability of IZD is based on the fact that 
(sn, go) is a compact rank one symmetric space. The special orthogonal 
group SO(n+ 1) acts on (sn, go) transitively and isometrically, and on 
GeodS n transitively. The actions induce SO(n+ I)-module structures on 
g'2(sn) and ff(GeodS n), and they are endowed with natural SO(n+ 1)
invariant inner products. The spaces Ker d and 1m d are considered as 
their SO(n+ I)-submodules, since the mapping d is an SO(n+ I)-homo
morphism. The spaces.'T and ~ are considered as SO(n+ l)-submodules 
of Ker d. For convenience's sake, we complexify all the modules appear
ing above and denote them by the same symbols in the following. 

The SO(n+ 1)-module structure of Ker d, etc., has been studied in 
[7]. We denote by V(A) an irreduicible SO(n+ I)-module over C with the 
highest weight A; see [7] for the notation of weights. 

Proposition 3.1. Assume n > 4. 
i) The SO(n+ I)-module Ker d includes densely an orthogonal sum 

MoEBMl EBM2 of SO(n+ I)-submodules, where Mi (i=O, 1,2) is isomorphic 
to a direct sum of irreducible SO(n+l)-modules; 

= = 
Mo~L: V(k2JEBL: V(k2 1+(21+2z)), 

k~l k~O 

= 
Ml~L: V«2k+ 1}21), 

k~l 

M2~L: V«2k+ 1)21+2(21 +22)). 
k~O 

ii) Mo is a dense submodule of .'T. 
iii) Mo EB Ml is a dense submodule of .'T + ~. 
Remark. i) The sum .'T + ~ is not orthogonal nor direct. But we 
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can still consider M, as a representative of <G', because integrability of an 
IZD does not change if we add an element of .r to it. 

ii) In order to get the results for n=3, we have only to add in the 
above formulas the terms with AI + Az changed to AI - Az• In the following 
we always assume n>4, but the reasoning works equally well with small 
changes for n=3, contrary to the case n=2, when the terms containing A2 
disappear. 

Since d is a continuous SO(n+ I)-homomorphism, Schur's lemma 
enables us to compute the SO(n+ I)-irreducible decomposition of 1m d, 
using those of Ker d and 9'2(sn). 

Proposition 3.2. The SO(n+ I)-module 1m d densely includes an 
SO(n+ I)-submodule isomorphic to the following direct sum of irreducible 
SO(n+ I)-modules, 

00 00 

L: V(2kA,) EB L: V(2kA, + 2(A, + A2))' 
k=O k=O 

We denote by Vk the irreducible SO(n+ I)-submodule of M2 that is 
isomorphic to V«2k+I)A,+20,+Az)). Let {XI' ... , x n +l } be a Cartesian 
coordinate of Rn+' and set ZI=XI+J"=1XZ and Z2=XS+J"=1X4• The 
restriction to sn of a (C-valued) symmetric 2-form on Rn+', 

is a maximal vector in Vk , which we denote by Uk' We extend C-bilinearly 
the mapping !!J: Ker d X Ker d -+~ (GeodSn). 

Lemma 3.3. Afunction !!J(uk, Uk) on GeodS n is not zero. 

Proof Its value at a geodesic ro(s)=(coss, 0, sins, 0, .. ·,0), which 
is computed by (2.7), is 

We notice that !!J is considered as a linear mapping from the sym
metric tensor product of Ker d to ~(GeodSn), and that as such it is an 
SO(n+ I)-homomorphism. Let us observe its restriction to the symmetric 
tensor product of Vk, denoted by S2Vk. The SO(n+ I)-module S2Vk 
includes the unique SO(n+ I)-submodule V~ isomorphic to V«4k+2)A, + 
401 + Az)), which is generated by Uk' Uk' We denote by R the sum of other 
irreducible components; SZVk= Vi EBR. The image !!J(V!) is not zero by 
Lemma 3.3, and hence the restriction of !!J to Vi is an isomorphism by 



Infinitesimal Zoll Deformations 103 

Schur's lemma. Because Proposition 3.1 implies that 1m d does not 
include an SO(n+ I)-submodule isomorphic to V«4k+2)A, +40, +AJ), 
the image gj(vD is orthogonal to 1m d. It is also orthogonal to gj(R) by 
the same reason. For any non-zero. element v in Vk , there exists an 
element a of SO(n+ 1) such that a· Vk is not orthogonal to v, since Vk is 
irreducible. Then V·V is not orthogonal to a·(vk·vk)=(a·vk)·(a·vk), 
which shows that the V%-component of V· v does not vanish. Therefore 
gj(v, v), whose gj(V%)-component does not vanish, is not contained in 
Imd. 

The situation does not change if we add to v· some elements in V, 
(i<k) in the above, since V~ remains the unique SO(n+ I)-module iso
morphic to V« 4k + 2)A, + 40, + A2» in S2(L:~=O V,). Thus we proved 

Theorem 3.4. For a non-zero element his M 2, gj(h, h) is not contained 
in 1m d. That is, an IZD in M2 is not integrable. 

Remark. The above argument also holds if we add some elements 
in SO(n+ l)-submodules of M, isomorphic to V(iA,) (i~k). This implies 
non-integrability of some elements in M, E9 M 2 • 

Unfortunately, it would be difficult to study integrability of an 
element in M, or general one in M, E9 M2 by our method. The following 
would illustrate the situation. 

Let Wk be the unique irreducible SO(n+ I)-submodule of M, iso
morphic to V«2k+ I)A,). Its symmetric tensor product S2Wk decomposes 
as follows: 

S2 Wk = Wi E9 W~" E9 Wi,2 E9 R'; 

Wi~ V«4k+2)A,), 

W%" ~ V« 4k - 2)A, + 2(A, + A2» , 

W%,2~ V«4k-6)A,+4{A,+A2»' 

The image gj(WD or gj(Wi,l) may be included in 1m d. It is the image 
gj(W%,2) and some of the images of irreducible components of R' that 
cannot be included in 1m d if non-zero. The W%,2-component of V· v 
vanishes for some element v in M I , and not for another. 

We are left with the problem: Determine the integrable IZD. Or, at 
least, determine the elements in MI E9 M2 that satisfy the second order 
condition for integrability. The author now feels that the latter is no 
easier than the former. 
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