Integrability of Infinitesimal Zoll Deformations

Chiaki Tsukamoto

1. A Riemannian metric on a sphere $S^{n}(n \geqq 2)$ is called a Zoll metric when all the geodesics are closed and have a common length 2π. The metric of constant sectional curvature 1 is a well-known example of a Zoll metric, but we further know that this standard metric g_{0} is deformable by Zoll metrics (Zoll [8], Guillemin [3]; see also Besse [1]).

A symmetric 2-form h on S^{n} which is a direction of a Zoll deformation of g_{0} satisfies

$$
\begin{equation*}
\int_{0}^{2 \pi} h\left(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)\right) d s=0 \tag{1.1}
\end{equation*}
$$

for every geodesic γ_{0} of g_{0} parametrized by its arclength s, where $\dot{\gamma}_{0}$ is the tangent vector of γ_{0}. Conversely, if h is a symmetric 2 -form satisfying (1.1) for every geodesic of g_{0}, then the geodesics of $g_{t}=g_{0}+t \cdot h$ are nearly 2π-periodic in the first order of t. We call such a symmetric 2 -form on S^{n} an infinitesimal Zoll deformation, which we abbreviate as $I Z D$. We say an $I Z D h$ is integrable if there exists a family of Zoll metrics g_{t} with g_{0} being the standard one such that $h=\partial g_{t} /\left.\partial t\right|_{t=0}$.
V. Guillemin proved in [3] that every $I Z D$ on a 2-dimensional sphere is integrable. On the other hand, K. Kiyohara ([4], [5]) showed that the situation is quite different in higher dimensions; not all the $I Z D$ are integrable, and, moreover, the set of integrable $I Z D$ does not even form a linear subspace.

They both studied the $I Z D$ of conformal type. Up to trivial $I Z D$, they are the only possible $I Z D$ on S^{2} (Funk [2]). But there exists another type of $I Z D$ in higher dimensions, as we have seen in [7]. In this paper, we shall exhibit that this type of $I Z D$ are not integrable, using a representation theoretical counterpart of Kiyohara's argument. The problem to determine which $I Z D$ is integrable is not yet resolved for the mixture of these two types of $I Z D$, though we get some information by our argument.
2. We first recall how the condition (1.1) is deduced. Let g_{t} be a family of metrics on S^{n} with g_{0} being the standard metric. We fix a point
$p \in S^{n}$ and a direction ℓ in $T_{p} S^{n}$. Let $\gamma_{t}(s)$ be the geodesic of g_{t} starting from p in the direction ℓ, parametrized by its arclength s with respect to g_{t}. We denote by $\dot{\gamma}_{t}(s)$ its tangent vector at $\gamma_{t}(s)$. Differentiating an obvious identity

$$
\begin{equation*}
\int_{0}^{2 \pi} g_{t}\left(\dot{\gamma}_{t}(s), \dot{\gamma}_{t}(s)\right) d s=2 \pi \tag{2.1}
\end{equation*}
$$

with respect to the parameter t and setting $t=0$, we get

$$
\begin{equation*}
\int_{0}^{2 \pi} h\left(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)\right) d s+\left.\frac{\partial}{\partial t}\left[\int_{0}^{2 \pi} g_{0}\left(\dot{\gamma}_{t}(s), \dot{\gamma}_{t}(s)\right) d s\right]\right|_{t=0}=0 \tag{2.2}
\end{equation*}
$$

where we set $h=\partial g_{t} /\left.\partial t\right|_{t=0}$. If g_{t} are Zoll metrics, γ_{t} are all 2π-periodic, and hence the second term in (2.2) vanishes, for it is a variation of energy of 2π-periodic curves around a geodesic γ_{0} parametrized by its arclength. Thus a direction $h=\partial g_{t} /\left.\partial t\right|_{t=0}$ of a Zoll deformation g_{t} satisfies (1.1) for every geodesic γ_{0} of g_{0}.

We will always regard $\left(S^{n}, g_{0}\right)$ as a unit sphere in a Euclidean space \boldsymbol{R}^{n+1}. Then the set of all oriented geodesics of $\left(S^{n}, g_{0}\right)$, i.e., great circles, is identified with an Grassmann manifold of oriented 2-planes in R^{n+1}, which we denote by Geod S^{n}. We define a mapping \mathscr{A} from $\mathscr{S}^{2}\left(S^{n}\right)$, the space of symmetric 2-forms on S^{n}, to $\mathscr{F}\left(\operatorname{Geod} S^{n}\right)$, the space of functions on Geod S^{n}, by

$$
\mathscr{A}(h)\left(\gamma_{0}\right)=(1 / 2 \pi) \int_{0}^{2 \pi} h\left(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)\right) d s\left(h \in \mathscr{S}^{2}\left(S^{n}\right), \gamma_{0} \in \operatorname{Geod} S^{n}\right)
$$

The space of $I Z D$ is nothing but the kernel of the mapping \mathscr{A}.
A Lie derivative of the standard metric g_{0} by a vector field X, denoted by $\mathscr{L}_{x} g_{0}$, is an integrable $I Z D$, since it is a direction of a trivial Zoll deformation $\varphi_{t}^{*} g_{0}$, where φ_{t} is a family of diffeomorphisms generated by X. We call such an $I Z D$ trivial and denote the space of trivial $I Z D$ by \mathscr{T}.

Let σ be the antipodal mapping on $\left(S^{n}, g_{0}\right): \sigma(x)=-x\left(x \in S^{n} \subset R^{n+1}\right)$. Another type of symmetric 2 -forms which are easily seen to be $I Z D$ are those of the form $f \cdot g_{0}$, where f is an odd function on S^{n} with respect to σ. We call them of conformal type and denote the space of $I Z D$ of conformal type by \mathscr{C}.

We shall study what happens to the geodesics γ_{t} of $g_{t}=g_{0}+t \cdot h$ for an $I Z D h$, in order to see that an $I Z D$ is in fact worth its name. By the way, we prepare notations for the second order condition for integrability.

We take an orthonormal basis $X_{1}=\dot{\gamma}_{0}(0), X_{2}, \cdots, X_{n}$ in $T_{p} S^{n}$ and extend them parallel with respect to g_{0} to vector fields along γ_{0}. They turn out to be 2π-periodic. We define a normal coordinate near γ_{0} by

$$
\left(s^{1}=s, s^{2}, \cdots, s^{n}\right) \longmapsto \exp _{\gamma_{0}(s)}\left(\sum_{i=2}^{n} s^{i} X_{i}\right) .
$$

Writing down the equations of geodesics with respect to g_{t} in this coordinate and taking the differential at $t=0$, we get an equation of a variation vector field $\xi(s)=\left.\left(\partial \gamma_{t} / \partial t\right)(s)\right|_{t=0}$ along γ_{0} :

$$
\left\{\begin{array}{l}
d^{2} \xi^{1} / d s^{2}=-\beta^{1}=-(1 / 2) d h_{11} / d s \tag{2.3}\\
d^{2} \xi^{i} / d s^{2}+\xi^{i}=-\beta^{i}(i \neq 1)
\end{array}\right.
$$

where the indices mean the component with respect to our normal coordinate and we set

$$
\left\{\begin{array}{l}
\beta^{i}(s)=\left(\partial h_{1 i} / \partial s-(1 / 2) \partial h_{11} / \partial s^{i}\right)(s, 0, \cdots, 0) \tag{2.4}\\
h_{11}(s)=h_{11}(s, 0, \cdots, 0)\left(=h\left(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)\right)\right)
\end{array}\right.
$$

Notice that $\left\{\beta^{i}\right\}$ corresponds to the variation of Levi-Civita connections.
Since every γ_{t} starts from the same point in the same direction, the initial condition for ξ is given by

$$
\left\{\begin{array}{l}
\xi^{i}(0)=0 \\
\left(d \xi^{1} / d s\right)(0)=-(1 / 2) h_{11}(0) \\
\left(d \xi^{i} / d s\right)(0)=0 \quad(i \neq 1)
\end{array}\right.
$$

The solution of (2.3) with this initial condition is explicitly written as

$$
\left\{\begin{array}{l}
\xi^{1}(s)=-(1 / 2) \int_{0}^{s} h_{11}(u) d u \\
\xi^{i}(s)=-\int_{0}^{s} \beta^{i}(u) \sin (s-u) d u \quad(i \neq 1)
\end{array}\right.
$$

When a family of metrics g_{t} consists of Zoll metrics, the variation vector field ξ is 2π-periodic, and hence so is each component ξ^{i}. The component ξ^{1} is 2π-periodic if and only if

$$
\xi^{1}(2 \pi)=-(1 / 2) \int_{0}^{2 \pi} h_{11}(u) d u=0
$$

which is the same condition with (1.1). The component $\xi^{i}(i \neq 1)$ is 2π periodic if and only if

$$
\left\{\begin{array}{l}
\xi^{i}(2 \pi)=\int_{0}^{2 \pi} \beta^{i}(u) \sin u d u=0 \tag{2.5}\\
\left(d \xi^{i} / d s\right)(2 \pi)=-\int_{0}^{2 \pi} \beta^{i}(u) \cos u d u=0
\end{array}\right.
$$

It is easily seen that the above conditions for the periodicity of ξ do not depend on the choice of a starting point p of a geodesic γ_{0}, but only on the symmetric 2 -form h and the geodesic γ_{0} as an element of Geod S^{n}. Now the following lemma holds.

Lemma 2.1. Let h be an IZD. Take any geodesic γ_{0} of g_{0} and define β^{i} by (2.4) using a prescribed normal coordinate associated with γ_{0}. Then the condition (2.5) is satisfied.

Proof. Suppose an $I Z D h$ is even with respect to $\sigma\left(\sigma^{*} h=h\right)$. Then h is considered as a symmetric 2 -form on a real projective space $P^{n}(\boldsymbol{R})$ and satisfies

$$
\int_{0}^{\pi} h\left(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)\right) d s=0
$$

for every geodesic γ_{0} of g_{0}. By Michel's theorem ([6]), such an IZD h is trivial; it is written as $\mathscr{L}_{x} g_{0}$ on $P^{n}(\boldsymbol{R})$, where X is a vector field on $P^{n}(\boldsymbol{R})$ and g_{0} is considered as a metric on $P^{n}(\boldsymbol{R})$. Obviously h is also trivial on S^{n}, and therefore h satisfies (2.5) because a trivial IZD is integrable. On the other hand, if h is odd with respect to $\sigma\left(\sigma^{*} h=-h\right)$, then $\beta^{i}(i \neq 1)$ are even functions on $S^{1}\left(\beta^{i}(s+\pi)=\beta^{i}(s)\right)$, and hence (2.5) is satisfied by h. Since each $I Z D h$ is a sum of even and odd parts with respect to σ and since the condition (2.5) is linear in h, our lemma follows.

Thus, if h is an $I Z D$, the variation vector field for the metric deformation $g_{t}=g_{0}+t \cdot h$ is always 2π-periodic, which implies that a family of curves γ_{t} (g_{t}-geodesics) are nearly 2π-periodic in the first order of t.

We now examine the second order condition for integrability. Differentiating (2.1) twice in t and setting $t=0$, we get a formula satisfied by $h=\partial g_{t} /\left.\partial t\right|_{t=0}$ and $k=\partial^{2} g_{t} /\left.\partial t^{2}\right|_{t=0}$ when g_{t} is a Zoll deformation:

$$
\begin{align*}
(1 / 2 \pi) \int_{0}^{2 \pi} k\left(\dot{\gamma}_{0}(s), \dot{\gamma}_{0}(s)\right) d s & =(1 / 4 \pi) \int_{0}^{2 \pi}\left\{h_{11}(s)\right\}^{2} d s \\
& \quad-(1 / \pi) \sum_{i=2}^{n} \int_{0}^{2 \pi} d s \beta^{i}(s) \int_{0}^{s} \beta^{i}(u) \sin (s-u) d u \tag{2.6}
\end{align*}
$$

We define for two $I Z D h^{(1)}$ and $h^{(2)}$ a function $\mathscr{B}\left(h^{(1)}, h^{(2)}\right)$ on Geod S^{n} by

$$
\begin{align*}
& \mathscr{B}\left(h^{(1)}, h^{(2)}\right)\left(\gamma_{0}\right)=(1 / 4 \pi) \int_{0}^{2 \pi} h_{11}^{(1)}(s) h_{11}^{(2)}(s) d s \\
&-(1 / \pi) \sum_{i=2}^{n} \int_{0}^{2 \pi} d s \beta_{(1)}^{i}(s) \int_{0}^{s} \beta_{(2)}^{i}(u) \sin (s-u) d u \tag{2.7}\\
&\left(\gamma_{0} \in \operatorname{Geod} S^{n}\right),
\end{align*}
$$

where $\beta_{(1)}^{i}\left[\beta_{(2)}^{i}\right]$ is defined by (2.4) for $h^{(1)}\left[h^{(2)}\right]$ using a normal coordinate associated with γ_{0}. It is easily seen from Lemma 2.1 that the right hand side of (2.7) does not depend on the choice of a starting point p of γ_{0}. We also notice that the bilinear mapping \mathscr{B} is symmetric, i.e., $\mathscr{B}\left(h^{(1)}, h^{(2)}\right)$ $=\mathscr{B}\left(h^{(2)}, h^{(1)}\right)$.

The formula (2.6) means that, if an $I Z D h$ is integrable, then there exists a symmetric 2 -form k such that $\mathscr{A}(k)=\mathscr{B}(h, h)\left(\in \mathscr{F}\left(\operatorname{Geod} S^{n}\right)\right)$. It is a non-trivial condition for integrability, for the mapping \mathscr{A} is not surjective for $n \geqq 3$.

Proposition 2.2. Let h be an IZD. If $\mathscr{B}(h, h)$ is not contained in $\operatorname{Im} \mathscr{A}$, then it is not integrable.
3. Our argument on integrability of $I Z D$ is based on the fact that (S^{n}, g_{0}) is a compact rank one symmetric space. The special orthogonal group $S O(n+1)$ acts on $\left(S^{n}, g_{0}\right)$ transitively and isometrically, and on Geod S^{n} transitively. The actions induce $S O(n+1)$-module structures on $\mathscr{S}^{2}\left(S^{n}\right)$ and $\mathscr{F}\left(\operatorname{Geod} S^{n}\right)$, and they are endowed with natural $S O(n+1)$ invariant inner products. The spaces $\operatorname{Ker} \mathscr{A}$ and $\operatorname{Im} \mathscr{A}$ are considered as their $S O(n+1)$-submodules, since the mapping \mathscr{A} is an $S O(n+1)$-homomorphism. The spaces \mathscr{T} and \mathscr{C} are considered as $S O(n+1)$-submodules of Ker \mathscr{A}. For convenience's sake, we complexify all the modules appearing above and denote them by the same symbols in the following.

The $S O(n+1)$-module structure of $\operatorname{Ker} \mathscr{A}$, etc., has been studied in [7]. We denote by $V(\Lambda)$ an irreduicible $S O(n+1)$-module over C with the highest weight Λ; see [7] for the notation of weights.

Proposition 3.1. Assume $n \geqq 4$.
i) The $S O(n+1)$-module Ker \mathscr{A} includes densely an orthogonal sum $M_{0} \oplus M_{1} \oplus M_{2}$ of $S O(n+1)$-submodules, where $M_{i}(i=0,1,2)$ is isomorphic to a direct sum of irreducible $S O(n+1)$-modules;

$$
\begin{aligned}
& M_{0} \cong \sum_{k=1}^{\infty} V\left(k \lambda_{1}\right) \oplus \sum_{k=0}^{\infty} V\left(k \lambda_{1}+\left(\lambda_{1}+\lambda_{2}\right)\right) \\
& M_{1} \cong \sum_{k=1}^{\infty} V\left((2 k+1) \lambda_{1}\right) \\
& M_{2} \cong \sum_{k=0}^{\infty} V\left((2 k+1) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)\right)
\end{aligned}
$$

ii) $\quad M_{0}$ is a dense submodule of \mathscr{T}.
iii) $\quad M_{0} \oplus M_{1}$ is a dense submodule of $\mathscr{T}+\mathscr{C}$.

Remark. i) The sum $\mathscr{T}+\mathscr{C}$ is not orthogonal nor direct. But we
can still consider M_{1} as a representative of \mathscr{C}, because integrability of an $I Z D$ does not change if we add an element of \mathscr{T} to it.
ii) In order to get the results for $n=3$, we have only to add in the above formulas the terms with $\lambda_{1}+\lambda_{2}$ changed to $\lambda_{1}-\lambda_{2}$. In the following we always assume $n \geqq 4$, but the reasoning works equally well with small changes for $n=3$, contrary to the case $n=2$, when the terms containing λ_{2} disappear.

Since \mathscr{A} is a continuous $S O(n+1)$-homomorphism, Schur's lemma enables us to compute the $S O(n+1)$-irreducible decomposition of $\operatorname{Im} \mathscr{A}$, using those of Ker \mathscr{A} and $\mathscr{S}^{2}\left(S^{n}\right)$.

Proposition 3.2. The $S O(n+1)$-module $\operatorname{Im} \mathscr{A}$ densely includes an SO($n+1$)-submodule isomorphic to the following direct sum of irreducible $S O(n+1)$-modules,

$$
\sum_{k=0}^{\infty} V\left(2 k \lambda_{1}\right) \oplus \sum_{k=0}^{\infty} V\left(2 k \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)\right) .
$$

We denote by V_{k} the irreducible $S O(n+1)$-submodule of M_{2} that is isomorphic to $V\left((2 k+1) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)\right)$. Let $\left\{x_{1}, \cdots, x_{n+1}\right\}$ be a Cartesian coordinate of \boldsymbol{R}^{n+1} and set $z_{1}=x_{1}+\sqrt{-1} x_{2}$ and $z_{2}=x_{3}+\sqrt{-1} x_{4}$. The restriction to S^{n} of a (C-valued) symmetric 2 -form on \boldsymbol{R}^{n+1},

$$
\left(z_{1}\right)^{2 k+1}\left(\left(z_{2}\right)^{2} d z_{1} d z_{1}+\left(z_{1}\right)^{2} d z_{2} d z_{2}-z_{1} z_{2}\left(d z_{1} d z_{2}+d z_{2} d z_{1}\right)\right),
$$

is a maximal vector in V_{k}, which we denote by v_{k}. We extend C-bilinearly the mapping $\mathscr{B}: \operatorname{Ker} \mathscr{A} \times \operatorname{Ker} \mathscr{A} \rightarrow \mathscr{F}\left(\operatorname{Geod} S^{n}\right)$.

Lemma 3.3. A function $\mathscr{B}\left(v_{k}, v_{k}\right)$ on $\operatorname{Geod} S^{n}$ is not zero.
Proof. Its value at a geodesic $\gamma_{0}(s)=(\cos s, 0, \sin s, 0, \cdots, 0)$, which is computed by (2.7), is

$$
((4 k+3) / 4 \pi) \int_{0}^{2 \pi}(\cos s)^{2 k+2} d s \quad(>0) .
$$

We notice that \mathscr{B} is considered as a linear mapping from the symmetric tensor product of $\operatorname{Ker} \mathscr{A}$ to $\mathscr{F}\left(\operatorname{Geod} S^{n}\right)$, and that as such it is an $S O(n+1)$-homomorphism. Let us observe its restriction to the symmetric tensor product of V_{k}, denoted by $S^{2} V_{k}$. The $S O(n+1)$-module $S^{2} V_{k}$ includes the unique $S O(n+1)$-submodule V_{k}^{2} isomorphic to $V\left((4 k+2) \lambda_{1}+\right.$ $4\left(\lambda_{1}+\lambda_{2}\right)$, which is generated by $v_{k} \cdot v_{k}$. We denote by R the sum of other irreducible components; $S^{2} V_{k}=V_{k}^{2} \oplus R$. The image $\mathscr{B}\left(V_{k}^{2}\right)$ is not zero by Lemma 3.3, and hence the restriction of \mathscr{B} to V_{k}^{2} is an isomorphism by

Schur's lemma. Because Proposition 3.1 implies that $\operatorname{Im} \mathscr{A}$ does not include an $S O(n+1)$-submodule isomorphic to $V\left((4 k+2) \lambda_{1}+4\left(\lambda_{1}+\lambda_{2}\right)\right)$, the image $\mathscr{B}\left(V_{k}^{2}\right)$ is orthogonal to $\operatorname{Im} \mathscr{A}$. It is also orthogonal to $\mathscr{B}(R)$ by the same reason. For any non-zero element v in V_{k}, there exists an element a of $S O(n+1)$ such that $a \cdot v_{k}$ is not orthogonal to v, since V_{k} is irreducible. Then $v \cdot v$ is not orthogonal to $a \cdot\left(v_{k} \cdot v_{k}\right)=\left(a \cdot v_{k}\right) \cdot\left(a \cdot v_{k}\right)$, which shows that the V_{k}^{2}-component of $v \cdot v$ does not vanish. Therefore $\mathscr{B}(v, v)$, whose $\mathscr{B}\left(V_{k}^{2}\right)$-component does not vanish, is not contained in $\operatorname{Im} \mathscr{A}$.

The situation does not change if we add to v some elements in V_{i} $(i<k)$ in the above, since V_{k}^{2} remains the unique $S O(n+1)$-module isomorphic to $V\left((4 k+2) \lambda_{1}+4\left(\lambda_{1}+\lambda_{2}\right)\right)$ in $S^{2}\left(\sum_{i=0}^{k} V_{i}\right)$. Thus we proved

Theorem 3.4. For a non-zero element h is $M_{2}, \mathscr{B}(h, h)$ is not contained in $\operatorname{Im} \mathscr{A}$. That is, an IZD in M_{2} is not integrable.

Remark. The above argument also holds if we add some elements in $S O(n+1)$-submodules of M_{1} isomorphic to $V\left(i \lambda_{1}\right)(i \leqq k)$. This implies non-integrability of some elements in $M_{1} \oplus M_{2}$.

Unfortunately, it would be difficult to study integrability of an element in M_{1} or general one in $M_{1} \oplus M_{2}$ by our method. The following would illustrate the situation.

Let W_{k} be the unique irreducible $S O(n+1)$-submodule of M_{1} isomorphic to $V\left((2 k+1) \lambda_{1}\right)$. Its symmetric tensor product $S^{2} W_{k}$ decomposes as follows:

$$
\begin{aligned}
& S^{2} W_{k}=W_{k}^{2} \oplus W_{k}^{2,1} \oplus W_{k}^{2,2} \oplus R^{\prime} \\
& W_{k}^{2} \cong V\left((4 k+2) \lambda_{1}\right) \\
& W_{k}^{2,1} \cong V\left((4 k-2) \lambda_{1}+2\left(\lambda_{1}+\lambda_{2}\right)\right), \\
& W_{k}^{2,2} \cong V\left((4 k-6) \lambda_{1}+4\left(\lambda_{1}+\lambda_{2}\right)\right) .
\end{aligned}
$$

The image $\mathscr{B}\left(W_{k}^{2}\right)$ or $\mathscr{B}\left(W_{k}^{2,1}\right)$ may be included in $\operatorname{Im} \mathscr{A}$. It is the image $\mathscr{B}\left(W_{k}^{2,2}\right)$ and some of the images of irreducible components of R^{\prime} that cannot be included in $\operatorname{Im} \mathscr{A}$ if non-zero. The $W_{k}^{2,2}$-component of $v \cdot v$ vanishes for some element v in M_{1}, and not for another.

We are left with the problem: Determine the integrable $I Z D$. Or, at least, determine the elements in $M_{1} \oplus M_{2}$ that satisfy the second order condition for integrability. The author now feels that the latter is no easier than the former.

References

[1] A. Besse, Manifolds all of whose geodesics are closed, Springer-Verlag, Berlin-Heidelberg-New York, 1978.
[2] P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann., 74 (1913), 278-300.
[3], V. Guillemin, The Radon transform on Zoll surfaces, Adv. in Math., 22 (1976), 85-119.
[4] K. Kiyohara, C_{l}-metrics on the spheres, Proc. Japan Acad., 58, Ser A (1982), 76-78.
[5] , On deformations of the C_{l}-metrics on spheres, in this volume, 93-95.
[6] R. Michel, Problèmes d'analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. France, 101 (1973), 17-69.
[7] C. Tsukamoto, Infinitesimal Zoll deformations on spheres, to appear.
[8] O. Zoll, Über Flächen mit Scharen geschlossener geodätischen Linien, Math. Ann., 57 (1903), 108-133.

Department of Mathematics
Kyoto University
Sakyo-ku, Kyoto 606
Japan

