Stochastic Inequalities
IMS Lecture Notes — Monograph Series
Volume 22 (1993)

SECRETARY PROBLEMS AS A SOURCE
OF BENCHMARK BOUNDS

By STEPHEN M. SAMUELS

Purdue University

Secretary problems are those sequential selection problems in which
the payoff (or cost) depends on the observations only through their ranks.
A subclass of such problems allows only selection rules based on relative
ranks. The performance of such rules provides readily accessible lower
bounds for procedures based on more information. Included here are fa-
miliar bounds, like 1/e; well-known bounds, like 3.8695; and brand-new
bounds, like 2.6003.

1. Googol

Although there is a pre-history associated with Secretary Problems—
which some have traced back into the 19th century—the generally agreed-
upon “big bang” took place with Martin Gardner’s presentation of the fol-
lowing problem in his Mathematical Games column in the February, 1960
Scientific American.

Ask someone to take as many slips of paper as he pleases, and
on each slip write a different positive number. The numbers may
range from small fractions of one to a number the size of a googol
(1 followed by a hundred zeros) or even larger. These slips are
turned face-down and shuffled over the top of a table. One at a
time you turn the slips face up. The aim is to stop turning when
you come to the number that you guess to be the largest of the
series. You cannot go back and pick a previously turned slip. If
you turn over all the slips, then of course you must pick the last
one turned.

The “solution” in the March, 1960 column, treated googol as though it were
the classical best-choice problem. That is to say, it was taken for granted
that only stopping rules based on the relative ranks of the numbers need be
considered. (That was, after all, the point of calling it “googol,” wasn’t it?)
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372 Stephen M. Samuels

The optimal rule based on relative ranks is well-known to be among rules
of the form: let k£ — 1 go by and then select the first relatively best one (if
any). For such stopping rules, the probability of best choice is

(1) gu(k) =3 L. B

par A

where n is the total number of slips of paper. A well-known elementary
argument (which need not be repeated here) shows that, for k equal to half
of n, this probability is at least 1/4, no matter how large n is. If k(n)/n — z
as n — 00, then

(2) $n(k(n)) — —zlogz,

which is about .35 if £ = .5, but is maximized at z = 1/e = .3679; and the
celebrated maximum is also 1/e.

Here we have the most famous secretary problem benchmark bound.
How sharp is it?

1.1. Full Information Problem

Suppose the numbers are known to be a random sample (i.e., i.i.d.) from
some specified continuous distribution. Whatever the distribution, the opti-

mal probability of selecting the largest number, call it wy, decreases with n
to

3) lim w, = e °—(e—¢c—1) z7le" dz.

where ¢ =~ .804 is the solution to

(4) S it = 1.

j=1
See Gilbert and Mosteller (1966, Section 3) and Samuels (1982).

1.2. Partial Information Problems from the Minimaz Point of View

Now suppose that only some parametric family (e.g. normal) is specified,
perhaps together with a prior distribution on the parameters.

For location and scale parameter families, Petruccelli (1978) found suf-
ficient conditions for the existence of a sequence of invariant stopping rules
for which the probability of best choice converges to the full-information
limiting value as n — oo. The normal family satisfies his conditions, but the
uniforms do not.
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For the family of uniforms on (6— 3,0+ ), Petruccelli (1980) showed that
the limiting probability of best choice for the best invariant rules (which are
minimax by a version of the Hunt-Stein theorem) is .4352, a value interme-
diate between the full-information value of .5802 and the “no-information”
value of 1/e = .3679.

For the family of all uniforms, Samuels (1981) showed that the best-
choice problem solution is minimax, so, at least from the minimax point
of view, knowing that the distribution is uniform is “no information.” A
simplification of the original proof was given by Ferguson (1989), and can
also be found in Samuels (1991).

1.3. Partial Information Problems from a Bayesian Point of View

This minimax result still begs the question of whether there is any ex-
changeable distribution for which it is optimal to consider only the relative
ranks. (It is implicit in the statement of Googol that the numbers are ex-
changeable.) Samuels (1989) posed this question and called it Ferguson’s
Secretary Problem because Ferguson (1989) showed that for any ¢ > 0 and
for any n, there is a two-parameter Pareto prior distribution on 6 such that,
when sequentially observing n uniform r.v.’s on [0, 8], the best rule based
only on relative ranks comes within € of being optimal. Recently, Hill and
Krengel (1991b) have extended Ferguson’s result to the case where the num-
ber of items, n, is unknown with a known upper bound. In this context,
“optimal” is replaced by “minimax-optimal.” The same authors had al-
ready found the minimax rules based on relative ranks in Hill and Krengel
(1991a).

For the case n = 2, the answer to the above question is NO; there is no
exchangeable distribution for which it is optimal to consider only the relative
ranks. This is easily seen by the following simple and well-known argument:

Let X;, X, be the first and second numbers examined, respec-
tively. Now, pick any number, z, between the inf and the sup
of the support of the X’s, and choose X; if X; > z; other-
wise choose Xj. If both X; and X; turn out to be bigger than
z, or if both are smaller than z, then (by exchangeability) this
rule selects the larger of the two with probability 1/2, while, if
one random variable is larger than z while the other is smaller,
the larger one is sure to be chosen. Thus, setting the unknown
P {min( X3, X;) < z < max(X;y,X3)} equal to c, say, we have

P{X; = max(Xy,X3)} = ¢+ (1 - ¢)/2 = (1/2)(1 + ¢),

which is strictly greater than 1/2. This beats rules based only
on relative ranks, which, for n = 2, are necessarily constants, so
have probability 1/2 of success.
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Recently Silverman and Nadas (1991) have shown, to the surprise of
many, that for n = 3, there are such distributions. They began by giving
the following necessary and sufficient conditions for achieving optimality
with a rule based on relative ranks:

P(X; = max(X1, X2, X3)|X1)

(5) +(1/4)P(X1 = min(Xl,Xg,X3)|X1) S 1/2 a.s.
and
(6) P(max(Xl,Xg) = max(Xl,Xg,X3)|X1,X2) _>_ 1/2 a.s.

(This corrected an error in Samuels (1989) which had (6) all right, but
omitted the second term of (5).) Then they let X, X2, X3, given 6, be
conditionally i.i.d., uniform on [0, 6], with prior density on # of the form:

(8
(7 9(0) = tlpco<ry + (1 - Ogialie>y  @>0,0<t< 1.

This family includes—for ¢ = 0—the Pareto priors used in Ferguson (1989)
to “come within €;” see above. By enlarging the class of available priors,
Silverman and Nddas (1991) were able to find a subclass for which (5) and
(6) are both satisfied; namely those with 3t/(2 — 3t) < @ < 2t/(1 — 2t).

If this result can be extended to all n, then it can truly be said that the
famous 1/e benchmark bound is sharp.

2. A General Class of Problems

Problems involving arbitrary loss functions, a random number of arrivals,
or a sampling cost—generally considered separately in the literature—can
be combined into a single model, as follows:

Let N denote the number of rankable items which appear in random
order, X1, X32,...,Xn be their ranks, and Y3,Y5,...,Yx be the correspond-
ing relative ranks. Conditional on {N = n}, Xy, Xs,...,X, are a random
permutation of {1,2,...,n}, hence the Y;’s are independent, uniform on
{1,2,...,i}. All stopping rules, 7, are based on the Y’s but suitably mod-
ified to contend with the possible randomness of N. And there are risks,
A(1,7), for stopping at time 7 with an item of relative rank j, of the form

(8) A(3,7) = H(7) + K (3, 5)-

(The use of two terms, where one would do, is for clarity in what follows.)
An optimal rule is one which minimizes EA(T,Y;).
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For example, here are three problems, all of which have
76 = (i-1)/n7,

S (1= ifm)(1/n%,

m=1+1

K™)(,1)

(9) K®)G,5) = 1 ji>1

e Best-choice problem with N uniform on 1 to n*: subject to the “bound-
ary condition” that, when the N-th item is best, we only get it by actually
selecting it (Presman and Sonin (1972)).

e Payoff equals proportion of time holding the relatively best: N = n*;
and if we “stop” with the 7-th item, a relatively best one, and the next
relatively best item is the o-th item, our reward is (¢ — 7)/n*; or, if there
is no subsequent relatively best item, the reward is (n* — 7)/n* (Ferguson,
Hardwick and Tamaki (1991)).

o Linear sampling cost plus oddball risk term: N = n*; H™)(3) is
the linear sampling cost, and K(®")(4,1) is the hard-to-interpret risk when
selecting a relatively best item at stage .

2.1. General Loss Function

Let us now specialize. Let N = n be fixed, and prescribe a non-decreasing
loss function, g(-), where g(?) is the loss for selecting the item which turns out
to be i-th best overall. Then we can take H(i) = 0 and K(4,5) = R(™ (i, 7),
where

R™(i,j) = Eu[a(X:)|Y: =]

O G Y
(10) = Z&%%lﬂﬂ

k=j

Using backward induction plus the independence of the sequence of relative
ranks, we can conclude that the quantities

(11) ¢ = inf,5; Eo(RM(1,Y;) | Vs, ..., Yi)

are constants, and that the formula

(12) cfﬁ)l = %Jz::lmin[R(")(i,j), cgn)] i=n-1,n-2,...,1,

holds, with boundary condition

1

(13) ) = LS RO, )
n i



376 Stephen M. Samuels

and minimal risk, over all stopping rules,

(14) o=
Equation (12) can be rewritten in difference equation form as
(n) _ o)
G Gi-1 _ (n) (n)
(15) T /n [ - R,

For fixed j, the risk (10) is decreasing in 7 to g(7), so, from (12), if we let

(n) _ J min{i : R(V(i,k) < c(n)}
(16) %= { n if no such ¢

then an optimal rule stops at the first s for which, for some k, i <@ < ig4q
and Y; < k. Its risk is

(17) T C‘(]n) = cg'n) =. - (n)

11—1

In addition, the risks have a limit as n — 0o, namely
~ () (5 S k—-1) ; k—j
(18) i/n—t= R™M(i,j) - R;j(t) = D _ (k) i—1)t (1-2)"7,
k=1

and, as Mucci (1973a and 1973b) showed for a large class of ¢(:)’s, ¢ f")
f(i/n), where

(19) £ = 300 - B(OF 0<t<1

with boundary condition, f(1) = supg(:), and a non-decreasing sequence of
thresholds,

(20) tr: f(tk) = Ri(tr) k=1,2,....
f(-) is constant on [0,?], so the limiting optimal risk is
(21) v =limv, = f(0) = f(t1),

and (19) can be rewritten as the piecewise differential equation,

(22) (ft(ki)> = tkHZR 1) te <t<tpa

j=1
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2.1.1. Some special cases

BEST-CHOICE PROBLEM: ¢(1) = 0 and ¢(¢) = 1 for all 7 > 1;
RM@G,1)=1—i/n, Ri(t) =1-1t,

| 0<t<e?
(23) f(t)_{ 1—|tlnt] e'<t<1 ~

POLYNOMIAL-IN-RANKS PROBLEM: If ¢(¢3) = (¢ + 1)--- (¢ + a — 1)
for some integer a > 1, then (10) becomes

(n+1)---(n+a))’

8 ROG) =G+ DG +a- 1) (T

SO

(25) Rjt)=3j(G+ 1) (G+a-1)""

and v = a!/t{ = a!B?, where

— exp(r2/6) as a — oo.

Sl 1/(i+a)
(26) B, = H (liji)

i=1

Chow et al (1964) derived By ~ 3.8695 directly from the difference equa-
tion, without using the piecewise differential equation, and, recently, Robbins
(1989) reported the above generalization. This remarkable result of a finite
risk (less than four, in fact, for @ = 1) despite an unbounded loss function
can also be obtained in a more transparent way using memory-length one
rules (see Section 3.1).

2.1.2. Monotonicity of the optimal risk, v,

For any non-decreasing loss function, ¢(-), the optimal risk, v, is non-
decreasing in n, the number of items to be observed. And v, is strictly
increasing whenever g(-) is. One way to prove this is to consider an n + 1-
arrival problem in which we are told when the current item is worst of all
n + 1. Since an optimal rule never selects a relatively worst item unless it is
the last one, we can use the optimal n + 1-arrival rule to select one of the
other n arrivals. This is easily seen to be simply a randomized n-arrival rule,
hence suboptimal for n arrivals, but possibly super-optimal for n + 1 since
it never selects the worst one. See, e.g., Chow et al (1964).

2.1.3. A risk ‘paradox’

Since, for fized sample size, the optimal risk, v,, is increasing, one might
naively expect the optimal risk for a bounded (by »*) arrival distribution to
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be less than v,+. That this is quite false was demonstrated in Gianini-Pettitt
(1979) for the arrival distributions defined by

(27) P(N=i|N>i)=(n"-—i+1)™* i=12,..,n"

(which includes, for o = 1, the uniform distributions). For loss equal to the
rank, the limiting optimal risk is infinite if & < 2 and equal to the fixed
sample size limit (3.8695) if @ > 2. The “paradox” disappears when we
realize (as shown at the beginning of this section) that uncertainty about
the number of arrivals is like imposing a sampling cost.

2.1.4. Minimax quantile problem

Take a random sample of size n from a member of some family, {Fp},
of distributions and try to minimize maxy E Fy(X,). This is not a secretary
problem but, in the special case where the Fj’s are uniform, the solution
to the rank problem is relevant, because the expectations of the successive
order statistics are proportional to the ranks. Thus, from the solution to
the Rank Problem (26), the minimax risk is at most ~ 3.8695/n—for a rule
based only on the relative ranks!-—which is not far from the asymptotically
optimal value of (3 + 2\/5)1/\/5/71 ~ 3.4780/n (Samuels (1981)).

2.1.5. Full information rank problem

A rank problem which is a secretary problem is the one where we sample
from a known continuous distribution and wish to maximize the expected
rank of an item selected by a stopping rule. This problem is currently un-
der study by Assaf and Samuel-Cahn (1991) and by Bruss and Ferguson
(1991). The optimal expected rank, as n — oo has, so far, been shown to
be somewhere between 1.85 and 2.33.

3. An Infinite Model

Let the best, second best, etc., of an infinite sequence of rankable items
arrive at times Uy, Us, ..., which are i.i.d., uniformly distributed on the unit
interval, [0,1]. For each t in this interval, let V;(t) be the arrival time of
the item which is i-th best among all those which arrive before time ¢. Let
F: be the sigma field generated by Vi(t),Vz(t),..., and consider the class
of all stopping rules, 7, adapted to the F;’s and taking values in the set
{U;} U {0,1}; the values 0 and 1 are included to allow for the possibility of
not starting or not stopping.

As in Section 2, let A(t,7) be the prescribed loss for stopping at time ¢
with an item of relative rank j; the goal is to minimize EA(7,Y;), among all
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stopping rules, 7, where Y, is the relative rank, at its arrival time, of the item
which arrives at time 7. For example, as in Section 2.1, a non-decreasing
loss function, ¢(-), may be given, and

(28) A(t,5) = R;(t) = Elg(X) | Yz = j]

where, in a slight abuse of notation, we are letting X; and Y; denote the
absolute and relative ranks at time ¢, of an arrival at time ¢{. This can
easily be made rigorous and the result is that R;(t) is precisely the limit of
R™(4,§) given in (18).

This model was first proposed in an abstract by Rubin (1966) and worked
out in detail in Gianini and Samuels (1976), Gianini (1977), and Lorenzen
(1979). It is appealing for a number of reasons, among them

e it is consistent with the “finite model” of the previous section, because
if the ranks of the n successive arrivals are a random permutation of 1 to
n, then the arrival times of the best, second best, etc., are also a random
permutation of 1 to n and vice versa;

e it yields upper bounds for finite problem risks in an elementary way;

e it is, in several ways, the limit of the finite problem—in particular,
backward induction yields the differential equation (19) directly;

e it is the natural setting for a number of important applications.

3.1. Fasy Upper Bounds with Memory-Length One Rules

If the stopping risk is given by (28)—i.e. there is no sampling cost—then
the risk using any stopping rule in the infinite problem is an upper bound
for the optimal risks for all n in the corresponding (i.e. same g(-) function)
finite problem of Section 2.1. This is because, if we augment the sigma-
fields, F; to include information about which arrivals by time ¢ are among
the n best overall, and modify an arbitrary infinite problem stopping rule
by having it select the last arrival among the n best whenever the original
rule does not select one of the n best, then the modified rule has reduced
risk (because ¢(-) is non-decreasing); but it is also a randomized rule (hence
suboptimal) for the n-arrival problem, because, regardless of their arrival
times, the successive ranks of the n best arrivals are a random permutation
of 1 to n.

The infinite model includes stopping rules which are much more tractable
than any in the finite problem. For example, suppose we choose an infinite
sequence of numbers

(29) 0=Ro< A1 <R1 <A< <A< Rp<---<1

(that’s R as in Remember and A as in Accept), and stop at 7 equal to the
first time we have an arrival in an interval of the form [A;, R;) which is better
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than the best arrival in the previous interval, [R;—;, A;). Let the A’s and
R’s be chosen so that for all : = 0,1,...,

(30) (Riy1— Ri) = Bi(1 - Ry)
and
(31) (Ait1 — R)/(Riy1 — R;) = p.

(The idea here is to make the problem recursive.) Then P(t > R;) = p', so
7 < 1 a.s. Moreover, since the k-th best arrival in (R;,1) has expected rank
k/(1 — Ry), we easily conclude that

(32) EX, = EX-rI{1—<R1} + P(r > Ry)[EX./(1 - Ry)),
which is finite if and only if
(33) P(r>R))=p<1-R;.

Thus, for the Rank Problem of Section 2.1, the infinite model provides
an easy demonstration of the finiteness of the limiting risk. Rubin and
Samuels (1977) studied these memory-length one rules and showed that, for
the optimal rule of this type, the expected rank is about 7.4. This same
argument can be used for any polynomial loss. In particular, for losses of
the form ¢(i) = i(¢+ 1)--- (i + m), the above rules can be shown to have
finite risk if and only if p < (1 — Ry)™.

3.2. Infinite Problem as Limit of Finite Problem

When the stopping loss satisfies (28), [and under mild conditions oth-
erwise], if there is any stopping rule with finite risk, then, using backward
induction, we can conclude, as in Section 2 that the quantities

(34) f(t) = inf7'>t E(A(T’YT) I ]:t)

are constants satisfying the differential equation (19), with boundary condi-
tion f(1) = sup ¢(+), minimal risk, v, given by (21), and optimal rule which is
the (appropriately scaled) limit of the finite problem optimal rules, namely,
if we haven’t stopped before time tx, given by (20), then we stop with the
first arrival in [tg,?x41], if any, which has relative rank < k.

In addition, (21) always holds, i.e., the infinite problem minimal risk,
finite or infinite, is always the limit of the finite problem minimal risks. We
have already seen, in Section 3.1, that v is finite whenever ¢(-) grows no
faster than a polynomial. On the other hand, if 3"[log ¢(k)]/k? = oo, then v
is infinite (Gianini (1977)).



Bounds in Secretary Problems 381

3.3. Easy Upper Bounds for Unknown Number of Arrivals

Instead of prescribing a prior distribution of the number of arrivals, as in
Section 2, and having them appear in discrete time, we may have the arrivals
occur in continuous time as some kind of stochastic process. Suppose for
example that the best, second best, etc., of N (a random variable) items
arrive at times which are I.I.D. with some continuous distribution, F', on the
time interval, (0,00). A much-studied special case is the best-choice problem
with a Poisson arrival process, which is equivalent to N ~ Poisson and F ~
uniform on (0, T') for some T (Cowan and Zabczyk (1978) and Bruss (1987)).

Since, without loss of generality, the arrival times can be taken to be
uniform on (0, 1), the infinite model provides a unifying framework for such
problems (Bruss (1984), Bruss and Samuels (1987 and 1990), and Sakaguchi
(1989)). Suppose, in the infinite model, instead of observing the entire in-
finite collection of arrivals, we can only observe the N best, where N has
distribution G. What effect does this “censoring” have on, say, an optimal
rule, 7%, for the general loss problem, (28)? Clearly censoring delays stop-
ping, and—as long as the loss for not stopping, @(NV), is no bigger than
g(N + 1)—censoring is guaranteed to reduce the risk. Thus, the particular
G, be it Poisson or whatever, is nearly irrelevant: The optimal infinite prob-
lem stopping rule for the given loss function ¢(:) provides an upper bound
for the optimal risk for all distributions of N. Moreover, it can easily be
shown to be nearly optimal itself for all stochastically large N. Specifically,
letting v(™) denote the minimal risk, we have

(35) o) < EMg(Re) < v
and
(36) N 1 oo in distribution = v(V) 1 v,

(The result applies whenever v is finite.)

For loss functions that are eventually constant, as in choosing one of the
 best, a more logical loss for not stopping is Q(N) = ¢ (a constant). If
¢ < max¢(+), the above results must be modified slightly; they apply only
to N’s for which

(37) P{q¢(N + 1) = maxgq(:)|[N >0} =1.

This, by the way, is guaranteed in the best choice problem: r = 1.

3.4. Best-Choice Problem with Recall

Suppose we relax the stopping-rule requirement of no recall to allow
“backward solicitation” of previously observed items. Specifically, let ae[0, 1)
be a recall time; an item which arrives at time ¢ can be held until time ¢ + o,
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when it must be either selected or discarded (Rocha (1988)). As one would
expect, the optimal rule is of the form 7;: ignore all arrivals up to time ¢, and
thereafter select the first “candidate” which is still relatively best at the end
of the recall period (or at time 1, whichever comes first). This rule selects
the overall best item with probability

(38) $Po(t) = P[ry = min(U; + ,1)] = P[r; “picks best”].

The goal is to find—for each @ € [0,1]—the optimal ¢, say t,, and the
corresponding probability, ¢.(ts) = v(a).
Fort > 1 — a it is trivial that

(39) Yolt)= Py >t]=1-t 1l-a<t<l,

and the classical no-recall case, & = 0, is also immediate:
1¢

(40)  vo(t) = P{Us > t} N {Va(Uh) < t}] = / ~dz = —tint.
t

(Both U and V were defined at the beginning of this section.) But, the recall
case, with ¢ < 1 — a is more complicated. For0 < § < aandt+ 6 <1 - ¢,

(41) {7, “picks best” but 1,45 “doesn’t”} = {t < Uy < t + 6}
while
(42) {t <Vi(t + @) <t + 6} N {Ty4a “picks best”}
D {745 “picks best” but 7, “doesn’t”} D

{t <Vi(t+ a+6) <t+ 8} N{Tyats “picks best”}.
This leads to the useful inequalities,

'l’a(t-l-a)] [ Yot +a+96)
(43) & [1 D) < alt) — gl +6) < 8 |1 - LT IED

which tell us that 1,(t)/t is decreasing; and that 1,(-) is unimodal, with its
maximum at

(44) ta =t —
where

(45)

*
o

) a ifa2>1
h "pa(tZ) ifaﬁ%

and satisfies the differential equation

(46) ¢;(t)=¢_"t%iafl-1 0<t<l-a
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It’s easy to solve the differential equation on [(1-2a)*,1—a] by substituting
the known value 94(t + a) = 1 -1t — a, from (39), into the right side of (46).
The solution is

(47) Ya(t)=2-2t—a+In(t+a) (1-2a)t<t<l-0.

Thus the complete solution for a >1 is

to = 0
(48) v(a) = 2—a+lna} @2

And, for 14(1 —2a) > (1 — 2a)—which holds for o > .260303—we can solve
for t%, from (47). But then the trouble starts. For t < 1—2a we face integrals
of the form
(49) / In(t + 2a) it
t+ a

which cannot be expressed in closed form. An attractive alternative to nu-
merical integration (which works quite well) is to obtain, probabilistically,
improved upper and lower bounds for (-)—better than those in (43)—and
use them to get upper and lower bounds for ¢}, and for 1, (t})-

Equations (48) are the limiting solutions for the corresponding finite
problem studied by Smith and Deely (1975).

=

4. Multiple Criteria
4.1. Best Choice Problem with Independent Criteria

Suppose each item’s relative ranks with respect to m independent criteria
are to be observed and we want to maximize the probability of choosing an
item which is best in an at least one criterion. The finite problem was studied
by Gnedin (1982). Asymptotically, an m-dimensional infinite model applies,
leading to the differential equation

(50) f)=ZUO-a-9  0<t<1

where f(t) is, as usual, the minimal risk for rules which do not stop before
t and the boundary condition is f(1) = 1. The solution for m > 1 is

(&) = 1—ml_1t(1—t'n~1) t>t*
(51) 1-f(t*) = t*:(%)l/(m‘l).

In particular, for m = 2, an asymptotically optimal rule lets half of the items
go by before being willing to stop, and has probability 1/2 of success.
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4.2. Best Rank Problem with Independent Criteria

Govindarajulu (1991) studied a version of the secretary problem in which
there are two independent streams of candidates. At stage ¢, the relative
ranks of the i-th item—relative to its predecessors in its own stream-—are
observed. Only one item, from one stream or the other, will be selected, and
the goal is to minimize its rank in its own stream.

If selection is made after seeing both items, this problem is equivalent
to a two independent criteria problem; if not, they are still asymptotically
equivalent.

For m criteria, asymptotically, the same m-dimensional model as in Sec-
tion 4.1 applies, leading to the piecewise differential equation

mk mk(k+1
(52) f="E50- 2Dy ci <,
with boundary condition f(1) = oo, where the thresholds, tx, are increasing

and satisfy f(tx) = k/tx. Dividing both sides of (52) by t™F leads to the
solution

_ B ) 2(mk+ 1) 1/(mk+1)
(53) ft) = 1/t1—,:c[;11<1+ k(mk+2—m)> .
Best Choice Best Rank

m t* t f(tl)

1 .3679 .2584 | 3.8695

2 .5000 .3846 | 2.6003

3 5774 4670 | 2.1413

4 .6300 .5267 | 1.8987

5 6687 5724 | 1.7469

10 7743 .7040 | 1.4205

20 .8541 .8088 | 1.2363

50 .9233 9011 | 1.1097
100 9545 9425 | 1.0610

Table 1. Asymptotic Results for m-Criteria Problems.

4.3. Sum of the Ranks Problem with Independent Criteria

Suppose, as before, that we observe the relative ranks with respect to
m independent criteria, but now want to minimize the sum of the ranks.
This is a multivariate extension of the rank problem in Section 2.1; however,
for m > 2, we cannot expect the risk to remain bounded as the number of
items becomes infinite. Samuels and Chotlos (1986) give both the optimal
stopping and extreme value results for m independent permutations,

(54) (x® ox@y, e x™ L x )y,
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of the integers 1 to n. As n — oo,

m 3
65 P [minls@zxf’)] — (m)/™T(1 4 1/m)
=t
and
1 . TN (i (m + 1)1/
(9 A T
(56) 7 E [mlnTSn;X,. } N [ * ] ,

The ratio of these two limits—the right side of (56) divided by the right side
of (55)—decreases to one as m 1 co.

4.3.1. Sums of i.i.d uniforms

It is worth noting that (55) and (56) also hold if all of the Xi(’)’s are
ii.d., uniform on (0,1). In fact the solution to the above secretary problem
was obtained in Samuels and Chotlos (1986) by showing that it can be
approximated by this non-secretary problem. The approximation works for
m > 1 but not for m = 1. Lindley (1961), in effect, tried it for m = 1 and
got an asymptotic risk of 2, which he noted was incorrect. The correct limit
is 3.8695, as in (26).

REFERENCES

AssAF, D. AND SAMUEL-CAHN, E. (1991). The secretary problem: minimizing the
expected rank with i.i.d. random variables. Preprint.

Bruss, F. T. (1984). A unified approach to a class of best choice problems with
an unknown number of options. Ann. Probab. 12 882-889.

Bruss, F. T. (1987). On an optimal selection problem by Cowan and Zabczyk. J.
Appl. Prob. 24 918-928.

Bruss, F. T. AND FERGUsoON, T. S. (1991). Minimizing the expected rank with
full-information. Preprint.

Bruss, F. T. AND SAMUELS, S. M. (1987). A unified approach to a class of optimal
selection problems with an unknown number of options. Ann. Probab. 15 824-
830.

Bruss, F. T. AND SAMUELS, S. M. (1990). Conditions for quasi-stationarity of the
Bayes rule in selection problems with an unknown number of rankable options.
Ann. Probab. 18 877-886.

CHow, Y. S., RoBBINS, H., MORIGUTI, S. AND SAMUELS, S. M. (1964). Optimal
selection based on relative rank (the “secretary problem”). Israel J. Math. 2
81-90.

CowaN, R. AND ZABczYK, J. (1978). An optimal selection problem associated
with the Poisson process. Theor. Probab. Appl. 23 584-592.

FERGUSON, T. S. (1989). Who solved the secretary problem? (with discussion)
Statist. Sci. 4 282-289.



386 Stephen M. Samuels

FErGUsoON, T. S., HARDWICK, J. P. AND TaMaki, M. (1991). Maximizing the
duration of owning a relatively best object. In Strategies for Sequential Search
and Selection in Real-Time. F. T. Bruss, T. S. Ferguson and S. M. Samuels,
eds. American Mathematical Society, Providence, RI. 37-57.

GARDNER, M. (1960). Mathematical Games. Sci. Amer. 202 135, 178.

GIANINI, J. (1977). The infinite secretary problem as the limit of the finite problem.
Ann. Probab. 5 636-644.

GIANINI, J. AND SAMUELS, S. M. (1976). The infinite secretary problem. Ann.
Probab. 4 418-432.

GIANINI-PETTITT, J. (1979). Optimal selection based on relative ranks with a
random number of individuals. Adv. Appl. Prob. 11 720-736.

GILBERT, J. AND MOSTELLER, F. (1966). Recognizing the maximum of a sequence.
J. Amer. Statist. Assoc. 61 35-73.

GNEDIN, A. V. (1982). Multicriterial problem of optimum stopping of the selection
process. (translated from Russian). Automation Rem. Cont. 42 981-986.

GOVINDARAJULU, Z. (1991). The secretary problem: optimal selection from two
streams of candidates. In Strategies for Sequential Search and Selection in Real-
Time. F. T. Bruss, T. S. Ferguson and S. M. Samuels, eds. American Mathe-
matical Society, Providence, RI. 65-75.

Hir, T. P. AND KRENGEL, U. (1991a). Minimax-optimal stop rules and distribu-
tions in secretary problems. Ann. Probab. 19 342-353.

Hirr, T. P. AND KRENGEL, U. (1991b). On the game of googol. Preprint.

LINDLEY, D. V. (1961). Dynamic programming and decision theory. Appl. Statist.
10 39-52.

LoreNzEN, T. J. (1979). Generalizing the secretary problem. Adv. Appl. Probab.
11 384-396.

Mucci, A. G. (1973a). Differential equations and optimal choice problems. Ann.
Statist. 1 104-113.

Muccl, A. G. (1973b). On a class of secretary problems. Ann. Probab. 1 417-427.

PETRUCCELLI, J. D. (1978). Some best choice problems with partial information.
Unpublished thesis, Department of Statistics, Purdue University.

PETRUCCELLI, J. D. (1980). On a best choice problem with partial information.
Ann. Statist. 8 1171-1174.

PRESMAN, E. L. AND SoNIN, I. M. (1972). The best choice problem for a random
number of objects. Theor. Prob. Appl. 17 657-668.

RoBBINS, H. (1989). [Comment on Ferguson (1989)] Statist. Sci. 4 291.

RocHA, A. (1988). The secretary problem with recall. Preprint.

RUBIN, H. (1966). The “secretary” problem. Ann. Math. Statist. 37 544.

RuBIN, H. AND SAMUELS, S. M. (1977). The finite-memory secretary problem.
Ann. Probab. 5 627-635.

SAKAGUCHI, M. (1989). Some infinite problems in classical secretary problems.
Math. Japonica 34 307-318.

SAMUELS, S. M. (1981). Minimax stopping rules when the underlying distribution
is uniform. J. Amer. Stat. Assoc. 76 188-197.

SAMUELS, S. M. (1982). Exact solutions for the full information best choice prob-
lem. Purdue Univ. Stat. Dept. Mimeo Series 82-17.

SAMUELS, S. M. (1989). Who will solve the secretary problem? [Comment on Fer-
guson (1989)] Statist. Sci. 4 289-291.



Bounds in Secretary Problems 387

SAMUELS, S. M. (1991). Secretary Problems. In Handbook of Sequential Analysis.
B. K. Ghosh and P. K. Sen, eds. Marcel Dekker, New York. 381-405 (Chapter
16).

SAMUELS, S. M. AND CHoTLOS, B. (1986). A multiple criteria optimal selection
problem. In Adaptive Statistical Procedures and Related Topics, J. Van Ryzin,
ed., Institute of Mathematical Statistics, Hayward, CA. 62-78.

SILVERMAN, S. AND NADAs, A. (1991). On the game of googol as the secretary
problem. In Strategies for Sequential Search and Selection in Real-Time, F. T.
Bruss, T. S. Ferguson and S. M. Samuels, eds. American Mathematical Society,
Providence, RI. 77-83.

SmiTH, M. H. AND DEELY, J. J. (1975). A secretary problem with finite memory.
J. Amer. Statist. Assoc. 70 357-361.

DEPARTMENT OF STATISTICS
PURDUE UNIVERSITY
WEST LAFAYETTE, IN 47907-1399





