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Introduction

Whenever I read a paper by Dev I am impressed with the clarity of his
writing and thinking. He is able to distill the essence of the topic at hand and
present it in such a way that it seems almost obvious to me. This is particularly
true in the foundations of sample survey where he has elegantly demonstrated the
proper role of the sufficiency and likelihood principles. Because these principles
fail to justify much of the current design based practice and because he has
presented his arguments in a Bayesian context some survey samplers have chosen
to either ignore or attempted to modify the consequence of these principles. This
coldness to Bayesian ideas in survey sampling could be considered surprising since
it is the one area in statistics where everyone agrees prior information should be
used.

In the next section, the results of Basu and Ghosh (1967), which
characterize the minimal sufficiency partition for discrete models, will be briefly
summarized. In the third section, the results of Basu (1969) will be summarized.
Here he demonstrated the role of the sufficiency and likelihood principles in
sample survey, from which it follows, that once the sample has been drawn the
inference should not depend in any way on the sampling design. In the fourth
section, some of the implications of these results will be noted. In particular, the
famous Jumbo example of Basu (1971) will be discussed. It will be shown how
Basu's argument there suggests a pseudo-Bayesian approach to survey sampling.
This approach is quite flexible in that one can incorporate various levels of prior
information without specifying a prior distribution. Finally, the role of random
sampling in survey sampling will be discussed briefly. It should be noted that
Basu (1978) contains some further reflections on his earlier work.

Sufficiency in Discrete Models

For many years, in statistical decision theory, it has been an accepted
convention, to begin by assuming the existence of a nonempty set X, equipped
with a σ-algebra of subsets of Xy say /?, along with P = {Pθ\θεΩ} a family of
probability measures on (X, /?). One of the consequences of Basu's work (along
with others) was to fit survey sampling into this scheme. For such a model it is
of interest to find the minimal sufficient statistic, assuming it exists. Now, in
general, for such models a minimal sufficient statistic need not exist. However,
for discrete models, which includes the sample survey model, a minimal sufficient
statistic always exists and is easy to find.
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The triple (X, /?, P) is said to be a discrete model if i) β is the class of all
subsets of X and ii) each PΘ is a discrete probability measure. (We are also
assuming that for each xεX, there exists a 0εΩ, such that PQ({X}) = P$(x) > 0.)
Note that a discrete model is undominated if and only if X is uncountable.

Now a statistic is just a function, T, defined on X. By our choice of β
every function T is measurable. Every statistic T defines an equivalence relation
(x ~ x1 if T\x) — T(xf)) on the space X. This leads to a partition of X into
equivalent classes of points. Since we need not distinguish between statistics that
induce the same partition of X, we may think of a statistic T as a partition {TΓ}
of X into a family of mutually exclusive and collectively exhaustive parts TΓ.

Using the usual measure theoretic definition of sufficiency one can prove
the following factorization theorem for discrete models:

Theorem (Basu and Ghosh, 1967).

If (X, /?, P) is a discrete model, then a necessary and sufficient condition
for a statistic (partition) T = {TΓ} to be sufficient is that there exists a real
valued function g on X such that, for all θεΩ, and xεX

Pθ(x) = g{x)Pθ(πx)

where πχ is the part of the partition {TΓ} that contains x.
Using this theorem, it is easy to find the minimal sufficient partition for

a discrete model. For each xεX let

«, = W P*(*) > o}

Consider the binary relation on X: ux ~ xf if Ωχ = Ωr, and Pθ(x)/Pθ(xf) is a
constant in θ for all θεΩx = Ω /." This is an equivalence relationship on X and
defines the minimal sufficient partition.

The minimal sufficient statistic has an alternative characterization. For
each xεX let Lχ(θ) be the likelihood function, i.e.

and

Lx(θ) = Ptf) for θεQx

= 0 for

= Lχ(θ)/sup Lx(θ)
θ

be the standardized likelihood function. Consider the mapping

a mapping of X into a class of real-valued functions on Ω. This mapping is a
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minimal sufficient statistic, i.e. induces the minimal sufficient partition given
above.

The Sufficiency and Likelihood Principles
in Survey Sampling

The sufficiency and likelihood principles were widely used in other areas
of statistics before their role in survey sampling was properly understood. The
sufficiency principle states that if T is a sufficient statistic and T\x) = T(xf) then
the inference about θ should be the same whether the sample is x or x1. This
principle has gained wide acceptance. In discrete models since the mapping
x —• Lχ(θ) is a minimal sufficient statistic, according to the sufficiency principle
two sample points x and x1 are equally informative if

Lχ(θ) = Lχt(θ) for all θ.

Note the sufficiency principle does not say anything about the nature of the
information supplied by x. For this we need the likelihood principle which states
that the information supplied by x is just the standardized likelihood function

To see the implications of these principles in survey sampling we consider
a simple survey model. Let U denote a finite population of N units labeled 1,
2,...,AT. Attached to unit i let yi be the unknown value of some characteristic of
interest. For this problem

is the unknown state of nature, θ is assumed to belong to Ω a subset of TV-
dimensional Euclidean space, R . The statistician usually has some prior
information about y and this could influence the choice of Ω. Often it is assumed
that Ω = RN but this need not be so. We will assume that, in addition,
associated with each unit i is mt , a possible vector of other characteristics all of
which are known to the statistician. We assume that the rat 's and their possible
relationship to the yfs summarize the statisticians prior information about y.

A subset s of {1, 2,...,N} is called a sample. Let n(s) denote the number
of elements belong to $. Let S denote the set of all possible samples. A
(nonsequential) sampling design is a function Δ defined on S such that

Δ(s)ε[0, 1] and Σ)Δ(s) = l Given 0εΩ and 5 = {«!>...>ι'n/β\} where 1 < iχ <
sεS * '

. . . < tn/ \ < N let 0(s) = (yi ,.,.<tyi ). Suppose we wish to estimate the

population total

τ(')=Σ»,
ι = l

with squared error loss. Note e(s, θ) will denote an estimator of j(θ) where
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e(s, θ) depends on θ only through θ(s). If the design Δ is used in conjunction
with the estimator e, then the risk function is

0; Δ, e) = £[e(s, θ) - 7(θ)f Δ(s).

Typically a frequentist sampler uses the prior information summarized in the mt 's
to choose some design Δ and then looks for estimators which are unbiased for
estimating j(θ). For such an unbiased estimator the risk function is just its
variance.

For such a problem a typical sample point is the set of labels of the units
contained in the observed sample along with their values of the characteristic of
interest. We will denote such a point by

x = (s, xs)

when s = {*iviin(5)} is the observed sample.

Hence for a given design Δ the sample space is given by

X = {(5, xa)\A(s) > 0 and x8 = θ(s) for some θεΩ}.

So for a fixed θεCl the probability function over X is given by

Pθ(χ) = Pθ(s, χs) = A(s) iΐχs = θ(s)

= 0 otherwise.

This defines a discrete model. Note that

= {θ\θ{s) = x,}

from which it follows that

Pθ(x) = PΘ(s, xs) = A(s) iΐθεΩx

= 0 elsewhere.

If as before, Lχ( ) denotes the standardized likelihood function, we see that
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= 0 elsewhere.

Since the mapping x —> 1 ^ ) is a minimal sufficient statistic and the likelihood
function is constant over Ωχ, all we learn from the observed data x — (s, xs) are
the values of the characteristic for the units in sample and that the true θ must
be consistent with these observed values.

Note that this observation is independent of the sampling design. That
is, after the sample x = (s, xs) is observed the minimal sufficient statistic does
not depend in any way on the value of Δ(s). (In fact, Basu demonstrated that
this is true even for sequential sampling plans where the choice of a population
unit at any stage is allowed to depend on the observed y-values of the previously
selected units.) Furthermore, the principle of maximizing the likelihood function
cannot be invoked to find an estimate of the population total since the
standardized likelihood function is constant over Ω .̂

In the next section some implications of these results will be discussed.

Some Implications

For most statisticians, perhaps the most unsettling aspect of Basu's
argument is his demonstration that the likelihood principle implies that the
design probability should not be considered in analyzing the data, after the
sample has been observed. In particular, choosing an estimator which is unbiased
for a given design violates the likelihood principle. But from a naive point of
view this is not surprising when one recalls the strange way probability is used in
survey sampling. Since the characteristic yi is assumed to be measured without
error the only way probability enters the model is through the design Δ. That is
the phenomenon of randomness is not inherent within the problem but is
artificially injected into it by the statistician. In other areas of statistics the
statistician uses probability theory to model uncontrollable randomness while in
survey sampling the whole analysis is based on a controlled randomness
introduced by the statistician.

Godambe (1966) had noted before Basu (1969) that the application of
the likelihood principle to survey sampling would mean that the sampling design
is irrelevant for data analysis. But he, as many other non-Bayesian statisticians
since then, has chosen to ignore the likelihood principle and tried to justify a role
for the design when analyzing the data.

Scott (1977) and Sugden and Smith (1984) considered situations where
some information available to the person who designed the sample is not
available to the one who must analyze the data. They argued that in such
situations the design may become informative. Although such examples are
interesting I do not feel that they lessen the force of Basu's argument.

Recall that the likelihood principle in survey sampling justifies a very
intuitively appealing notion, that is, given the observed data x = (s, xs) one just
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learns the yfs for iεs and that the unsampled y 's for jfis must come from a θ
which is consistent with x. So the basic question of survey sampling is how can
one relate the unseen, θ(s') = {yf $s}, to the seen, θ(s) — {y^ iεs}. Without
some assumptions about how these two sets are related, knowing θ(s) does not
tell one anything at all about θ(sf). Presumably, for a frequentist, the design Δ
along with the unbiasedness requirement is a way to relate the unseen to the
seen. But I have never understood the underlying logic of the relationship.

On the other hand, the Bayesian paradigm allows one to relate the
unseen to the seen in a straightforward way which does not violate the likelihood
principle. Let q(θ) denote the Bayesians' prior density over Ω. q would be
chosen to represent and summarize the statisticians prior beliefs about θ. Given
the sample x = (s, xs) one then computes the conditional density of θ given x, say
q(θ\ x). This is concentrated on the set Ω̂ . and is just q with the seen, θ(s) =
{y{ iεs}, inserted in their appropriate places and normalized, so it integrates to
one over Ω .̂ Then the Bayes estimator against q for the populational total is

Σ*, + ΣEq(yj\χ)
iεs tfs

where for # s , E (y \x) is the conditional expectation of y- with respect to q(θ\x).
The form of the Bayes estimator emphasizes that estimation in survey

sampling can be thought of as a prediction problem, i.e. of predicting the unseen
from the seen. That is, in these problems one should argue conditionally from
the seen to the unseen.

As was to be expected the Bayes estimator does not depend on the
design. In most of the standard statistical decision problems an estimator is
admissible if and only if it is a Bayes estimator or limit of Bayes estimators.
This suggests that in survey sampling the admissibility of an estimator should
not depend on a particular design. This was demonstrated in Scott (1975). Let
Δj and Δ 2 be two designs with Δ 1 dominating Δ 2 , i.e. if s is such that Δ1(s) = 0
then Δ2(s) = 0 as well. Then Scott proved if the estimator e is admissible for
design Ax then it is also admissible for design Δ 2 .

From the Bayesian point of view the statistician should use a design
which minimizes the overall Bayes risk. In practice such designs are very difficult
to find but often such minimizers are purposeful designs, i.e., designs which put
probability one on a single set. Hence Basu has elegantly outlined a coherent
theory of survey sampling in which random sampling or more generally the
sampling design has little or no role to play. Ericson (1969) is one example of a
Bayesian approach to survey sampling very much in the spirit of Basu. However,
one serious difficulty in using a Bayesian approach to survey sampling is
specifying a realistic prior distribution. Even for those who are somewhat
sympathetic to Bayesian ideas, choosing a prior in survey sampling is almost
impossible because of the larger number of parameters. Hence, it would be of
interest to have an approach to survey sampling which did not violate the
likelihood principle, allowed one to think conditionally given the sample, and
allowed one to incorporate various levels of prior information relating the unseen
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to the seen without actually specifying a prior distribution. Such an approach is
suggested in Basu's famous Jumbo example in Basu (1971).

Here Basu was discussing the Horvitz-Thompson estimator and other
estimators which were suggested for some unequal probability designs. The
Jumbo example dealt with estimating the total weight of a group of elephants
where Jumbo was the largest.

Following Basu, let N be the size of the herd and yi the weight of the ith

elephant. Let m^ be our best prior guess, before the sample is observed, of the
weight of elephant i, that is, the mfs incorporate all our prior information about
the herd. We begin by assuming that the herd is reasonably homogeneous (in
contrast to Basu, there is no Jumbo). Suppose a sample s with n(s) = n > 1 is
chosen and the corresponding yfs observed. Suppose we believe that these n
observed ratios {yjτn(. iεs) are representative of the N - n unobserved ratios
{y /m;: jfis}. Although we may not be able to define representative we have an
intuitive idea of what it means. Furthermore, if in practice we obtained a sample
which we believed was not representative then we would be foolish to act as if it
were.

Assuming the sample is representative then Basu suggested that "f =
n" Σ(^»/m i) should be a good guess for yJm- when jεsf. Hence, for a typical

iεsiεs
unsample unit j , a reasonable estimate of y- is mjr. This suggests a sensible
estimate of the population total is

This estimator can be given a pseudo Bayesian justification by creating a
posterior distribution for the unseen given the seen which is appropriate when one
believes the sample is representative. Suppose in the sample of n observations
there are r distinct values of these ratios, say a l v . . , a r . Let kj be the number of
observed yjm^s which are a for j = l,...,r. Construct an urn which contains n
balls where &• are labeled α for j = 1,.,.,r. Then take as the pseudo posterior
distribution for the N - n unobserved ratios the distribution generated by simple
Polya sampling from the urn. To begin, a ball is chosen at random from the urn
and the observed value is given to the unobserved ratio with the smallest label.
This ball and an additional ball with the same value are returned to the urn.
Another ball is chosen from the urn and its value is given to the unobserved ratio
with the next smallest label. This ball and another with the same value are
returned to the urn. The process is continued until all N - n unobserved ratios
are given a value. We will call this pseudo posterior the Polya posterior for the
unseen given the seen. The Polya posterior is a pseudo posterior because it does
not arise from any single prior distribution over the parameter space. This is
intuitively clear since it is data dependent. On the other hand, it does reflect the
belief that the unseen are like the seen. Finally it is easy to check that the Bayes
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estimate of the population total using the Polya posterior is just the estimate
given in (1).

Note in the special case when little is known about the herd, i.e. all the
mt 's are equal, then the estimator in (1) reduces to (N/ή)Συi which is the

iεs

classical estimator of the population total.
In Meeden and Ghosh (1983) the estimator given in (1) was shown to be

admissible. The proof used the stepwise Bayes technique. In the proof the Polya
posterior played a crucial role. Hence, Basu's argument not only gives an intui-
tive justification for the estimator (1) but suggests a method for proving its
admissibility. This approach can be extended to prove the admissibility of a
variety of other estimators. (See Vardeman and Meeden (1984) for details.)

For example, suppose the population can be stratified into various strata
each of which is relatively homogeneous. If the sample contains units from each
stratum then the estimator in (1) can be used within each stratum, where within
each stratum the mt 's are assumed to be equal, to produce an estimate of the
population total. If in a given stratum, say fc, we decide to sample nj. units then
the stepwise Bayes argument shows that any set of nk units within the stratum is
optimal. That is, we may choose our n^ units by simple random sampling
without replacement. This type of argument gives an noninformative Bayesian
justification for a variety of the usual estimators in survey sampling along with a
justification for choosing the sample at random.

One can argue that it is a relatively weak justification since it justifies
any method of selecting the sample. In spite of Basu's arguments even some
through going Bayesians, still admit to being attracted to the notion of randomi-
zation even though they do not know any intellectual justification for it. I
however find Basu's statement on page 594 of Basu (1980), in slightly different
context, quite compelling.

"I have no objection to prerandomization as such. Indeed, I think that
the scientist ought to prerandomize and have the physical art of randomization
properly witnessed and notarized. In this crooked world, how else can he avoid
the charge of doctoring his own data?"
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