
Chapter 2

Theory for Spatial Point Patterns

Of the three types of spatial data described in Chapter 1, spatial point patterns
have received the least attention with regard to formal inference. Historically, they
have been developed within a formal probabilistic framework with modest attention
to application though this has changed substantially during the past twenty years.
The Bayesian literature is more scant which has motivated the development of this
monograph. We utilize this chapter to present a formal development of the basics
of spatial point process theory as well as the development of a selection of spatial
point pattern models. In the process, we also discuss tools for exploring these point
patterns. These tools historically might have been viewed as inference but in the
21st century landscape described in Chapter 1, they have to be viewed solely as
exploratory data tools. In Chapter 3, we do turn to formal inference, building from a
Bayesian perspective but also mentioning some of the more recent classical methods.
We also take up model assessment and model comparison. Within the limitations
of this monograph-length presentation, it is not possible to do a full elaboration;
indeed, there are sources for this. So, instead, we cite connections to potentially
helpful literature as we go through the chapter.

2.1. Theory for spatial point patterns

What is a point pattern? For a specified, bounded region D, it is a set of loca-
tions, si, i = 1, 2..., n. Most importantly, the locations are viewed as “random.” We
need not have variables observed at the locations, rather we just have the pattern
of points. To start, we may look for crude features of the patterns, e.g., behav-
ior that is complete spatial randomness, clustering/attraction, inhibition/repulsion,
regular/systematic (we define all of these notions below). Of course, we can add
variables at locations; these variables are referred to as “marks.” Marks may be
discrete, e.g., a label indicating which species was at that location or continuous,
e.g., the strength of an earthquake with its epicenter being the location. This leads
to modeling challenges taken up in Section 2.6. With discrete marks and seeking
a joint model for the locations and the marks, do we model the marks and then a
point pattern of locations for each of the marks? Or, do we model the point pattern
of locations and then assign a mark to each location? We shall see that these two
conditioning choices are not compatible; the joint distributions for the two cases do
not reside on the same space. With continuous marks, we may be more concerned
with directly specifying the joint distribution.

Let’s look at some spatial point patterns. Figure 2.1 shows an example of a
point pattern of tree sapling data which we will consider further below. Informally,
it is clear that, while we don’t know why, the points clearly depart from what we
would expect a set dropped uniformly over the domain to look like. Figure 2.2
shows examples of point patterns driven by three models discussed below: a homo-
geneous Poisson process (HPP), a nonhomogeneous Poisson process (NHPP), and
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Fig 2.1. Locations of tree saplings (dbh < 12.7cm) in a forest stand at the Coweeta Hydrologic
Laboratory in the southern Appalachians [42, 181].
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Fig 2.2. Simulated point patterns from (left) a homogeneous Poisson process (HPP), (middle) a
nonhomogeneous Poisson process (NHPP), and (right), a Strauss process over the unit square.
The HPP was simulated with intensity λ = 60. The NHPP was simulated with λ = 8e3.6s1 . The
Strauss process was simulated with intensity λ = 170, interaction parameter 0.2, and interaction
radius 0.075. Details regarding these processes are supplied in subsequent subsections.

a Strauss process. These stochastic models provide an explanation of the disparate
distributions of points we see. Figure 2.3 shows several realizations under spatial
homogeneity, what we refer to as complete spatial randomness. These are realiza-
tions from an HPP. Despite the substantial variation in the patterns, all six panels
arise from dropping a random number of points uniformly over the unit square.
Figure 2.4 shows several realizations under departure from spatial homogeneity.
The top three panels arise from a clustering process, the bottom three panels from
an inhibition process. Figure 2.5 shows the intensity surface of an NHPP as both
a 3-dimensional surface and a contour plot; spatial heterogeneity is evident. Also
shown is one realization of the NHPP overlaid on the contours of the intensity. It
is evident that areas where the intensity is high tend to produce more points, and
areas where the intensity is low tend to produce fewer points. Figure 2.6 shows
multiple realizations from the same NHPP, i.e., the same intensity. While there is
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Fig 2.3. Six random realization from an HPP(λ = 40).
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Fig 2.4. Three random realizations from (top) a Neyman Scott process and (bottom) a Strauss
process. The parent process of the Neyman Scott process had intensity λp = 10. The offspring
process had intensity λo = 5 and the random number of offspring were located within a 0.1
radius circle of each parent. The Strauss process was simulated with intensity λ = 100, interac-
tion parameter 0.1, and interaction radius 0.08. Details regarding these processes are supplied in
subsequent subsections.



22 Theory for Spatial Point Patterns

s1s2

λ(
s)

s1

s 2

 0.4 

 0.6 
 0.8  1 

 1 

 1 

 1.2 

 1.2 

 1.2 

 1.4 
 1.6 

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

s1

s 2

 0.4 

 0.6 
 0.8  1 

 1 

 1 

 1.2 

 1.2 

 1.2 

 1.4 
 1.6 

Fig 2.5. The intensity surface of an NHPP shown as (left) a 3D surface and (middle) a contour
plot. (right) One realization from the NHPP.
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Fig 2.6. Three realizations from the NHPP specified by the intensity in Figure 2.5.

substantial variation in the realizations, the effect of the driving intensity is seen in
each one. Figure 2.7 returns to the tree sapling data of Figure 2.1 but now provides
an estimate of the intensity (a kernel intensity estimate, Section 2.2) which drives
the point pattern.

We mention some further examples. In looking at ecological processes, there
is interest in the pattern of occurrences of species, e.g., the pattern of trees in a
forest, say junipers and pinions. The trees can receive a mark, juniper or pinion.
In spatial epidemiology, we seek to find pattern in disease cases, perhaps different
patterns for cases vs. controls. An illustration would be the pattern of breast cancer
cases. Marks might be the treatment option elected by the woman - mastectomy or
radiation. In syndromic surveillance we seek to identify disease outbreaks, looking
for clustering of cases over time. In studying the evolution or growth of a city over
time, i.e., urban development, we could study the pattern of development of single
family homes or of commercial property.

It may be useful to note several very active, key players in the spatial point pat-
terns community (hoping not to offend those not noted!). First, we mention Adrian
Baddeley whose resume includes impressive theoretical contributions but who has
recently turned to more applied effort with, e.g., likelihood-based inference meth-
ods, exploratory tools, and residual analysis. He is the driving force behind the
spatstat package [12], which is an exceptionally useful data analysis R package.
Peter Diggle is a researcher whose vision has been consistently ahead of his time.
He developed much valuable, lovely early theory. However, he has always had broad
spatial interests, always a strong practical bent. He has written an accessible, ar-
guably, classic book [54] in the area and maintains a useful website. Jesper Møller is
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Fig 2.7. Kernel intensity estimate of the tree sapling data of Figure 2.1.

an outstanding theoretician who is responsible for developing rich classes of spatial
point pattern models. Moreover, to ensure their utility, he has also provided sim-
ulation and model fitting approaches for these classes, e.g., algorithms for Markov
and Cox processes. Many of his ideas have been gathered into a book with Rasmus
Waagepetersen [142]. Lastly here, we mention Janine Illian, a passionate promoter
of the role of spatial point pattern modeling in studying ecological processes. The
recent book for which she is the lead author, [101] is a broad, richly exemplified,
accessible volume.

The contribution of this monograph is modeling and distribution theory for spa-
tial point patterns. Given the goal of model fitting, we focus on inference within a
Bayesian framework. As noted earlier, from an inferential perspective, spatial point
pattern work is the least developed spatial data area and even more so within the
Bayesian framework. Our primary approach for implementing Bayesian inference is
the use of simulation to enable full inference with uncertainty, as well as motivating
ideas for residual analysis, model adequacy, and model comparison. In a sense, we
are merely paralleling what has been the driver of the rapid growth in the use of
Bayesian modeling and hierarchical modeling across many data settings and scien-
tific fields. We are merely providing details in the context of point pattern analysis.
However, first, we need to develop some theory and detail for spatial point patterns
which is the intent of the remainder of this chapter.

2.1.1. The basics

Spatial point processes attempt to describe the randomness associated with a set
of spatial locations of the points. For a bounded region D, denote the realization
as si, i = 1, 2..., n with both n and the si random. A first question we might ask is,
“are we seeing a finite realization of an infinite point pattern as a result of imposing
D (edge effects and the shape of D might matter), or, are we seeing a finite point
pattern associated with a specified D (e.g., an island, a forest, a city)?” Appropriate
modeling depends upon the setting. The second case is better suited to application.
It is more naturally the way data are collected and enables more flexible modeling.
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In particular, it enables inclusion of covariate information across the domain. The
first case is usually appropriate for physical systems to capture desired mechanics
of the behavior of points in the system. As such, the region is generic and covariates
are not part of the story.

Returning to a model for the point pattern, complete spatial randomness (CSR)
is a place to start, and, evidently, a model we hope to criticize. Why? Because in
applications, it would almost certainly not be operating. In fact, a goal would be to
shed light on where there is departure from randomness and what its nature might
be. In terms of such departure, it can result from environmental features whence
we could use regression models to explain the pattern we have observed. Instead,
a model incorporating clustering or attraction, possibly inhibition or repulsion,
perhaps regular or systematic behavior, would provide the desired explanation. So
it seems we need to clarify what the words “no spatial pattern” mean. What the
words, “a uniform distribution of points” mean. What is the definition of CSR?

Again, we focus on point patterns over D ⊂ R
2. We consider a bounded, con-

nected subset D. We denote a random realization of a point pattern by S with
elements s1, s2, . . . , sn. S is random and so are any features calculated from it. A
probabilistic model for S ∈ D must place a distribution over all possible realizations
in D. This is, evidently, a daunting task. In practice, it is often easier to examine
features/functionals of this distribution than to specify the distribution. However,
we may consider a generative specification: (i) a distribution over {0, 1, 2, ...} to
provide the number of points then, (ii) a distribution to jointly locate these points
over D. It should be clear that only a limited class of models can be generated in
this fashion, as we shall elaborate in the sequel.

Following this generative path, we need two ingredients to specify a generative
probabilistic model for S. We need a distribution for N(D), the number of points
in D which is a distribution over the set n ∈ {0, 1, ..,∞}. Then, we need a multi-
variate location density over Dn, for any n, say f(s1, s2, . . . , sn). Since points are
unordered/unlabeled, f must be symmetric in its arguments. With ∂s denoting a
small circular neighborhood around s, P (N(∂s1) = 1, N(∂s2) = 1, . . . , N(∂sn) =
1) ≈ f(s1, s2, . . . , sn)Πi|∂si|, with |∂s| denoting the area of ∂s.

Formally, we need to specify f consistently over all S. Note that the joint dis-
tribution has marginal-conditional form P (N(D) = n)n!f(s1, s2, . . . , sn). The n!
appears because the unordered points can be assigned to the n locations in n!
ways.

We defined stationarity for a Gaussian process in Section 1.4. Similarly, we can
define a stationary point pattern model. We require f(s1, s2, . . . , sn) = f(s1+h, s2+
h, . . . , sn +h) for all n, si, and h. This condition would naturally be proposed over
R

2 and applied, suitably, over D. Clearly, stationarity is a model property, not a
model specification. We will return to stationarity below.

An attractive way to look at a realization of a spatial point process is through
a counting measure. Analogous to N(D), suppose we introduce count variables,
N(B), i.e., N(B) =

∑
si∈S 1(si ∈ B). N(B) is computed by looking at the points

in S individually, referred to as a first order property. The observed point pattern
provides a realization of a random counting measure over a σ-algebra of sets, say
the Borel sets, B. An important point to understand is that a realization of a point
pattern is equivalent to a realization of a counting measure (including void sets). We
won’t attempt a rigorous proof of this here but clearly the point pattern provides
counts for B ∈ B. Conversely, through arbitrary unions and intersections of sets in
B, we can isolate all of the points in the point pattern, i.e., we can determine the
point pattern.
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The key idea here is that if we can provide a distributional specification for
a random counting measure, we can provide a specification for a random point
pattern. That is, we need to provide a recipe for the joint distribution of a finite
collection of sets in B. We now turn to this.

The literature for processes over a subset of R1 is enormous [see, e.g., 117]. This
is due to the fact that point processes on the real line are particularly amenable
to study because the points are ordered in a natural way, and the whole point
process can be described completely by the (random) intervals between the points.
Processes over a subset of R2 sacrifice order, hence history, arguably making them
more difficult and more interesting to study.

Historically, the Poisson process is the most well-known and widely-used model
for point patterns. With focus on R

2, we recall the definition of a Poisson pro-
cess over a set D with intensity λ(s). For any B in B, N(B) ∼ Po(λ(B)) where
λ(B) =

∫
B
λ(s)ds. In addition, if B1 and B2 are disjoint, then N(B1) and N(B2)

are independent. The random Poisson measure induced by λ(s) can be written as

lim∂s→0
N(∂s)
|∂s| = N(s) or equivalently, N(B) =

∫
B
N(s)ds.

The independence of disjoint sets implies f(s1, s2, . . . , sn) = Πif(si) =
Πiλ(si)/λ(D) where λ(D) =

∫
D
λ(s)ds. That is, under a Poisson process, we have

a conditionally independent location distribution. Points are assigned to locations
independently with the distribution f(s) = λ(s)/λ(D). Furthermore, P (N(∂s) =
1) ≈ E(N(∂s)) = λ(∂s) ≈ λ(s)|∂s|.

The homogeneous Poisson Process (HPP) specifies λ(s) = λ so that λ(B) = λ|B|,
i.e., the intensity is proportional to the area. In particular, the location density for
any point under an HPP is 1/|D|. We finally have a definition of complete spatial
randomness; CSR is a realization from an HPP(λ). That is, a realization of an
HPP arises from the joint location density, f(s1, s2, . . . , sn) = 1/|D|n. Recalling
the definition of stationarity above, it implies that λ(s) = λ for all s and thus,
λ(B) = λ|B| for all B ⊆ D. Thus, the HPP is a stationary spatial point process
model. However, it is only one stationary spatial process specification. It specifies a
constant intensity with conditionally independent locations. More general models
include interactions between points, e.g., the stationary Gibbs processes discussed
in Section 2.5. Practically speaking, the HPP can be a null model for certain types
of data such as physical processes in a homogeneous environment, for example,
interacting particle models.

In applications, the environment will usually not be homogeneous; the intensity
of the process will not be constant, suggesting a nonhomogeneous Poisson process
(NHPP) model, i.e., a more general form for λ(s). Discussion regarding specifica-
tion for λ(s) is offered below. In any event, as a Poisson process, the NHPP has
conditionally independent locations with location density, f(s) = λ(s)/λ(D).

2.1.2. A bit more theory

To begin, let us take a look at moment measures. We start with first order prop-
erties, i.e., properties of the model for the point pattern which consider the points
individually. In particular, the first moment measure is {E(N(B)) : B ∈ B}.
Given λ(s), we can compute E(N(B)) =

∫
B
λ(s)ds. However, given that the col-

lection, {E(N(B)) : B ∈ B} is a measure, we can extract the first-order intensity:

λ(s) = lim|∂s|→0
E(N(∂s))
|∂s| .

Second order properties refer to properties of the model that consider the points
in pairs. For second-order properties, consider γ(B1 × B2) ≡ ES

∑
s,s′∈S 1(s ∈
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B1, s
′ ∈ B2). Define γ(s, s′), the second order intensity through γ(B1 × B2) =∫

B1

∫
B2

γ(s, s′)ds′ds. As a result, if B1, B2 disjoint, ES(N(B1)N(B2)) =∫
B1

∫
B2

γ(s, s′)ds′ds. Hence, with sufficiently small sets, γ(s, s′) = lim|∂s|→0,|∂s′|→0

E(N(∂s)N(∂s′))
|∂s||∂s′| .

The pair correlation function, g(s, s′), is defined as γ(s, s′)/λ(s)λ(s′). When
λ(s) = λ, g(s, s′) simplifies to γ(s, s′)/λ2. In fact, g(s, s′) = 1 under CSR. Fur-
thermore, when g(s, s′) > 1, attraction is implied, while g(s, s′) < 1 implies re-
pulsion. Under stationarity, γ(s, s′) = γ(s − s′). In this context, isotropy means
γ(s, s′) = γ(||s− s′||).

Further insight can be obtained by noticing that, if ∂s is sufficiently small,
P (N(∂s) > 1) will be negligible so E(N(∂s)) ≈ P (N(∂s) = 1) ≈ P (N(∂s) > 0).
Similarly, E(N(∂s)N(∂s′)) ≈ P (N(∂s) > 0, N(∂s′) > 0). But, since
E(N(∂s)N(∂s′)) ≈ γ(s, s′)|∂s||∂s′|, we find that γ(s, s′) ≈ P (N(∂s) > 0, N(∂s′) >
0)/|∂s||∂s′|. That is, γ(s, s′)|∂s||∂s′| is approximately the probability of a point of S
in ∂s and a point of S in ∂s′, with an evident limiting interpretation as an intensity.
For instance, if γ is isotropic, γ(||s− s′||) can be interpreted loosely as the density
for inter-point distances.

One further feature we need to define is the Papangelou conditional intensity. We
do not attempt a rigorous development. Rather, informally, let’s define λ(s|S) for a
given location s and a given realization S. λ(∂s)|S) ≈ λ(s|S)ds is interpreted as the
conditional probability that there is a point of the process in ∂s and the rest of the
process coincides with S. Roughly, λ(∂s|S) is the probability that there is a point of
S in ∂s and the rest of S lies outside of ∂s. In other words, λ(s|S) = λ(s|S/s), s ∈ S;
= λ(s|S), s not ∈ S. Clearly, λ(s|S) is random since S is and ES(λ(s|S)) = λ(s).

Formally, this suggests that, with n random, we view

(2.1) λ(∂s|S) =
∫
∂s

f(u, s1, s2, . . . , sn)

f(s1, s2, . . . , sn)
du ≈ f(s, s1, s2, . . . , sn)

f(s1, s2, . . . , sn)
|∂s|.

Passing to the limit, λ(s|S) = f(s,S)
f(S) where f(S) is the density of the spatial point

process (with respect to an HPP(1)). To attempt to clarify why we have λ on the left
side with location distributions on the right side, we note that, in the integration,
f(S) is a random function that is not of fixed dimension; it is specified through the
intensity up to normalizing constant which cancels from the ratio in the integral.
Lastly, for conditionally independent locations λ(s|S) = λ(s).

2.2. Exploratory tools

Again, complete spatial randomness (CSR) ≡ HPP(λ) provides a baseline for point
patterns which we do not expect to be the truth. So, here, the goal is simply to offer
exploratory tools which can criticize CSR. The approaches are distance-based; they
look at pairwise distances between points to see if their behavior is in disagreement
with what we expect under CSR. These distance-based approaches are the G, F ,
and K functions.

We start with G(d), the “nearest neighbor” distribution, i.e., the c.d.f. of the
nearest neighbor distance, which is event to event. By definition, G(d) =
Pr(nearest event ≤ d). By analogy, F (d) is the “empty space” distribution,
i.e., for an arbitrary location, the c.d.f. of the nearest neighbor distance, now
point to event. So, F (d) = Pr(nearest event ≤ d). Under CSR, it is clear that
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G(d) = F (d) = 1 − exp(−λπd2). Evidently, the distribution of πd2 is an expo-
nential so that G places a lot of mass on small distances. We expect to see some
clustering under CSR. It is important to appreciate that these conceptual quanti-
ties are only sensible for stationary processes. For nonstationary processes, we will
be focused on estimating the associated first and, possibly, second order character-
istics.

Let us be a bit more formal and view the process over all of R2, i.e., an infinite
point pattern which becomes finite under restriction to D. Consider the random
variable N(s, d;S), where s ∈ S, ∂ds is a circle of radius d centered at s, and
N counts the number of points in the circle from S, excluding s. By stationarity,
N(s, d;S) ∼ N(0, d;S − s), where S − s is the translation of S by s. This distribu-
tional result is equivalent to saying that every point in S is a typical point, in the
sense that each one can be viewed as equivalent to 0 under translation.

Under restriction to a bounded set D, consider

(2.2) ES

⎛
⎝ ∑

si∈S,S∈D
1(N(si, d;S) > 0)

⎞
⎠ = λ|D|P (ND(s, d;S) > 0).

The right side of (2.2) follows by noting that the expectation over S can be cal-
culated in two stages, over S given N(D) and then over N(D). Here, ND(s, d;S)
is the count under restriction of the random S to D. Using the left side of (2.2),
we see an obvious Monte Carlo integration for it. Moreover, it is clear that this
integration arises in two stages. First, S is sampled, then N is calculated, given S.
Again, note that to obtain (2.2) requires restriction to a bounded set D and en-
ables a Monte Carlo integration for P (ND(s, d;S) > 0), not for P (N(s, d;S) > 0)
(≥ P (ND(s, d;S) > 0)). Empirical estimation of the latter requires an edge correc-
tion (see below). From the definition above, G(d) ≡ P (N(s, d;S) > 0). That is, this
probability does not depend upon s, consistent with the notion of a typical point.
We see that G(d) increases in d and, in fact, can be viewed as a cdf in distance d.

With regard to estimation of G(d), the empirical c.d.f., Ĝ(d), arises from the n
nearest neighbor distances (for s1, for s2, etc.). Denote this set by {d1, d2, . . . , dn}.
Again, with bounded D, we will need an edge correction. For example, if, for si,
d > bi, where bi is the distance from si to edge of D, then the event {di < d} is not

observed. Therefore, we set Ĝ(d) =
∑

i I(di≤d<bi)∑
i I(d<bi)

.

Comparison of Ĝ with G under CSR is usually through a theoretical Q-Q
plot. Shorter tails suggest clustering/attraction, i.e., nearest neighbor distances are
shorter than expected. Longer tails suggest inhibition/repulsion, i.e., nearest neigh-
bor distances are longer than expected. It is important to note that, technically,
Ĝ(d) is not exactly an empirical c.d.f. since the di’s are not independent. However,
with EDA intentions, perhaps this issue can be ignored.

An alternative to G(d) in the literature is F (d) where now N(s, d;S) would
assume s is not in S. We might distinguish these two definitions of event N by sub-
script, say NG and NF . More importantly, G(d) need not equal F (d). For instance,
inhibition might preclude two points in S from being within distance d of each
other. Also, the empirical c.d.f. for F is different from that for G since the number
of “points” is arbitrary. That is, F̂ (d) is the empirical c.d.f. arising from the m
nearest neighbor distances associated with a randomly selected set of m points in
D. Evidently, m and the associated locations are arbitrary, diminishing the value
of this diagnostic. In any event, Ĝ �= F̂ and we may be interested in looking at
the differences for various choices of the m points. A potentially useful function is
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the J function, J(d) = 1−G(d)
1−F (d) . This function avoids comparison with CSR (though

it equals 1 in that case), rather bringing the interpretation of clustering for J(d) < 1

and inhibition for J(d) > 1. Ĵ(d) = 1−Ĝ(d)

1−F̂ (d)
is the customary estimate of J(d).

Next, the K function considers the expected number of points within distance
d of an arbitrary point. Under stationarity, this expectation is the same for any
point. Explicitly, K(d) = (λ)−1E(# of points within d of an arbitrary point). The
scaling by 1/λ, along with stationarity, scales K(d) to be free of λ. For example,
under CSR, K(d) = λπd2/λ = πd2, i.e., the area of a circle of radius d.

Again, for a stationary process, being more formal, now consider E(N(s, d;S))
which is the expected number of points in ∂ds, a circle of radius d, centered at
s, when s ∈ S but not including s. Using the foregoing notation and a similar
calculation, we have

(2.3) ES

⎛
⎝ ∑

si∈S,S∈D
N(si, d;S)

⎞
⎠ = λ|D|E(ND(s, d;S)).

We have formalized an expectation of interest. That is, with respect to the set D,
the right side is the expected number of points from a random S within distance
d of a point in S. The left side of the equality motivates a natural Monte Carlo
integration and empirical estimation of E(N(s, d;S)) ≥ E(ND(s, d;S)) requires
edge correction (see below). Again, E(N(s, d;S) does not depend on s. And from
above, we have λK(d) ≡ E(N(s, d;S).

An empirical estimator of K(d) becomes K̂(d) = (λ̂)−1
∑

i

∑
j �=i 1(dij ≡ ||si −

sj || ≤ d)/n = (nλ̂)−1
∑

i ri where λ̂ = n/|D| and ri is number of sj within d of si.
Again, we need edge correction, wij , for si too near the boundary of D. Explicitly,
wij is the conditional probability that an event is in D given that it is exactly
distance dij from si. It is approximated as the proportion of the circumference of a
circle centered at si with radius ‖si − sj‖ that lies within D.

As with G and F , we compare K̂(d) with K(d) = πd2. Regularity/inhibition
implies K̂(d) < πd2; clustering implies K̂(d) > πd2. A plot which has been proposed

in the literature [see, e.g., 47] is L(d) vs. d where L(d) =

√(
K̂(d)
π − d

)
. Evidently,

L(d) = 0 under CSR, suggesting that we look for peaks and valleys in the plot. For
instance, a peak at distance d would suggest clustering at that distance.

We can connect K(d) to the pair correlation function from the previous section.
In fact, for a stationary process, we can define K(d) =

∫
||u||≤d

g(u)du, with g the

pair correlation function. As a result, the second moment measure γ(d) = λ2K′(d)
2πd .

This suggests the possibility of creating a γ̂(d) through a smoothed version of K̂(d).

Finally, for nonstationary processes, moving away from CSR leads to interest in
estimating the first order intensity, λ(s). In the absence of a model for λ(s), we
consider empirical estimates. The first is the analogue of a histogram, the second
of a kernel density estimate.

Imagine a refined grid over D. Then, as above, λ(∂s) =
∫
∂s

λ(s)ds ≈ λ(s)|∂s|.
So, for grid cell Al, assume λ(s) is constant over Al. Then, the natural estimate
is N(Al)/|Al|. Evidently, a picture of this estimate will reveal a two dimensional
step surface which we might call a tile surface. It’s appearance will resemble a two-
dimensional histogram but the area under the surface will be the number of points
in the pattern.
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Kernel density estimates are widely used, providing a smoothing of a histogram
[185]. In the same spirit, a kernel intensity estimate takes the form

(2.4) λ̂τ (s) =
∑
i

h(||s− si||/τ)/τ2, s ∈ D.

In (2.4), h is a radially symmetric bivariate pdf (usually a bivariate normal) while

τ is a “bandwidth” which controls the smoothness of λ̂τ (s). The power τ2 reflects
the fact that the scaling is done in R

2. Finally, note that we don’t divide by n, as
with kernel density estimates. The reason is that we cumulate intensity whereas we
normalize a density.

2.3. Modeling λ(s)

Next, we turn to modeling the intensity, λ(s). We can think of attaching such spec-
ification to a nonhomogeneous Poisson process (NHPP), again with conditionally
independent locations assigned using location density, f(s) = λ(s)/λ(D). Possibil-
ities include:

(i) a scaling form: λ(s; θ) = λf(s; θ) where f a bivariate density function trun-
cated to D. This specification provides the nice interpretation of λ as the expected
number of points in the pattern. Sufficiently rich choices for f would require mixture
models, e.g., f(s) =

∑K
k=1 pkfk(s). However, these mixtures are difficult to identify

(recall Section 1.3). Furthermore, it is awkward to specify bivariate densities rich
enough to provide rich enough λ(s) surfaces. Additionally, the normalization of f
to an irregularly shaped D can be computationally expensive.

(ii) One might imagine a trend surface to capture λ(s), i.e., a function of loca-
tion. To ensure positivity, such surfaces must be specified on the log scale. Simple
polynomial surfaces will not be flexible enough. We have the familiar “tail wagging
the dog” phenomenon, that is, with a polynomial, telling you what it looks like at
a few places in D tells you what is must look like elsewhere in D. This suggests the
possibility of a spline surface specification [51] as available in the spatstat pack-
age [12]. Here, we avoid spline specifications in favor of a Gaussian process choice
presented below.

(iii) The most common form is log λ(s) = xT (s)γ; that is, spatially-referenced co-
variates are assumed to drive the point pattern. This specification is attractive from
an explanatory perspective and may be adequate in certain applications. However,
often the covariates are not able to provide an adequate story.

We note that, in order to calculate the likelihood, we need to calculate∫
D
ex

T (s)γds (see below). This raises the question of how the covariate surfaces
are supplied, i.e., what does x(s) look like? In practice, it is usually a tiled surface.
This opens the door to the ecological fallacy [209, 210] with regard to inference.
This fallacy notes that covariate levels associated with areal units need not match
well point level values for the covariates. In turn, this will affect the performance
of the estimated intensity. However, without finer covariate resolution, we can not
do better.

To fully enrich the λ(s) surface, we turn to the Gaussian process developed in
Section 1.4. This leads to what is referred to as the log Gaussian Cox process
(LGCP). We write λ(s) = g(x(s)Tγ)λ0(s). We require g(·) ≥ 0 and think of λ0(s)
as the local adjustment process, a realization of a positive stochastic process which
pushes up or pulls down the intensity appropriately at each location in D. In par-
ticular, if z(s) ≡ logλ0(s) is a Gaussian process with covariance function σ2ρ(·),
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then λ0(s) is a log Gaussian process and λ(s) provides a LGCP. The natural center
for λ0(s) is 1 suggesting that we center z(s) at −σ2/2. Note that, conditional on
{λ0(s), s ∈ D} (and γ), we have an NHPP. In this regard, we can consider the
LGCP as a two stage process, [S|λ(s)][λ(s)].

The likelihood

For an NHPP or a LGCP, what is the likelihood? As a function of λ(s), we now
argue that

(2.5) L({λ(s), s ∈ D};Sobs) = e−λ(D)Πiλ(si).

Note that the likelihood is a function of the entire intensity surface. For the NHPP
model it will be a parametric function, for the LGCP, it will be a process realization.
Therefore, λ(D) =

∫
D
λ(s)ds is either a regular or a stochastic integral. We will not

develop stochastic integrals here. References include [116, 135]. We only emphasize
the fact that, rather than a customary integral of a function, we have an integral
over a realization of a stochastic process, hence a random variable. Such integrals
can be challenging to define and, in any event are never available explicitly. Integral
approximation is required (see Section 4.2 below) and care must be taken to ensure
that the approximation, as a random variable, converges to the actual integral, as
a random variable.

Returning to the likelihood, we can develop it in two ways. First, given N(D) =
n, the location density is

f(s1, s2, . . . , sn|N(D) = n) =
∏
i

λ(si)

(λ(D))n
,

where, again λ(D) =
∫
D
λ(s)ds. So, the “joint density’,’

f(s1, s2, . . . , sn, N(D) = n) =
∏
i

λ(si)

(λ(D))n
× (λ(D))n

exp(−λ(D))

n!
,

providing the likelihood.
Alternatively, if we partition D into a fine grid, the Poisson assumption implies

that the likelihood will be a product over the grid cells. That is,∏
l exp(−λ(Al))(λ(Al))

N(Al). Regardless of the grid, the product of the exponen-
tial terms is exp(−λ(D)). Moreover, as the grid becomes finer, N(Al) = 1 or 0
according to whether there is a si in Al or not. In the limit, we obtain (2.5).

It is important to note that the likelihood is a function of the entire intensity
surface. We will have an uncountable dimensional model unless we provide a para-
metric form for λ(s).

2.4. General Cox processes

We begin with the Neyman Scott process. Suppose we generate K parent events
from an NHPP with λ(s) with locations, say, μk, k = 1, 2, . . . ,K. Next, suppose
each parent produces a random number of offspring, Nk, where the Nk are i.i.d.
according say, g = Po(δ). We locate the offspring relative to the parent. For the
kth parent, we locate the offspring according to i.i.d. draws from a bivariate den-
sity, f(s;μk), centered at μk. Finally, only the offspring are retained to yield the
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point pattern. Evidently, such a model will yield clustering in the point pattern
realizations, i.e., clusters associated with each deleted parent. If the bivariate den-
sity is N(μk, σ

2I), we have a (modified) Thomas process. If the offspring at μk are
distributed uniformly in a circle of radius R (a parameter) around μk, we have a
Matérn process. If we have a degenerate offspring density at μk, then the offspring
count at μk is viewed as a ‘mark’ at that location. More generally, suppose we
combine the steps of generating the number of children and their locations. That
is, generate N ∼ gK and generate s1, s2, . . . , sN i.i.d ∼ ∑K

k=1
1
K f(s;μk,Σ). For

example, with the above, we might take gK = Po(Kλ).
An alternative class of spatial clustering models are shot noise processes. These

are also Cox processes and, conditionally, NHPPs. Shot noise processes provide a
random realization of an intensity through a model which offers an alternative to

a LGCP. Again, λ(s) = eX
T (s)βλ0(s). However, now λ0(s) is a mean 1 shot noise

process where λ(s) is centered around the deterministic component.
A simple form for a realization of a shot noise process is λ0(s) =

∑
si∈S f(s −

si)m(si). Here, S, is drawn from an HPP(λ), f is a unimodal density overD centered
at 0, and m(si) ≥ 0. m(si) is referred to as the “shot” at si and is often taken to be
a fixed constant, m. The density, f , spreads the influence of the shot at si on λ(s)
according to the distance that s is from si. As a result, λ0(s) accumulates the shots
arising from S. When m(s) = m, a constant, we can calculate E(λ0(s)) = mλ = 1.
So, to center at 1, m = 1/λ (and, then, of course, E(λ0(D)) = |D|).

Again, λ0(s) is random because the realization, S from the HPP is random.
Moreover, the shot noise process intensity will tend to encourage clustering because
its intensity will tend to exhibit peaks at the si. We may view λ0(s) as the intensity
associated with a marked point process (see Section 2.6 below) in the sense that
we can view f(s− si)m(si) as an intensity associated with the i-th mark. The shot
noise intensity sums these individual mark intensities to give the overall intensity.

One further intensity which provides clustering is the Poisson-Gamma process
[217]. In fact, the Poisson-Gamma process is an example of a shot noise process.
It allows both over and under-dispersion relative to an HPP. In general, a gamma
process provides a random positive spatial surface, i.e., the generator is Γ(du) ∼
Ga(α(du), β−1) so that

∫
A
Γ(du) = Γ(A). We can use kernel mixing to obtain

the random intensity λ(∂s) ≈ λ(s)|∂s| = ∫
D
f(s − u)Γ(du)|∂s|. Again, we draw

a realization of an HPP over D to obtain S∗ = {s∗j , j = 1, 2, . . . ,m}. Finally, we
simplify the intensity by discretizingD to S∗ yielding λ(s) = ∑

s∗j∈S∗ f(s−s∗j )w(s
∗
j ),

w(s∗j ), a Gamma variable. The shot noise form is clear.

2.5. Inhibition processes

Next we describe some so-called Markov or Gibbs processes which, for us, play the
role of inhibition processes. A finite Gibbs process is defined by location density of
the form f(S) = exp(−Q(S)) with regard to an HPP with unit intensity. That is,
f(S) is essentially the Radon-Nikodym derivative of a Gibbs process with respect
to an HPP(1). Here, Q(s1, s2, . . . , sn) = c0 +

∑n
i=1 h1(si) +

∑
i�=j h2(si, sj) + ... +

hn(s1, s2, . . . , sn). The h’s are parametric functions, symmetric in their arguments,
and c0 is a normalizing constant over Dn, a function of the parameters in the h’s. c0
is almost always intractable, making E(N(D)) intractable. The h’s are potentials
of order 1, 2,...n, respectively, again, each symmetric in its arguments. Connections
to Markov random field models [16] are immediate but are not discussed further
here.
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With potentials only of order 1, we obtain an NHPP with λ(s) = e−h1(s). Evi-
dently, we want higher order potentials in order to capture/control interaction. In
practice, there seems no reason to go beyond pairwise interactions so we only include
h1 and h2 in Q. To guarantee integrability, we must take h2 ≥ 0. This implies we can
only capture inhibition. To see this, if we require Q(s1, s2) ≥ c0 + h1(s1) + h1(s2),
this means for pairs of points at a given distance, f(s1, s2) puts less mass under the
Gibbs specification than with the corresponding NHPP; we encourage inhibition.
If h1(s) is constant, we have a homogeneous Gibbs process.

The most common form for h2 is φ(||s − s′||), e.g., ||s − s′||2/τ2. Furthermore,
the Papangelou conditional intensity has a simple form in this case, λ(s|S) =
exp(−(h1(s)+

∑n
i=1 φ(‖s−si‖))). Conveniently, the unknown normalizing constant

cancels from the conditional intensity.
Two examples for φ(d), where d is an inter-point distance, are the Strauss process

and the hardcore process. The Strauss process sets φ(d) = β, d ≤ d0,= 0, d > d0.
With β > 0, we have e−φ(d) ≤ 1 for all d. Therefore, the interaction term down-
weights patterns with more points close to each other. The hardcore process, as its
name suggests, is much stronger. It sets φ(d) = ∞, d ≤ d0,= 0, d > d0. Now, the
density is 0 for all S with a pair of points less than d0 apart. Lastly, a recent richer
class of Gibbs processes is discussed in [86].

We conclude with a very different class of inhibition processes, the determinantal
point processes [119, 184]. These processes are elegant in specification but are very
demanding to simulate as well as for model fitting. We offer a brief description.

Suppose, for a finite spatial point process S on D ⊂ R
2,

f (n)(s1, . . . , sn) = det{[C](s1, . . . , sn)}, (s1, . . . , sn), n = 1, 2, . . .(2.6)

is the n-th order product density function, i.e., the joint location density for a
realization of n points. Here, C(si, sj) is a covariance function for locations si and
sj and det{[C](s1, . . . , sn)} denotes the determinant with (i, j)-th entry, C(si, sj).
Then S is called a realization of a determinantal point pattern with covariance
kernel C restricted to D; we write S ∼ DPPD(C). Hence, the first order density
function (Section 2.1) is f(s) = C(s, s) and the pair correlation function (Section
2.1) is

g(s1, s2) = 1− C(s1, s2)C(s2, s1)

C(s1, s1)C(s2, s2)
, if C(s1, s1) > 0 and C(s2, s2) > 0(2.7)

whereas it is 0 otherwise. Since C is a covariance function, then f (n)(s1, . . . , sn) ≤
f(s1) . . . f(sn) for any n > 1, implying repulsion, and g ≤ 1 [119].

2.6. Marked point processes

Marked point process models add considerable opportunity to understand point
pattern behavior since each point carries the extra information of a mark which
captures a feature of whatever object was observed at that point. Marks are often
discrete such as providing labels for different types of cancers over a point pattern of
cancer cases or labels for different species of trees in a forest. We would be interested
in seeing differences between the point patterns; aggregating them would lose this
opportunity.

Continuous marks may also be of interest. For trees, we may record a height or
a basal area. For an earthquake, the mark may be its strength, say on the Richter
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scale. We view both the location and the mark as random, contrasting with the
usual geostatistical analysis [16] where only the feature at a location is viewed as
random.

From a mathematical perspective, a mark is merely viewed as adding an extra
coordinate to the observation, i.e., we observe (s,m) as a point overD×M whereM
is the support set for the marks. If the marks are continuous, M will be some subset
of R1 and the marked point pattern is equivalent to a point pattern over D ×M .
If the marks are discrete, M will be a set of labels, say l, l = 1, 2, . . . , L and the
overall point pattern can be viewed as a set of L point patterns, each over D. The
notation (s,m) is often modified according to interpretation of the marked point
process. The notation m(s), s ∈ S suggests drawing locations and then assigning
labels. The notation Sm suggests selecting labels and then drawing locations.

If we follow a product space representation for a marked point process, then a
marked point process is really just a point process over this product space. So, we
can adopt much of the earlier theory. For instance, N(B×A) is the number of points
with locations in B ⊆ D and marks in A ⊆ M . Defining a random counting measure
leads us defining count random variables on a σ-algebra of sets over D×M . In turn,
this suggests a Poisson marked point process model whereN(B×A) ∼ Po(λ(B×A))
for a suitable intensity measure λ(B×A), with independence of the count variables
over disjoint product sets.

The process may have an intensity function, i.e., λ(s,m) such that E(N(B ×
A)) = λ(B × A) =

∫
B

∫
A
λ(s,m)dμ(m)ds. If the marks are continuous, we usu-

ally take μ(m) to be Lebesgue measure. If the marks are discrete/categorical,
we take μ(m) to be counting measure and write E(N(B × A)) = λ(B × A) =∫
B

∑
l∈A λl(s)ds.

With continuous marks, integrating over m yields λ(s) =
∫
M

λ(s,m)dm, the in-

tensity for the point process of locations. In fact, f(m|s) = λ(s,m)
λ(s) is the conditional

density for the mark at location s. For categorical marks, the marginal intensity
is λ(s) =

∑L
l=1 λl(s). Now, the conditional probability for mark l at location s is

λl(s)
λ(s) .

We can also envision random field mark processes. Such processes assume that
the realization of the point pattern S over D is independent of the realization of
the stochastic process mD = {m(s) : s ∈ D}. This model would be appropriate if
we wanted to assign marks that exhibited spatial structure, e.g., marks are more
similar at locations closer to each other than at locations more distant from each
other.

Another option is to extend Gibbs process models with discrete marks. Suppose
we introduce a Gibbs process for each l. Then, we can obtain a Papangelou condi-
tional intensity for each l. Now, we might investigate relative conditional intensities.

Modeling clarification for marked point processes

Clarification of some modeling issues may prove useful here. Suppose we obtain
data in the form (si,mi), i = 1, 2, . . . , n, where the si’s are observed locations
and we think of mi = L(si) as a discrete label, say from l = 1, 2, . . . , L. So, we
think of the L(·)’s as marks, indicating which mark was assigned to each of the
observed points. If we ignored the marks, under an NHPP model, we know the
joint distribution of (n, {s1, s2, . . . , sn}|λD) where λD = {λ(s) : s ∈ D}. From
a Bayesian perspective, we only need to model λD to complete the specification.
Adopting this perspective, with marks as above, we imagine a point pattern for
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each label/mark value and would extend to λl,D, the intensity associated with label
value l. Then, assuming marks are also random, we would assign a prior on labels
say pl, l = 1, 2, ...L. In this fashion, we model the joint distribution of location
and label as [location|label][label] and we would assume the pairs (si, L(si)) are
conditionally independent given the λl(s)’s. Under this modeling, we have specified
[S| L = l; {λl(s) : s ∈ D}].

The cumulative intensity is λ(s) =
∑

l λl(s), which has nothing to do with the
pl’s, and

f(s) =
λ(s)

λ(D)
=

∑
l

λl(s)∑
l λl(D)

is the marginal location density. Turning to the joint distribution, we have fl(s)pl
where fl(s) = λl(s)/λl(D), the location density associated with mark l. We interpret
fl(s)pl as drawing a label L = l and then locating the label at s given L = l. That
is, the draw (s, L = l) creates the event (s, L(s) = l). Note that this has nothing to
do with the joint intensity λ(s,m) which adopts counting measure for m when m is
discrete. This joint intensity yields λ(∂s, {l}) ≈ λ(s, l)|∂s| and thus λ(s, l) = λl(s),
again, free of the pl’s.

Under the above modeling, suppose we imagine drawing a location and then
assigning a label to the location. The draw (s, L = l) creates the event (s, L(s) = l).
Using Bayes’ Theorem, we can calculate P (L = l|s) = fl(s)pl/f̃(s). We have the
familiar rescaling of the prior weights with f̃(s) =

∑
l plfl(s), a mixture density

having nothing to do with the foregoing marginal location density f(s).
We can imagine that the modeling situation is reversed. The label is viewed as

the response at a location; now we would be modeling the joint distribution as
[label|location][location]. The model for location would now have a single λD and
the distribution for label given location would be a multinomial trial with location-
specific probabilities. In general, the joint distribution becomes P (L = l|s)f(s)
where, as usual, f(s) = λ(s)/λ(D). This means that we draw a location s and
then assign a label L = l to the location, creating the event (s, L(s) = l). Turning
to Bayes’ Theorem, f(s|L = l) = P (L = l|s)f(s)/ ∫

D
P (L = l|s)f(s)ds and, in

fact, f(s|L = l) = fl(s), the location density associated with mark l. Thus, λl(s) =
clP (L = l|s)f(s) where the constant cl can not be identified; we can only learn about
the location density for mark l but not the intensity for this mark. A last calculation

shows that λ(s) =
∑

l λl(s) =
∑

l clP (L=l|s)
λ(D) λ(s). Hence,

∑
l clP (L = l|s) = λ(D)

but, again, the cl are not determined.
In summary, note the fundamental difference between the two joint modeling

scenarios. In the first case, it is most natural that the L’s have nothing to do with
locations. There is a single distribution for them and given a realization (label),
we have an associated intensity which provides the joint distribution for the points
having that label. In the second case, we formalize an uncountable collection of
L(s)’s with a single intensity for the observed points. In other words, conceptually,
the joint distributions for the first case live in a different space from the joint
distributions for the second case. See, also, [8] in this regard.
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