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HÖLDER CONTINUITY AND Lp ESTIMATES FOR ELLIPTIC
EQUATIONS UNDER GENERAL HÖRMANDER’S CONDITION

N. V. Krylov

Dedicated to Olga Ladyzhenskaya

Solutions of the Dirichlet problem for elliptic equations satisfying general
Hörmander’s condition are considered. It is proved that the Cα norm of solutions
can be estimated through the Lp norm of right-hand sides.

1. Introduction

In a smooth bounded domain D ⊂ Rd we consider the operator

L0u(x) := 1
2σik(x)

(
σjk(x)uxj (x)

)
xi + bi(x)uxi(x),

where σk = (σik), k = 1, . . . , d1, and b = (bi) are smooth (of class C∞) vector
fields given on Rd and d1 is an integer. We assume that the Lie algebra generated
by the family {b, σk : k = 1, . . . , d1} of vector fields has dimension d at all points
in the closure D0 of a neighborhood D0 of D. Our main goal is to prove that
for solutions of the problem L0u − u = f in D with zero boundary data one
can estimate the Cα norm in any subdomain through the Lp norm of f , where
α ∈ (0, 1) and p ∈ (1,∞) are independent of f .

We recall the classical result by Hörmander [2] which says that if f ∈ C∞
loc(D),

then u ∈ C∞
loc(D). However, in some applications (see, for instance, [3]) one has
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to deal with the right-hand sides f which are only measurable and bounded and
estimate at least the maximum of solutions in terms of Lp norms of f .

Of course, the solution can be written as

u(x) = −
∫

D

g(x, y)f(y) dy,

where g is the Green’s function of the problem. Therefore the results needed
can be obtained by referring to a very detailed information on g available in
the literature (see, for instance [1]). However, this way of getting our main
result may create a false impression that to understand it one needs to learn
some quite sophisticated and advanced theories. In addition, usually only the
case d ≥ 3 is considered. Therefore, even for the case of one variable and the
operator L0u(x) = u′(x) some additional work needs to be done (like, say, adding
dummy variables). Therefore here we present short proofs only based on old and
well-known results and methods.

The probabilistic counterparts of our results may be found in [3].

2. The main result

Fix an ε ∈ (0, 1) and define L = L0 + ε∆, where ∆ is the Laplace operator
in Rd. One knows that for any p ∈ (1,∞) and f ∈ Lp(D) there exists a unique
solution u =: Rf ∈ W 2

p (D) of the equation Lu−u = f in D with zero boundary
condition.

Theorem 2.1. There exist a (large) p0 ∈ (1,∞) and a (small) α ∈ (0, 1)
both independent of ε and such that for any p ≥ p0, subdomain D1 ⊂ D1 ⊂ D,
and f ∈ Lp(D) we have

(2.1) sup
D

|Rf | ≤ N‖f‖Lp(D),

(2.2) |Rf(x)−Rf(y)| ≤ N |x− y|α‖f‖Lp(D) ∀x, y ∈ D1,

where the constants N are independent of x, y, f , and ε.

By letting ε ↓ 0 along a subsequence, this theorem allows one to define a
generalized solution of the equation Lu− u = f in D with zero boundary data.
Observe that this solution satisfies the equation in the sense of distributions, is
a locally Hölder continuous function in D but in general need not be continuous
up to the boundary.

To prove Theorem 2.1 we need two lemmas the first of which is proved in
Sec. 3 and the second one in Sec. 4. For a smooth domain G ⊂ Rd and λ > 0,
we denote by Rλ(G)f the solution of λu − Lu = f in G with zero boundary
condition. If G = D, we write Rλf instead of Rλ(D)f and if λ = 1, we drop the
subscript λ.
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Lemma 2.1. There exist α ∈ (0, 1), λ ≥ 1, and n ≥ α such that for any
r ∈ (0, 1), x ∈ D with dist(x, ∂D) ≥ 2r, and f ∈ L2(D) vanishing in the ball
B2r(x) of radius 2r centered at x we have

(2.3) |Rλf(x)| ≤ Nr−n‖f‖L2(D),

(2.4) |Rλf(z)−Rλf(y)| ≤ Nr−n|z − y|α‖f‖L2(D) ∀z, y ∈ Br(x),

where N is independent of r, x, y, z, and f . Furthermore N , α, λ, and n are
independent of ε.

Lemma 2.2. There exists a constant N (independent of ε) such that for any
ball B ⊂ D we have

(2.5) sup
D

|R(D0)IB | ≤ N |B|1/(3d).

Proof of Theorem 2.1. By Hölder’s inequality if (2.1) and (2.2) hold for a
p, they also hold for any p1 ≥ p. Therefore we only need to prove (2.1) and (2.2)
for a p ≥ 1. Take λ ≥ 1 from Lemma 2.1 and notice that Rf = Rλf+(λ−1)RRλf

and R1 ≤ 1. Therefore since λ ≥ 1, we have

sup
D

|Rf | ≤ λ sup
D

|Rλf |

and to prove (2.1) it suffices to prove that

(2.6) sup
D

|Rλf | ≤ N‖f‖Lp(D).

First we prove (2.6) for f being indicator functions. Take a Borel set Γ ⊂ D.
We use (2.3) with D0 in place of D, (2.5), and the fact that Rλf ≤ Rf for f ≥ 0
by the maximum principle. Then for any r ≤ δ0 := dist (∂D, ∂D0) and x ∈ D

we have

RλIΓ(x) ≤ Rλ(D0)IΓ\Br(x)(x) + R(D0)IΓ∩Br(x)(x)

≤ Nr−n|Γ \Br(x)|1/2 + R(D0)IBr(x)(x)

≤ Nr−n|Γ|1/2 + Nr1/3.

Upon minimizing the last expression with respect to r ≤ δ0 we get RλIΓ ≤ N |Γ|θ

with θ = (6n + 2)−1.
Now for p = θ−1 + 1 and F := ‖f‖Lp(D) we have

Rλf =
∫ ∞

0

RλI{f>c} dc ≤ N

∫ ∞

0

|{f > c}|θ dc

≤ N

∫ F

0

dc + N‖f‖θp
Lp(D)

∫ ∞

F

1
cθp

dc = N‖f‖Lp(D)

as asserted in (2.6). This proves (2.1).
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Take p from (2.1) and α, λ, and n from (2.4). We prove (2.2) with 2p in
place of p and with β := αd/(d + 2pn) in place of α. To do so we first notice
that R = Rλ + (λ − 1)RλR. Hence it suffices to prove that for any δ ∈ (0, 1)
there exists N such that

(2.7) |Rλf(x)−Rλf(y)| ≤ N |x− y|β‖f‖L2p(D)

for all x, y ∈ D for which the distances of x, y to ∂D are greater than δ. In
addition, by virtue of (2.1), one only needs to consider x, y which are close to
each other, say such that |x − y| ≤ (δ/2)(d+2pn)/(2pα). Take such x, y and let
r = |x− y|2pα/(d+2pn). Then 2r ≤ δ, |x− y| ≤ r (since α ≤ n), and by (2.1) and
(2.4) we have

|Rλf(x)−Rλf(y)| ≤ |RλfIB2r(x)(x)−RλfIB2r(x)(y)|
+ |RλfIBc

2r(x)(x)−RλfIBc
2r(x)(y)|

≤ N‖fIB2r(x)‖Lp(D) + Nr−n|x− y|α‖f‖L2(D)

≤ N(rd/(2p) + r−n|x− y|α)‖f‖L2p(D).

The last expression is equal to the right-hand side of (2.7) due to our choice of r.
The theorem is proved.

3. The proof of Lemma 2.1

The following lemma recalls a well-known result from [4] or [2]. More pre-
cisely, it is part of the assertions of Lemma 22.2.4 of [2].

Lemma 3.1. There exists β ∈ (0, 1) such that for any real s there exists a
constant N such that for any C∞-function v with support in D, we have

(3.1) ‖v‖s+2β +
∑

k

‖v(σk)‖s+β ≤ N(‖Lv‖s + ‖v‖s),

where u(ξ) := ux · ξ and ‖f‖r is the norm of f in the Hilbert space Hr
2 (put

otherwise, ‖f‖r = ‖(1 + |ξ|)rf̃‖L2 where f̃ is the Fourier transform of f). Fur-
thermore, β and N are independent of ε.

By virtue of Sobolev’s embedding theorems Lemma 2.1 is a consequence of
the following result.

Lemma 3.2. There exist λ ≥ 1 and n ≥ 1 such that for any r ∈ (0, 1), x ∈ D

with dist(x, ∂D) ≥ 2r, and f ∈ L2(D) vanishing in the ball B2r(x) of radius 2r

centered at x we have

(3.2) ‖Rλf‖d+2β,Br(x) ≤ Nr−n‖f‖L2(D),
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where ‖ · ‖r,B is the norm in the Sobolev space Hr
2 (B) and N is independent of

r, x, and f . Furthermore, λ, n, and N are independent of ε.

Proof. For brevity let us write

‖ · ‖r := ‖ · ‖r,D.

Observe that we only need to prove (3.2) for smooth f .
By noticing that ‖Lv‖ ≤ ‖Lv − λv‖+ λ‖v‖ and by iterating (3.1) one finds

that

(3.3) ‖v‖d+2β +
∑

k

‖v(σk)‖d+β ≤ N(‖Lv − λv‖d + ‖v‖0).

We now use a standard procedure to get the interior estimate (3.2) from (3.3)
for the case when v = u := Rλf so that Lv − λv = 0 in B2r(x).

Without loss of generality assume x = 0 and fix an r > 0 such that B2r :=
B2r(0) ⊂ D. Define rm = r

∑m
i=0 2−i. We need some functions ζm ∈ C∞

0 (Rd)
such that ζm(x) = 1 in Brm , ζm(x) = 0 outside Brm+1 and

(3.4) max
|α|≤d+2,x

|Dαζm| ≤ Nr−(d+2)θ−m,

where θ = 2−(d+2) < 1 and N depends only on d. To construct them take an
infinitely differentiable function h(t), t ∈ (−∞,∞), such that h(t) = 1 for t ≤ 1,
h(t) = 0 for t ≥ 2 and 0 ≤ h ≤ 1. Next, define

ζm(x) = h(2m+1(|x| − rm + r2−(m+1))/r).

Now we put uζm in (3.3), remember that Lu − λu = 0 in B2r ⊂ D, and we
get

(3.5) ‖uζm‖d+2β +
∑

k

‖uζm(σk) + ζmu(σk)‖d+β

≤ N

(∥∥∥∥∑
k

u(σk)ζm(σk) + uLζm

∥∥∥∥
d

+ ‖uζm‖0

)
.

Here

‖uLζm‖d = ‖uζm+1Lζm‖d ≤ Nr−(d+2)θ−m‖uζm+1‖d,

‖u(σk)ζm(σk)‖d = ‖ζm+1u(σk)ζm(σk)‖d ≤ Nr−(d+2)θ−m‖ζm+1u(σk)‖d,

‖uζm(σk) + ζmu(σk)‖d+β ≥ ‖ζmu(σk)‖d+β −Nr−(d+2)θ−m‖uζm+1‖d+β .

Hence (3.5) implies that

‖uζm‖d+2β +
∑

k

‖ζmu(σk)‖d+β

≤ N‖uζm‖0 + Nr−(d+2)θ−m

(
‖uζm+1‖d+β +

∑
k

‖ζm+1u(σk)‖d

)
.



254 N. V. Krylov

Next, we use the interpolation inequality ‖v‖k ≤ γl−k‖v‖l + γp−k‖v‖p for any
γ > 0 if k is between l and p (which immediately follows from the inequality
a2k ≤ a2l + a2p). Then for γ ∈ (0, 1),

Nr−(d+2)θ−m‖ζm+1u(σk)‖d ≤ γ‖ζm+1u(σk)‖d+β + Nγ−d/βr−nθ−m
1 ‖u(σk)‖0,

Nr−(d+2)θ−m‖uζm+1‖d+β ≤ γ‖uζm+1‖d+2β + Nγ−2d/βr−nθ−m
1 ‖u‖0,

where n = (d + 2)(2 + d/β) and θ1 = θ2+d/β . By letting γ = θ1/2, we find that

‖uζm‖d+2β +
∑

k

‖ζmu(σk)‖d+β ≤ γ

(
‖uζm+1‖d+2β +

∑
k

‖ζm+1u(σk)‖d+β

)
+ Nr−nθ−m

1

( ∑
k

‖u(σk)‖0 + ‖u‖0

)
.

We multiply both sides of the last inequality by γm, sum up for m =
0, 1, 2, . . . , and observe that γmθ−m

1 = (1/2)m and that

S :=
∞∑

m=1

γm

(
‖uζm‖d+2β +

∑
k

‖ζmu(σk)‖d+β

)
< ∞

by virtue of (3.4) and the fact that u ∈ Cd+10(D). Then we get

‖uζ0‖d+2β +
∑

k

‖ζ0u(σk)‖d+β + S ≤ S + Nr−n

( ∑
k

‖u(σk)‖0 + ‖u‖0

)
,

‖u‖d+2β,Br(x) ≤ N‖uζ0‖d+2β ≤ Nr−n

( ∑
k

‖u(σk)‖0 + ‖u‖0

)
,

where N are independent of u and r. Now to get (3.2) it suffices to prove that

(3.6)
∑

k

‖u(σk)‖0 + ‖u‖0 ≤ N‖f‖0,

where f = λu − Lu. By the way, observe that until this point we did not use
the fact that we can choose λ as large as we like. By multiplying f = λu − Lu

by u and integrating by parts, it is proved in [4] that we indeed have (3.6) for λ

large enough. The lemma is proved.

4. The proof of Lemma 2.2

We need one more lemma in which Hörmander’s condition is not used. Recall
that Br = {x : |x| < r} and define

aij = 1
2σikσjk + εδij , b̃ = b + 1

2σk
xj σjk.
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Lemma 4.1. Let Mb ≥ mb > 0, Ma ≥ ma > 0, and % > r > 0 be some
constants. Let Tr(x) = R(B%)ICr (x), where Cr = {x : |x1| < r}. Then

(4.1) a11(x)I(r,%)(x1) ≤ Ma, b̃1(x)I(−r,%)(x1) ≥ mbI(−r,%)(x1) ∀x ∈ B%

⇒ sup
B%

Tr ≤
Ma + 2rmb

m2
b

,

(4.2) a11(x)I(−r,r)(x1) ≥ maI(−r,r)(x1), b̃1(x)I(−r,%)(x1) ≥ 0 ∀x ∈ B%

⇒ sup
B%

Tr ≤
2r%

ma
,

(4.3) a11(x) ≥ ma, |̃b1(x)| ≤ Mb ∀x ∈ B% ⇒ sup
B%

Tr ≤
r%

ma
eMb%/ma .

Proof. We start with proving (4.1). This estimate does not look good
because the right-hand side does not go to zero as r ↓ 0. However, the most
surprising fact is that in the class of operators satisfying the conditions in (4.1)
the estimate is sharp. To prove (4.1) define

δ = %− r, λ =
mb

Ma
, C1 =

1
λmb

(1− e−λδ), C2 =
1

λmb
eλr,

and define a function on [−%, %] by

u(t) =


2rm−1

b + C1 for t ∈ [−%,−r],

(r − t)m−1
b + C1 for t ∈ [−r, r],

C2(e−λt − e−λ%) for t ∈ [r, %].

It is easy to check that u ≥ 0, u is continuous and piecewise twice continuously
differentiable on [−%, %], u′ has a discontinuity only at t = −r, u′ ≤ 0 for t 6= −r,
u′′ = 0 on (−%, r) apart from t = −r, and u′′ ≥ 0 on (r, %).

These properties of derivatives of u and its explicit representation yield that

(4.4) au′′(t) + bu′(t) + I(−r,r)(t) ≤ 0

if

• t ∈ (−%,−r) and a, b are any numbers, or
• t ∈ (−r, r), a is any number, and b ≥ mb, or
• t ∈ (r, %) and a, b are such that 0 ≤ a ≤ Ma, b ≥ mb.

However, the graph of u has a corner at t = −r. For any β > 0, one can
change u(t) for t < −r to get a new function uβ so that uβ(−r) = u(−r),
u′β(−r) = u′(−r+), u′′β(−r) = u′′(−r+), uβ is smooth, decreasing, and concave
on (−%,−r] and uβ(−%) ≤ u(−r) + β. For t ≥ −r we define uβ(t) = u(t) and
vβ(x) = uβ(x1) and we get

Lvβ(x)− vβ(x) + ICr
(x)

= a11(x)u′′β(x1) + b̃1(x)u′β(x1)− uβ(x1) + I(−r,r)(x1) ≤ 0
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almost everywhere in B%. By the maximum principle

Tr(x) ≤ vβ(x) = uβ(x1) ≤ u(−r) + β = 2rm−1
b + C1 + β.

We let here β ↓ 0 and immediately get (4.1).
We now pass to (4.2). Let

u(t) =


2r%m−1

a for t ∈ [−%,−r],

(1/2)[4r%− (t + r)2]m−1
a for t ∈ [−r, r],

2rm−1
a (%− t) for t ∈ [r, %].

This function has properties similar to the previous one. In particular, it is
nonnegative, decreasing, and (4.4) holds for t ∈ (−%,−r) with any a and b, for
t ∈ (−r, r) if a ≥ ma and b ≥ 0, and for t ∈ (r, %) with any b ≥ 0 and any a. As
above by the maximum principle we conclude that Tr(x) ≤ u(x1) ≤ u(−r), and
this is (4.2).

To prove (4.3) we define

u(t) =

{
(λMb)−1(1− e−λr)(eλ% − eλ|t|) for r ≤ |t| ≤ %,

(λMb)−1(1 + λ|t| − eλ|t|) + C for t ∈ [−r, r],

where

λ =
Mb

ma
, C =

eλ%

λMb
(1− e−λr − λre−λ%).

This function decreases on [0, %], has negative second order derivative on (−%, %)
apart from t = ±r and satisfies (4.4) whenever a ≥ ma and |b| ≤ Mb. Hence as
above Tr(x) ≤ u(0) and one gets (4.3) after observing that

u(0) = C ≤ eλ%

λMb
(λr − λre−λ%) ≤ eλ%

λMb
λ2r%.

The lemma is proved.

Proof of Lemma 2.2. By the maximum principle we have R(G)IB ≤ 1.
Therefore we only need to prove (2.5) for sufficiently small balls.

From Hörmander’s condition, it follows that the continuous function |̃b| +∑
k |σk| is strictly positive in D0. It follows easily that there exist constants

m > 0 and %0 ∈ (0, 1) such that for any point x ∈ D there exists a unit vector η

such that

either b̃ · η ≥ m in B%0(x), or
d1∑

k=1

|σk · η|2 ≥ m in B%0(x).

We will prove (2.5) for balls Br(x) with r ≤ %3
0/8 ≤ 1/8. Take such a ball

and without loss of generality assume that x = 0 and that the corresponding
vector η is the first coordinate vector. Then for % = r1/3 we have

(4.5) either b̃1 ≥ m in B%, or a11 ≥ m in B%.
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Next, for a unit vector l and v(x) := exp(−λx · l) with λ > 0 small enough,
we have Lv − v ≤ 0 in D0. Hence by the maximum principle,

R(D0)IBr
(x) ≤ e−λ(x·l−r) sup

D0

R(D0)IBr
,

R(D0)IBr
(x) ≤ e−λ(|x|−r) sup

D0

R(D0)IBr
,

R(D0)IBr
(x) ≤ e−λ(|x|−r) sup

Br

R(D0)IBr
.

In particular, R(D0)IBr attains its maximum on Br (which is obvious from the
maximum principle). Also observe that for x ∈ Br,

R(D0)IBr
(x) = R(B%)IBr

(x) + u(x),

where u is a unique solution of Lu − u = 0 in B% with u = R(D0)IBr
on ∂B%.

Hence,

u ≤ max
∂B%

R(D0)IBr
≤ e−λ(%−r) sup

Br

R(D0)IBr
,

sup
Br

R(D0)IBr
≤ sup

Br

R(B%)IBr
+ e−λ(%−r) sup

Br

R(D0)IBr
,

sup
D0

R(D0)IBr
= sup

Br

R(D0)IBr
≤ (1− e−λ(%−r))−1 sup

Br

R(B%)IBr

≤ eλ(%−r) 1
λ(%− r)

sup
Br

R(B%)IBr ≤
4eλ

3λ
r−1/3 sup

Br

R(B%)IBr ,

where we use % − r = r1/3 − r ≥ 3r1/3/4 which is true due to the inequality
r ≤ 1/8.

Therefore, to prove (2.5) it suffices to prove that given (4.5), we have

(4.6) R(B%)IBr
≤ Nr2/3,

where N is independent of r and r ≤ 1. We break the proof of (4.6) into three
cases.

Case 1. Assume the second inequality in (4.5) holds in B%. Then by (4.3)
we get (4.6) with r4/3 in place of r2/3.

Case 2. Assume the first inequality in (4.5) holds and a11(0) ≥ N1r
2/3,

where N1 is a constant to be specified later. Since σk are smooth functions, and
2a11(0) =

∑
k |σ1k(0)|2 ≥ N1r

2/3, we have

4a11(x) = 2
∑

k

|σ1k(x)|2 ≥
∑

k

|σ1k(0)|2 − 2
∑

k

|σ1k(x)− σ1k(0)|2(4.7)

≥ N1r
2/3 −N%2 = (N1 −N2)r2/3

in B%, where the constant N2 depends only on d, d1, and uniform estimates of
the first derivatives of σk. We take N1 = N2 + 1 and from (4.2) we see that the
left hand side of (4.6) is less than Nr%r−2/3 = Nr2/3.
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Case 3. Assume the first inequality in (4.5) holds and a11(0) ≤ N1r
2/3.

Then similarly to (4.7), a11(x) ≤ Nr2/3 in B%. In this case from (4.1) we see
that the left-hand side of (4.6) is less than

N(r2/3 + r) ≤ Nr2/3.

The lemma is proved.
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