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POSITIVE SOLUTIONS OF SINGULARLY
PERTURBED NONLINEAR ELLIPTIC PROBLEM

ON RIEMANNIAN MANIFOLDS WITH BOUNDARY

Marco Ghimenti — Anna M. Micheletti

Abstract. Let (M, g) be a smooth connected compact Riemannian ma-

nifold of finite dimension n ≥ 2 with a smooth boundary ∂M . We consider
the problem

8<
:

−ε2∆gu + u = |u|p−2u, u > 0 on M,

∂u

∂ν
= 0 on ∂M,

where ν is an exterior normal to ∂M .
The number of solutions of this problem depends on the topological

properties of the manifold. In particular we consider the Lusternik Schni-

relmann category of the boundary.

1. Introduction

Let (M, g) be a smooth connected compact Riemannian manifold of finite
dimension n ≥ 2 with a smooth boundary ∂M , that is ∂M is the union of a finite
number of connected, smooth, boundaryless, submanifold of M of dimension
n − 1. Here g denotes the Riemannian metric tensor. By Nash theorem we can
consider (M, g) embedded as a regular submanifold embedded in RN . We are
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interested in finding solutions u ∈ H1g (M) of the following singularly perturbed
nonlinear elliptic problem

(P)

{ −ε2∆gu+ u = |u|p−2u, u > 0, on M,

∂u

∂ν
= 0 on ∂M,

for 2 < p < 2∗ = 2N/(N − 2), where ν is the external normal to ∂M .
Here H1g (M) = {u:M → R :

∫
M
|∇gu|2+u2 dµg <∞} where µg denotes the

volume form on M associated to g.

Above type of equations have been extensively studied when M is a flat
bounded domain Ω ⊂ RN . We recall some classical result about the Neumann
problem in Ω. In [16], [18], [19], C. S. Lin, W. M. Ni and I. Takagi established
the existence of least-energy solution to (P) and showed that for ε small enough
the least energy solution has a boundary spike. Later, in [11], [21] it was proved
that for any stable critical point of the mean curvature of the boundary it is
possible to construct single boundary spike layer solutions, while in [12], [15],
[22] the authors construct multiple boundary spike solutions. Finally, in [9], [13]
the authors proved that for any integer K there exists a boundary K-peaks
solutions.

For which concerns the probem (P) on a manifold M , with boundary and
without boundary, J. Byeon and J. Park [7] showed that the mountain pass
solution uε has a spike layer.

A lot of works are devoted to show the influence of the topology of Ω on the
number of solutions of the Dirichlet problem{

−ε2∆gu+ u = |u|p−2u, u > 0 on Ω ⊂ RN ;

u = 0 on ∂Ω,

when Ω is a flat subset of RN . We limit to cite [1]–[3], [5]–[8].
Recently there have been some results on the effect of the topology of the

manifoldM on the number of solutions of the equation −ε2∆gu+u = |u|p−2u on
a manifold M without boundary. In [4] the authors proved that, if M has a rich
topology, the equation has multiple solutions. More precisely they show that this
equation has at least cat (M)+1 positive nontrivial solutions for ε small enough.
Here cat (M) is the Lusternik–Schnirelmann category of M . In [20] there is the
same result for a more general nonlinearity. Furthermore in [14] it was shown
that, for some manifolds, the number of solution is influenced by the topology
of a suitable subset of M depending on the geometry of M .

Our result concerns problem (P) on a manifold M with ∂M 6= ∅. In this
case we show that the topology of the boundary ∂M influences the number of
solutions, as follows.
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Theorem 1.1. For ε small enough the problem (P) has at least cat (∂M)+1
non constant distinct solutions.

The paper is organized as follows. In Section 2 we introduce some notions
and notations. In Section 3 we sketch the proof of the main result. The details
of the proof are in Sections 4–7.

2. Preliminaries

We consider the C2 functional defined on H1g (M)

Jε(u) =
1
εN

∫
M

(
1
2
ε2|∇gu|2 +

1
2
|u|2 − 1

p
|u+|p
)
dµg.

where u+(x) = max{u(x), 0}. It is well known that the critical points of Jε(u)
constrained on the associated C2 Nehari manifold

Nε = {u ∈ H1g \ {0} : J ′ε(u)u = 0}

are non trivial solution of problem (P).
Let Rn+ = {x = (x, xn) : x ∈ Rn−1, xn ≥ 0}. It is known that there exists

a least energy solution V ∈ H1(Rn+) of the equation
−∆V + V = |V |p−2V, V > 0 on Rn+,
∂V

∂xn

∣∣∣∣
(x,0)
= 0.

Moreover, V is radially symmetric and |DαV (x)| ≤ c exp(−µ|x|) with |α| ≤ 2,
and c, µ positive constants.
If V is a solution, also V (x+ y) with y = (y, 0) is a solution, Vε(x) = V (x/ε)

is a solution of 
−ε2∆Vε + Vε = |Vε|p−2Vε on Rn+,
∂Vε
∂xn

∣∣∣∣
(x,0)
= 0.

We put

m+e = inf{E+(v) : v ∈ N (E+)} and me = inf{E(v) : v ∈ N (E)},

where

E+(v) =
∫

Rn+

1
2
|∇v|2 + 1

2
|v|2 − 1

p
|v+|p dx;

E(v) =
∫

Rn

1
2
|∇v|2 + 1

2
|v|2 − 1

p
|v+|p dx

and

N (E+) = {v ∈ H1(Rn+) \ {0} : E+(v)v = 0};
N (E) = {v ∈ H1(Rn) \ {0} : E(v)v = 0}.
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It holds

me = 2m+e and m+e = E
+(V ) =

(
1
2
− 1
p

)
(S+e )

p/(p−2)

where S+e = inf{‖v‖2H1(Rn+)/‖v‖
2
Lp(Rn+)

, v 6= 0}.

Remark 2.1. On the tangent bundle of any compact Riemannian manifold
M it is defined the exponential map exp : TM → M which is of class C∞.
Moreover, there exists a constant R > 0 and a finite number of xi ∈ M such
that M =

⋃l
i=1Bg(xi, R) and expxi :B(0, R) → Bg(xi, R) is a diffeormophism

for all i.

By choosing an orthogonal coordinate system (y1, . . . , yn) of Rn and identify-
ing Tx0M with Rn for x0 ∈M we can define by the exponential map the so called
normal coordinates. For x0 ∈M, gx0 denotes the metric read through the normal
coordinates. In particular, we have gx0(0) = id. We set |gx0(y)| = det(gx0(y))ij
and gijx0(y) = ((gx0(y))ij)

−1.

Remark 2.2. If q belongs to the boundary ∂M , let y = (y1, . . . , yn−1) be
Riemannian normal coordinates on the n − 1 manifold ∂M at the point q. For
a point ξ ∈ M close to q, there exists a unique ξ ∈ ∂M such that dg(ξ, ∂M) =
dg(ξ, ξ). We set y(ξ) ∈ Rn−1 the normal coordinates for ξ and yn(ξ) = dg(ξ, ∂M).
Then we define a chart ψ∂q : Rn+ →M such that (y(ξ), yn(ξ)) = (ψ∂q )

−1(ξ). These
coordinates are called Fermi coordinates at q ∈ ∂M . The Riemannian metric
gq(y, yn) read through the Fermi coordinates satisfies gq(0) = id.

In the following we choose ρ > 0 such that in the subset (∂M)ρ := {x ∈M :
dg(x, ∂M) < ρ} the Fermi coordinates are well defined. Moreover, we choose
ρ small enough such that 3ρ is smaller than the radius ρ(∂M) of topological
invariance of ∂M , defined below.

Definition 2.3. The radius of topological invariance ρ(M) ofM⊂ RN is

ρ(M) := sup{ρ > 0 : cat ((M)ρ) = cat (M)}

where (M)ρ := {x ∈ RN : d(x,M) < ρ}

Fixed ρ, using Remark 2.1, we can choose RM such that
⋃l
i=1Bg(xi, RM )

covers M \ (∂M)ρ, and RM < ρ. We note by d∂g and exp
∂ , respectively, the

geodesic distance and the exponential map on by ∂M . By compactness of ∂M ,
there is an R∂ and a finite number of points qi ∈ ∂M , i = 1, . . . , k such that

Iqi(R
∂ , ρ) := {x ∈M : dg(x, ∂M) = dg(x, ξ) < ρ, d∂g (qi, ξ) < R∂}

form a covering of (∂M)ρ and on every Iqi the Fermi coordinates are well defined.
In the following we can choose without loss of generality, R = min{R∂ , RM} < ρ.
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3. Main tools for the proof

Using the notation of the previous section we can state our main result more
precisely.

Theorem 3.1. There exists δ0 ∈ (0,m+e ) and ε0 > 0 such that, for δ ∈ (0, δ0)
and ε ∈ (0, ε0), where ε = ε(δ), the functional Jε has at least cat (∂M) critical
points u ∈ Nε ⊂ H1g (M) satisfying Jε(u) < m+e + δ and at least a non constant
critical point with m+e + δ ≤ Jε(u).

We recall the definition of Lusternik–Schnirelmann category.

Definition 3.2. Let M a topological space and consider a closed subset
A ⊂ M . We say that A has category k relative to M (catMA = k) if A is
covered by k closed sets Aj , j = 1, . . . , k, which are contractible in M , and k is
the minimum integer with this property.

Remark 3.3. Let M1 and M2 be topological spaces. If g1:M1 → M2 and
g2:M2 → M1 are continuous operators such that g2 ◦ g1 is homotopic to the
identity on M1, then catM1 ≤ catM2. For the proof see [5].

We recall the following classical result (see for example [6]).

Theorem 3.4. Let J be a C1,1 real functional on a complete C1,1 mani-
fold N . If J is bounded from below and satisfies the Palais–Smale condition then
has at least cat (Jd) critical point in Jd where Jd = {u ∈ N : J(u) < d}. More-
over, if N is contractible and cat Jd > 1, there exists at least one critical point
u 6∈ Jd.

Applying the first claim of Theorem 3.4 to the functional Jε on the manifold

Nε we obtain catNε ∩ J
m+e +δ
ε critical points of Jε. By the following Lemma we

give an estimate of catNε ∩ J
m+e +δ
ε through the topological properties of the

boundary of M .

Lemma 3.5. For δ and ε small enough we have cat (∂M) ≤ catNε∩J
m+e +δ
ε .

We are able to obtain the proof of this lemma building two suitable maps.
To this aim we recall that by Nash embedding theorem [17] we may assume that
M is embedded in a Euclidean space RN .
Hence the lemma follows by building a map Φε: ∂M → Nε∩J

m+e +δ
ε and a map

β:Nε ∩ J
m+e +δ
ε → (∂M)ρ with 0 < ρ < ρ(∂M) such that β ◦Φε: ∂M → (∂M)ρ is

homotopic to the identity on ∂M (see Sections 4–6). Then by the properties of

the category we get cat (∂M) ≤ catNε ∩ J
m+e +δ
ε .

To finish the proof of Theorem 3.1 we build a set Tε (Section 7) such that

Φε(∂M) ⊂ Tε ⊂ Nε ∩ Jcεε
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for a bounded constant cε ≤ c, and such that Tε is a contractible set in Nε ∩ Jcεε
containing only positive functions. Since 1 < cat (∂M) ≤ cat (Φε(∂M)) by the
same argument of Theorem 3.4 there exists a critical point u of Jε in Nε such
that m+e + δ ≤ Jε(u) ≤ cε.
It remains to show that the critical points we have found are non-constant

functions. This follows immediately from the fact that the only constant function
on the Nehari manifold Nε is the function v(x) ≡ 1, for which

Jε(v) =
(
1
2
− 1
p

)
µg(M)
εn

→∞ as ε→ 0.

Hence the constant solution is excluded because cε is bounded.

Notation. We will use the following notation:

• ||u||g = ||u||H1g =
∫
M

|∇gu|2 + |u|2dµg, |u|pp,g =
∫
M

|u|pdµg,

• |||u|||ε = |||u|||ε,M =
1
εn

∫
M

ε2|∇gu|2+ |u|2dµg, |u|pp,ε =
1
εn

∫
M

|u|pdµg,

• |u|pp =
∫

Rn
|u|p dx,

• If A,B ⊂ Rn, then A∆B := A \B ∪B \A,
• dg is the geodesic distance onM , and d∂g is the geodesic distance on ∂M ,
• exp∂ is the exponential map on ∂M ,
• Iq(R, ρ) = {χ ∈ M : dg(χ, ∂M) < ρ, d∂g (χ, q) < R}, where χ ∈ ∂M is
the unique point such that dg(χ, χ) = dg(χ, ∂M),
• B(x,R) ⊂ Rn is the ball centered in x of radius R,
• Bn−1(x,R) ⊂ Rn−1 is the n− 1 ball centered in x of radius R.

4. The map Φε

Let us define χR:R+ → R+ a smooth cut off function such that χR(t) ≡ 1
if 0 ≤ t ≤ R/2, χR(t) ≡ 0 if R ≤ t, and |χ′R(t)| ≤ 2/R for all t. Fixed a point
q ∈ ∂M and ε > 0, let us define on M the function Zε,q(ξ) as

(4.1) Zε,q(ξ) =

{
Vε(y(ξ))χR(|y(ξ)|)χρ(yn(ξ)) if ξ ∈ Iq,
0 otherwise,

where

Iq(R, ρ) = Iq = {ξ ∈M : yn = dg(ξ, ∂M) < ρ and |y| = d∂g (exp∂q (y(ξ)), q) < R}.

Here y(ξ) = (y(ξ), yn(ξ)) = (ψ∂q )
−1(ξ) are the Fermi coordinates at q ∈ ∂M and

exp∂q :Tq(∂M)→ ∂M , is the exponential map on ∂M .
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For each ε > 0 we can define a positive number tε(Zε,q) such that tε(Zε,q)Zε,q
in H1g (M) ∩Nε. Namely, tε(Zε,q) turns out to verify

tε(Zε,q) =
(
|||Zε,q|||2ε
|Zε,q|pp,ε

)1/(p−2)
.

Thus we can define a function Φε: ∂M → Nε, Φε(q) = tε(Zε,q)Zε,q.

Proposition 4.1. For any ε > 0 the application Φε: ∂M → Nε is continu-
ous. Moreover, for any δ > 0 there exists ε0 = ε0(δ) > 0 such that, if ε < ε0
then

Φε(q) ∈ Nε ∩ J
m+e +δ
ε for all q ∈ ∂M.

Proof. Fixed ε > 0, by the continuity of u→ tε(u) on H1g (M) it is enough
to prove that for any sequence {qk} ⊂ ∂M convergent to q we have

lim
k→∞
‖Zε,qk − Zε,q‖H1g = 0.

Since qk converges to q, we have µg(Iqk∆Iq)→ 0 as k →∞, then we have∫
Iqk∆Iq

|Zε,qk − Zε,q|2 dµg → 0 as k →∞.

Now, setting ηk(y, yn) = (ψ∂qk)
−1(ψ∂q (y, yn)) and Ak = (ψ

∂
q )
−1(Iqk ∩ Iq) we can

write∫
Iqk∩Iq

|Zε,qk(x)− Zε,q(x)|2 dµg

=
∫
Ak

|Vε(ηk(y, yn))χR(|πRn−1ηk(y, yn)|)χρ(dg(qk, ∂M))

− Vε(y, yn)χR(|y|)χρ(dg(q, ∂M))|2|gq(y, yn)|1/2 dy dyn

≤ c
∫
Ak

|ηk(y, yn)− (y, yn)|2dy dyn

for a suitable constant c coming from the mean value theorem applied to Vε, χρ,
χR. By the definition of ηk and the smoothness of the exponential map we get

‖Zε,qk − Zε,q‖L2g → 0 as k →∞.

A similar argument can be used to show that ‖∇gZε,qk − ∇gZε,q‖L2g → 0 as
k →∞.
To prove the second statement of the theorem we first show that the following

limits hold uniformly with respect to q ∈ ∂M .

lim
ε→0
‖Zε,q‖22,ε =

∫
Rn+
V 2(y) dy,(4.2)

lim
ε→0
‖Zε,q‖pp,ε =

∫
Rn+
V p(y) dy,(4.3)
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lim
ε→0

ε2‖∇Zε,q‖22,ε =
∫

Rn+
|∇V |2(y) dy,(4.4)

where ‖u‖q,ε = (1/εn)‖u‖Lq . For (4.2) we have

1
εn

∫
M

|Zε,q(x)|2 dµg

=
1
εn

∫
|y|<R, 0<yn<ρ

V 2ε (y, yn)χ
2
R(|y|)χ2ρ(yn)|gq(y, yn)|1/2dy dyn

=
∫
|z|<R/ε, 0<zn<ρ/ε

V 2(z, zn)χ2R/ε(|z|)χ
2
ρ/ε(zn)|gq(ε(z, zn))|

1/2 dz dzn

=
∫
BK

V 2(z, zn)χ2R/ε(|z|)χ
2
ρ/ε(zn)|gq(ε(z, zn))|

1/2 dz dzn

+
∫

Rn+\BK
V 2(z, zn)χ2R/ε(|z|)χ

2
ρ/ε(zn)|gq(ε(z, zn))|

1/2 dz dzn,

where Bk = B(0,K) ∩ {zn > 0}. It is easy to see that the second addendum
vanishes when K → ∞. With respect to the first addendum, fixed K large
enough, by compactness of manifold M and regularity of the exponential map
and of the Riemannian metric g we have, for ε→ 0,∫

BK

V 2(z, zn)χ2R/ε(|z|)χ
2
ρ/ε(zn)|gψ∂q (ε(z, zn))|

1/2 dz dzn →
∫
BK

V 2(y) dy

uniformly with respect to q ∈ ∂M . So we proved (4.2). In the same way we can
prove (4.3) and (4.4).

At this point we observe that

Jε(tε(Zε,q)Zε,q) =
(
1
2
− 1
p

)
[tε(Zε,q)]p‖Zε,q‖pε,p.

By definition of tε(Zε,q) and by (4.2)–(4.4) we have that tε(Zε,q)→ 1 as ε→ 0,
uniformly with respect to q ∈ ∂M . Concluding we have

lim
ε→0

Jε(tε(Zε,q)Zε,q) =
(
1
2
− 1
p

)∫
Rn+
V p(y) dy = m+e

uniformly with respect to q ∈ ∂M . �

Remark 4.2. By Proposition 4.1, given δ, we have that Nε∩J
m+e +δ
ε 6= ∅ for

ε small enough. Moreover, let mε := inf{Jε(u) : u ∈ Nε}. At this point we have

lim sup
ε→0

mε ≤ m+e .
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5. Concentration properties

In this section we will show a property of concentration of the functions

u ∈ Nε∩J
m+e +δ
ε when ε and δ are sufficiently small. This concentration property

will be crucial to verify that the barycenter β(u) (see Section 6) of the functions

u ∈ Nε ∩ J
m+e +δ
ε is close to the boundary ∂M .

For any ε > 0 we can construct a finite closed partition Pε = {P εj }j∈Λε of
M such that

• P εj is closed for every j,
• P εj ∩ P εk ⊂ ∂P εj ∩ ∂P εk for j 6= k,
• K1ε ≤ dεj ≤ K2ε, where dεj is the diameter of P εj ,
• c1εn ≤ µg(P εj ) ≤ c2εn,
• for any j there exists an open set Iεj ⊃ P εj such that, if P

ε
j ∩ ∂M = ∅,

then dg(Iεj , ∂M) > Kε/2, while, if P εj ∩ ∂M 6= ∅, then Iεj ⊂ {x ∈ M :
dg(x, ∂M) ≤ (3/2)Kε},
• there exists a finite number ν(M) ∈ N such that every x ∈M is conta-
ined in at most ν(M) sets Iεj , where ν(M) does not depends on ε.

By compactness of M such a partition exists, at least for small ε. In the
following we will choose always ε0(δ) sufficiently small in order to have this
partition.

Lemma 5.1. There exists a constant γ > 0 such that, for any fixed δ > 0 and
for any ε ∈ (0, ε0(δ)), where ε0(δ) is as in Proposition 4.1, given any partition
Pεof M as above, and any function u ∈ Nε ∩ J

m+e +δ
ε , there exists a set P εj ⊂ Pε

such that
1
εn

∫
P εj

|u+|pdµg ≥ γ > 0.

Proof. By Remark 4.1 we have that Nε ∩ J
m+e +δ
ε 6= ∅. For any function

u ∈ Nε ∩ J
m+e +δ
ε we denote by u+j the restriction of u

+ to the set P εj . Then we
can write
1
εn

∫
M

(ε2|∇gu|2 + u2) dµg =
1
εn

∫
M

(u+)p dµg =
1
εn

∑
j

∫
M

(u+j )
p dµg

=
∑
j

|u+j |p−2p

εn(p−2)/p
|u+j |2p
ε2n/p

≤ max
j

{ |u+j |p−2p

εn(p−2)/p

}∑
j

|u+j |2p
ε2n/p

.

We define the functions ũj by using a smooth real cutoff function χjε:M → [0, 1]
such that |∇gχjε| ≤ K/ε for some constant K and, if P εj ∩ ∂M = ∅, then χjε = 1
for x ∈ P εj and χjε = 0 for x ∈ M \ Iεj , while if P εj ∩ ∂M 6= ∅, then χjε = 1 for
x ∈ P εj and χjε = 0 for M \ I

ε

j and x ∈ ∂Iεj ∩ (M \ ∂M). So we define

ũj(x) = u+(x)χjε(x).
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It holds ũj ∈ H1g (M), hence using Sobolev inequalities there exists a positive
constant C such that, for any j,

|u+j |2p
ε2n/p

≤
|ũj |2p
ε2n/p

≤ C|||ũj |||2ε = C|||ũj |||2ε,P εj + C|||ũj |||
2
ε,Iεj \P εj

.

Moreover, ∫
Iεj \P εj

|ũj |2 dµg ≤
∫
Iεj \P εj

|u+|2 dµg,∫
Iεj \P εj

ε2|∇ũj |2 dµg ≤
∫
Iεj \P εj
(ε2|∇u+|2 +K2|u+|2) dµg.

Hence we obtain∑
j

|u+j |2p
ε2n/p

≤ C
∑
j

|||u+|||2ε + C(K2 + 1)ν(M)|||u+|||2ε

≤ C(K2 + 2)ν(M) 1
εn

∫
M

(ε2|∇u|2 + |u|2) dµg.

We can conclude that

max
j

{(
1
εn

∫
P εj

|u+|p dµg
)(p−2)/p}

≥ 1
C(K2 + 2)ν(M)

,

so the proof is complete. �

Remark 5.2. Let δ and ε fixed. For any u ∈ Nε ∩ Jmε+2δε there exists
uδ ∈ Nε such that

Jε(uδ) < Jε(u), |||uδ − u|||ε < 4
√
δ, |(Jε|Nε)

′(uδ)[ξ]| <
√
δ|||ξ|||ε.

This is simply the application of Ekeland variational principle (see [10]) to the
functional Jε on the manifold Nε.

Proposition 5.3. For all η ∈ (0, 1) there exists a δ0 < m+e such that for
any δ ∈ (0, δ0) for any ε ∈ (0, ε0(δ)) (as in Proposition 4.1) and for any function
u ∈ Nε ∩ J

m+e +δ
ε we can find a point q = q(u) ∈ ∂M for which(

1
2
− 1
p

)
1
εn

∫
Iq(ρ,R)

|u+|p dµg ≥ (1− η)m+e

where Iq(ρ,R) is defined in the notation paragraph.

Proof. We prove this property for u ∈ Nε ∩ J
m+e +δ
ε ∩ Jmε+2δε . From the

thesis for these functions follows that

(5.1) mε ≥ (1− η)m+e .

By (5.1) and by Remark 4.2 we have that

lim
ε→0

mε = m+e .
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Thus Jm
+
e +δ

ε ⊂ Jmε+2δε for ε, δ small enough, and the general case is proved.
The proof is by contradiction. Hence we assume that there exists η ∈ (0, 1),

two sequences of vanishing real numbers {δk}k and {εk}k and a sequence of
functions {uk}k ⊂ Nεk ∩ J

m+e +δk
εk ∩ Jmεk+2δkεk such that, for any q ∈ ∂M it holds

(5.2)
(
1
2
− 1
p

)
1
εnk

∫
Iq(ρ,R)

|u+k |
p dµg < (1− η)m+e .

By Remark 5.2 and by definition of Nεk we can assume

J ′εk(uk)[ϕ] ≤
√
δk|||ϕ|||εk for all ϕ ∈ H1g (M).

By Lemma 5.1 there exists a set P εkk ∈ Pεk such that

1
εnk

∫
P
εk
k

|u+k |
p dµg ≥ γ > 0.

we have to examine two cases: either there exists a subsequence P
εik
ik
such that

P
εik
ik
∩ ∂M 6= ∅, or there exists a subsequence P εikik such that P

εik
ik
∩ ∂M = ∅.

For simplicity we write simply Pk for P
εik
ik
.

Case 1. Pk ∩ ∂M 6= ∅. We choose a point qk interior to Pk ∩ ∂M . We have
the Fermi coordinates ψ∂qk :Bn−1(0, R) × [0, ρ] → M , ψ∂qk(y, yn) = (x, xn) = x.
We consider the function wk:Rn+ → R defined by

uk(ψ∂qk(y, yn))χR(|y|)χρ(yn) = uk(ψ
∂
qk
(εkz, εzn))χR(|εkz|)χρ(εzn) = wk(z, zn).

It is clear that wk ∈ H1(Rn+) with wk(z, zn) = 0 when |z| = 0, R/εk or zn = ρ/εk.
We now show some properties of the function wk.

Step 1. There exists a w ∈ H1(Rn+) such that the sequence wk converges
weakly in H1(Rn+) and strongly in L

p
loc(Rn+).

We have the following inequality

(5.3)
1
εnk

∫
M

|uk|2dµg

≥ 1
εnk

∫
Bn−1(0,R)×[0,ρ]

|uk(ψ∂qk(y))|
2χ2R(|y|)χ2ρ((yn))|gqk(y)|1/2 dy

=
∫
Bn−1(0,R/εk)×[0,ρ/εk]

|wk|2|gqk(εz)|1/2 dz ≥ c|wk|2L2(Rn+)

where z = εy and c > 0 is a suitable constant.
For simplicity we set χ̃(y) = χR(y)χρ(yn). We have∫
Rn+
|∇wk|2 dx ≤ 2

∫
Rn+

∑
i

(
∂uk
∂zi
(εkz)
)2
χ̃2(εkz) dz

+ 2
∫

Rn+

∑
i

u2k(εkz)
(
∂χ̃

∂zi
(εkz)
)2

dz = I1 + I2.
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By definition of χ̃ and wk we have

(5.4)
ε2k
εnk

∫
M

|∇guk|2 dµg ≥
ε2k
εnk

∫
ψ∂qk
(Bn−1(0,R)×[0,ρ])

|∇guk|2 dµg

=
∫
Bn−1(0,R/εk)×[0,ρ/εk]

∑
ij

gijqk
∂uk
∂zi
(εkz)

∂uk
∂zj
(εkz)|gqk(εz)|1/2 dz ≥ cI1.

where c depends only on the Riemannian manifold M . In a similar way we have

(5.5) I2 ≤
cε2k

R2ρ2εnk

∫
M

|uk|2 dµg.

By (5.3)–(5.5) we get that ‖wk‖H1(Rn+) is bounded. Then we have the claim.

Step 2. The limit function w is a weak solution of{ −∆w + w = (w+)p−1 in Rn+,
∂w

∂ν
= 0 for y = (y, 0).

Firstly for any ϕ ∈ C∞0 (Rn+) we define on the manifold M the function
ϕ̃k(x) := ϕ((1/εk)(ψ∂qk)

−1(x)). We have that

(5.6) |||ϕ̃k|||εk =
∫

Rn+

[∑
ij

gijqk(εkz)
∂ϕ

∂zi
(z)

∂ϕ

∂zj
(z) + |ϕ(z)|2

]
|gqk(εkz)|1/2 dz

≤ c||ϕ||2H1(Rn+)

where c depends only on M .
We set

Fεk(v) =
∫

Rn+

[∑
ij

gijqk(εkz)

2
∂v

∂zi
(z)

∂v

∂zj
(z) +

v2(z)
2
−
|w+k (z)|p

p

]
|gqk(εkz)|1/2 dz

so

|F ′εk(wk)[ϕ]| =
∫
suppϕ

[∑
ij

gijqk(εkz)
∂wk
∂zi
(z)

∂ϕ

∂zj
(z)

+ (wk(z)− (w+k (z))
p−1)ϕ(z)

]
|gqk(εkz)|1/2.

It is easy to verify that, for k = k(ϕ) large enough,

|F ′εk(wk)[ϕ]| = |J
′
εk
(uk)[ϕ̃k]|.

By Ekeland principle (Remark 5.2) and by (5.6) we have that

|F ′εk(wk)[ϕ]| = |J
′
εk
(uk)[ϕ̃k]| ≤

√
δk|||ϕ̃k|||εk → 0 as k →∞.

At this point to get the claim it is sufficient to show that

(5.7) F ′εk(wk)[ϕ]→ (E
+)′(w)[ϕ].
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In fact we have

|F ′εk(wk)[ϕ]− (E
+)′(w)[ϕ]| ≤ I1 + I2 + I3,

where

I1 =
∫
suppϕ

(∑
ij

gijqk(εkz)
∂wk
∂zi
(z)

∂ϕ

∂zj
(z)|gqk(εkz)|1/2 − δij

∂w

∂zi
(z)

∂ϕ

∂zj
(z)
)
dz,

I2 =
∫
suppϕ

|ϕ(z)||gqk(εkz)|1/2|wk(z)− w(z)| dz,

I3 =
∫
suppϕ

|ϕ(z)||gqk(εkz)|1/2|(w
+
k (z))

p−1 − (w(z))p−1| dz.

Because suppϕ is a compact set, |gijqk(εkz)− δij | ≤ cεk |z|
2 and by Step 1 we get

(5.7).

Step 3. The limit function w is a least energy solution of{ −∆w + w = (w+)p−1 in Rn+,
∂w

∂ν
= 0 for y = (y, 0).

We will show that w 6= 0. We are in the case Pk ∩ ∂M 6= ∅. We can choose
T > 0 such that

Pk ⊂ Iqk(εkT, εkT ) for k large enough

where qk is a point in Pk. By definition of wk and by Lemma 5.1 there exist a qk
such that, for k large enough,

‖w+k ‖Lp(Bn−1(0,T )×[0,T ])

=
∫
Bn−1(0,T )×[0,T ]

|χR(εk|z|)χρ(εkzn)u+k (ψ
∂
qk
(εkz))|p dz

=
1
εnk

∫
Bn−1(0,εkT )×[0,εkT ]

|u+k (ψ
∂
qk
(y))|p dy

≥ c

εnk

∫
Bn−1(0,εkT )×[0,εkT ]

|u+k (ψ
∂
qk
(y))|p|gqk(y)|1/2 dy

≥ c

εnk

∫
Iqk (εkT,εkT )

|u+k |
pdµg ≥ cγ > 0.

Since wk converge strongly to w in Lp(Bn−1(0, T )× [0, T ]), we have w 6= 0.
We now show that (

1
2
− 1
p

)
|w+|pp ≤ m+e .
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Since uk ∈ Nεk ∩ J
m+e +δk
εk , it holds

m+e + δk
1/2− 1/p

≥ 1
1/2− 1/p

Jεk(uk) =
1
εnk

∫
M

|u+k |
p dµg

≥ 1
εnk

∫
Bn−1(qk,R/2)×[0,ρ/2]

|u+k (ψ
∂
qk
(y))|p|gqk(y)|1/2 dy

=
∫
Bn−1(qk,R/2εk)×[0,ρ/2εk]

|u+k (ψ
∂
qk
(εkz))|p|gqk(εkz)|1/2 dz.

We set

fk(z) = u+k (ψ
∂
qk
(εkz))|gqk(εkz)|1/2ζk(z)

where ζk is the characteristic function of the set Bn−1(qk, R/εk)× [0, ρ/εk]. The
sequence of function fk is bounded in Lp(Rn+), hence, up to subsequence, conver-
ges weakly to some f ∈ Lp(Rn+). We get, for any ϕ ∈ C∞0 (Rn+),∫

Rn+
fk(z)ϕ(z) dz →

∫
Rn+
w+(z)ϕ(z) dz as k →∞.

Hence f is equal to the positive function w+ = w 6= 0. Moreover, we have(
1
2
− 1
p

)
|w|pp ≤ lim inf

k→∞

(
1
2
− 1
p

)∫
Rn+
|fk(z)|p dz ≤ m+e .

Concluding w ∈ N+ and E+(w) ≤ m+e , so w is a least energy solution.

Conclusion of the Case 1. At this point we can show that, for any T > 0,
it holds, for k large enough,(

1
2
− 1
p

)
|wk|pLp(Bn−1(0,T )×[0,T ]) ≤

2
3
(1− η)m+e .

In fact we recall that for any q ∈ ∂M the Riemannian metric gq(y) read through
the Fermi coordinates is such that gq(εkz) = 1 +O(εk|z|). Hence fixed T

|gq(εkz)|−1/2 ≤
2
3
for k big enough and for z ∈ Bn−1(0, T )× [0, T ].

By this fact, using the definition of wk and (5.2) we have, for k large,

(5.8)

|w+k |
p
Lp(Bn−1(0,T )×[0,T ]) ≤

∫
Bn−1(0,T )×[0,T ]

|u+k (ψ
∂
qk
(εkz))|p|gqk(εkz)|1/2

2
3
dz

=
2
3
1
εnk

∫
I(qk,εkT,εkT )

|u+k |
p dµg ≤

2
3
(1− η) m+e

(1/2− 1/p)
.

On the other side, by Step 3, we have that

E+(w) =
(
1
2
− 1
p

)
|w|pp = m+e .
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Now, by Step 1, there exists T > 0 such that, for k big enough, we have

(5.9)
2
3
(1− η) m+e

(1/2− 1/p)
< |w+k |

p
Lp(Bn−1(0,T )×[0,T ]).

By (5.8) and (5.9) we have a contradiction.

Case 2. P εk ∩ ∂M = ∅. We choose a point qk interior to P εk and we consider
the normal coordinates at qk. We set wk(z) as

uk(x)χR(exp−1qk (x)) = uk(expqk(y))χR(y) = uk(expqk(εkz))χR(εkz) = wk(z).

Then wk ∈ H10 (B(0, R/εk)) ⊂ H1(Rn). Arguing as in the previous step, we can
establish some properties of the function wk. We omit the proof of single steps.

Step 1. wk is bounded in H1 and converge to some w ∈ H1 weakly Lploc in
and strongly in H1.

Step 2. w is a weak solution of −∆w + w = (w+)p−1 in Rn.

Step 3. w is strictly positive, and it is a least energy solution of −∆w+w =
|w|p−1w, that is

(5.10)
(
1
2
− 1
p

)
|w|pp = E(w) = me = 2m+e .

Conclusion of the Case 2. By (5.10) and (5.2) we have the contradiction.
This concludes the proof. �

Remark 5.4. We point out that in the proof of Proposition 5.3, by Re-
mark 4.2 and (5.1) we showed that

lim
ε→0

mε = m+e .

6. The map β

For any u ∈ Nε we can define its center of mass as a point β(u) ∈ RN by

β(u) =

∫
M

x|u+(x)|p dµg∫
M

|u+(x)|p dµg
.

The application is well defined on Nε, since u ∈ Nε implies u+ 6= 0. In the
following we will show that if u ∈ Nε ∩ Jm

+
e +δ then β(u) ∈ (∂M)3ρ,using the

concentration property (Proposition 5.3) of the function u ∈ Nε ∩ Jm
+
e +δ if ε

and δ are sufficiently small.



334 M. Ghimenti — A. M. Micheletti

Proposition 6.1. For any u ∈ Nε ∩ Jm
+
e +δ, with ε and δ small enough, it

holds

β(u) ∈ (∂M)3ρ.

Proof. Since mε → m+e and by Proposition 5.3 we get that for any u ∈
Nε ∩ Jm

+
e +δ there exists q ∈ ∂M such that

(6.1) (1− η)m+e ≤
(
1
2
− 1
p

)
1
εn
|u+|pLp(Iq(ρ,R)).

Since u ∈ Nε ∩ Jm
+
e +δ we have

(6.2)
(
1
2
− 1
p

)
1
εn
|u+|pp,g < m+e + δ.

Then by (6.1) and (6.2) we get∫
Iq(ρ,R)

|u+|p

|u+|pp,g
dµg ≥

1− η
1 + δ/m+e

.

By definition of β we have

|β(u)− q| ≤
∣∣∣∣ ∫
Iq(ρ,R)

(x− q) |u
+|p

|u+|pp,g
dµg

∣∣∣∣+ ∣∣∣∣ ∫
M\Iq(ρ,R)

(x− q) |u
+|p

|u+|pp,g
dµg

∣∣∣∣
≤ 2ρ+D

(
1− 1− η
1 + δ/m+e

)
,

where D is the diameter of the manifold M as a subset of Rn. Choosing η and
δ small enough we get the claim. �

Proposition 6.2. The composition

β ◦ Φε: ∂M → (∂M)3ρ ⊂ Rn

is well defined and homotopic to the identity of ∂M .

Proof. By Propositions 6.1 and 4.1 the map β ◦ Φε: ∂M → (∂M)ρ(∂M) is
well defined.
To prove that β ◦Φε: ∂M → (∂M)3ρ is homotopic to the identity it is enough

to evaluate the map

β(Φε(q))− q =

∫
Bn−1(0,R)×[0,ρ] y|Vε(y)χR(|y|)χρ(yn)|

p dy∫
Bn−1(0,R)×[0,ρ] |Vε(y)χR(|y|)χρ(yn)|

p dy

=
ε
∫
Bn−1(0,R/ε)×[0,ρ/ε] z|V (z)χR(|εz|)χρ(εzn)|

p dz∫
Bn−1(0,R/ε)×[0,ρ/ε] |V (z)χR(|εz|)χρ(εzn)|

p dz
.

By the exponential decay of V we get |β(Φε(q))− q| < cε, where c is a constant
not depending on q. �
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7. The set Tε

To finish the proof of Theorem 3.1, it remains to show that there exists
a critical point u of Jε in Nε with m+e + δ < Jε(u) < cε, for bounded constants
cε. As explained in Section 3, this is achieved by constructing a set Tε which
contains only positive functions, is contractible in Nε∩Jcεε and contains Φε(∂M).
The process of building the set Tε is analogous to the process of Section 6 of [4];
for clearness we prefer to show it.
To define the set Tε we use the functions Zε,q(x) as defined in (4.1). We

recall that Zε,q(x) ∈ H1g (M) are positive functions. Let W (x) ∈ H1(Rn+) be any
positive function and denote as usual Wε(x) = W (x/ε). For q0 ∈ ∂M a fixed
point on the boundary of M we introduce the functions

vε(x) :=

{
Wε(y(x))χ̃(y(x)) if x ∈ Iq0(R, ρ),
0 otherwise,

where y(x) = (ψ∂q0)
−1(x) and χ̃(y) = χR(y)χρ(yn) as in the previous part of the

paper.
We define the cone

Cε := {u(x) := θvε(x) + (1− θ)Zε,q(x) : θ ∈ [0, 1], q ∈ ∂M} ⊂ H1g (M).

By the properties of the map Φε proved in Proposition 4.1, we have that Cε is
compact and contractible in H1g (M). We now project it on the Nehari manifold
Nε by the factor tε(u) to obtain

Tε :=
{
tε(u)u : u ∈ Cε, tp−2ε (u) =

|||u|||2ε
|u|pp,g/εn

}
⊂ Nε.

We get that Φε(∂M) ⊂ Tε, that Tε contains only positive functions and that
it is compact and contractible in Nε. Hence if we define

cε := max
u∈Cε

Jε(tε(u)u)

we get that Tε ⊂ Nε ∩ Jcεε . The last step is to prove the following proposition.

Proposition 7.1. There exists a constant c > 0 such that for ε small enough
it holds cε < c.

Proof. By the definition of the Nehari manifold, we recall that for u ∈ Cε
it holds

(7.1) Jε(tε(u)u) =
(
1
2
− 1
p

)
t2ε(u)|||u|||2ε =

(
1
2
− 1
p

)
|||u|||2p/(p−2)ε

(|u|pp,g/εn)2/(p−2)
.

Arguing as (4.2)–(4.4) for vε and W instead of Zε,q and V , we find that there
exists a constant k1 > 0 such that

(7.2) |||u|||2ε ≤ ||W ||2H1 + ||V ||2H1 + k1
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for ε small enough. Moreover, for ε small enough, we find constants k2 > 0 and
k3 > 0 such that

1
εn
|vε|pp,g ≥ |W |pp − k2 > 0,

1
εn
|Zε,q|pp,g ≥ |V |pp − k3 > 0.

Hence, since vε and Zε,q are positive functions and θ ∈ [0, 1], there exists k4 such
that

(7.3)
1
εn
|u|pp,g ≥

1
εn
max{|θvε|pp,g, |(1− θ)Zε,q|pp,g} ≥ k4

for ε small enough. Putting together (7.1)–(7.3) we get the thesis. �
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