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CONTINUITY PROPERTIES OF PEANO
DERIVATIVES IN SEVERAL VARIABLES

Abstract

For a real-valued function of several real variables that is n-times
Peano Differentiable, a sufficient condition is given for the Peano deriva-
tives of order n to be Baire*1. An immediate consequence will be that
the order n Peano derivatives of an (n + 1)-times Peano differentiable
function are Baire*1.

In 1935, A. Denjoy [1] showed that if a real function f is (n + 1)-times
Peano differentiable, then the nth Peano derivative fn has the following prop-
erty. For every nonempty closed set C there is an open interval (a, b) with
(a, b) ∩ C 6= φ so that fn restricted to C, fn|C , is continuous on (a, b) ∩ C.
In 1976, R. J. O’Malley [3] named this property Baire*1. Approximate Peano
derivatives were shown to be Baire*1 by M. J. Evans [2] in 1985. The no-
tion of Baire*1 extends to functions from m-dimensional space, Rm, to R in
the obvious manner, replacing the one-dimensional interval (a, b) with an m
-dimensional interval. In this work we obtain the result that if f : Rm → R
is (n + 1)-times Peano differentiable, then all the order n Peano derivatives
of f are Baire*1. This is done by developing a condition that is implied by
(n + 1)-times Peano differentiability that is sufficient to guarantee that the
order n Peano derivatives are Baire*1. We also show that the order n Peano
derivatives of an n-times Peano differentiable function are Baire 1.

Throughout this paper we consider real valued functions defined on a subset
of Rm. For a vector h = (h1, h2, . . . , hm) ∈ Rm, we define ||h|| = maxi{hi}.
For a multiindex α = (α1, . . . , αm), we define |α| =

m∑
i=1

αi, and
(

i
α1,...,αm

)
=

i!

α1! · · ·αm!
.
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We say that a function f , defined in a neighborhood of a point x is n-times
Peano differentiable at x if there is a set of numbers fα(x), 1 ≤ |α| ≤ n, such
that

lim
||h||→0

f(x+ h)−
n∑
i=0

∑
|α|=i

(
i

α1,...,αm

)
hα1

1 · · ·hαmm
fα(x)

i!

||h||n
= 0 (1)

where f[0,...,0] = f(x). Equivalently

f(x+ h) =

n∑
i=0

∑
|α|=i

(
i

α1, . . . , αm

)
hα1

1 · · ·hαmm
fα
i!

+ ||h||n · εx(h)

where εx(h)→ 0 as ‖h‖ → 0.
It is easy to check that if f is n-times Peano differentiable at a point x,

then the numbers fα(x), are unique. Therefore the functions fα, defined to be
the fα(x) from (1), are well defined, and each fα is called a Peano derivative
of f , of order |α|

It is also easy to verify that if f is (n+ 1)-times Peano differentiable at x,
it is also k-times Peano differentiable for 1 ≤ k ≤ n. However, (n + 1)-times
Peano differentiable gives more than n-times Peano differentiable in that we
actually have

lim
||h||→0

f(x+ h)−
n∑
i=0

∑
|α|=i

(
i

α1,...,αm

)
hα1

1 · · ·hαmm
fα(x)
i!

||h||n+s
= 0. (2)

for any 0 ≤ s < 1.
This observation motivates considering the quotient

εx(h) =

f(x+ h)−
n∑
i=0

∑
|α|=i

(
i

α1,...,αm

)
hα1

1 · · ·hαmm
fα(x)
i!

||h||r
. (3)

for r a positive real number. If εx(h) = O(1), we say f is r-times Peano
bounded at x. By (n + s)-times Peano bounded on Rm we mean there is
a function s : Rm → [0, 1) so that f is (n + s(x))-times Peano bounded at
each x. Obviously (n+ s)-times Peano bounded on Rm implies n-times Peano
differentiable. It turns out that the condition (n + s)-times Peano bounded
on Rm is sufficient to gain information about continuity properties of the nth
order Peano derivatives of f . In Theorem 5 below we show that the Baire*1
property is obtained.

The following useful lemma is easily proved by induction.
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Lemma 1 For k ∈ N we have

k∑
j=0

(−1)k−j
(
k

j

)
ji =

{
0 if i = 0, 1, ..., k − 1,

k! if i = k,

Let Dn(u, h) =
n∑
j=0

(−1)n−j
(
n
j

)
f(u+ jh), an nth forward difference applied

to f.

Lemma 2 Let f be (n+ s(u))-times Peano bounded at u. Then Dn(u, h) =∑
|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm fα(u) +

n∑
j=0

(−1)n−j
(
n

j

)
||jh||n+s(u) · εu(jh).

Proof. Writing each

f(u+ jh) =

n∑
i=0

∑
|α|=i

ji
(

i

α1, . . . , αm

)
hα1

1 · · ·hαmm
fα(u)

i!
+ ||jh||n+s(u) · εu(jh),

we get Dn(u, h) =
n∑
j=0

(−1)n−j
(
n
j

)
f(u+ jh) =

n∑
j=0

(−1)n−j
(
n

j

) n∑
i=0

∑
|α|=i

ji
(

i

α1, . . . , αm

)
hα1

1 · · ·hαmm
fα(u)

i!

+||jh||n+s(u) · εu(jh)
)

=

n∑
j=0

(−1)n−j
(
n

j

) n∑
i=0

∑
|α|=i

ji
(

i

α1, . . . , αm

)
hα1

1 · · ·hαmm
fα(u)

i!


+

n∑
j=0

(−1)n−j
(
n

j

)
||jh||n+s · εu(jh).

The error term is of the desired form and we rearrange the triple sum to get

n∑
i=0

∑
|α|=i

 n∑
j=0

(−1)n−j
(
n

j

)
ji

( i

α1, . . . , αm

)
hα1

1 · · ·hαmm
fα(u)

i!

=
∑
|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm fα(u)

by Lemma 1. �
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Theorem 3 If f : Rm → R is n-times Peano differentiable, then all nth order
Peano derivatives are Baire 1.

Proof. Pick m distinct primes q1 > ... > qm. There are L =
(
m+n−1

n

)
Peano

derivatives of order n and for each natural number N we generate L vectors

{h[k]}L−1
k=0 by setting each h[k]i =

qki
n
√
N
, 0 ≤ k ≤ L − 1 and 1 ≤ i ≤ m.. The

formula for Dn(u, h) in Lemma 2 with s = 0 gives L equations of the form

N

Dn(u, h[k])−
n∑
j=1

(−1)n−j
(
n

j

)
jn
qkn1

N
· εu(jh[k])


=
∑
|α|=n

(
n

α1, . . . , αm

)
qkα1
1 · · · qkαmm fα(u).

The coefficient matrix for this system, thinking of the
(

n
α1,...,αm

)
fα(u) as the

unknowns, is the Vandermonde matrix constructed using {qα1
1 · · · qαmm | 0 ≤ k ≤

L−1}, that is, the entry in the ith row jth column is q
(i−1)α1

1 · · · q(i−1)αm
m where

α is the jth index with |α| = n. Since α 6= α′ implies qα1
1 · · · qαmm −q

α′
1

1 · · · q
α′
m

m 6=
0, the determinant ∆ of this matrix will be nonzero. By Cramer’s Rule each(

n
α1,...,αm

)
fα(u) is of the form

1

∆

L−1∑
k=0

N

Dn(u, h[k])−
n∑
j=1

(−1)n−j
(
n

j

)
jn
qkn1

N
· εu(jh[k])

∆k

where each ∆k is the appropriate cofactor in the expansion of ∆ about the

(k+1)st column. As N →∞ , ‖h[k]‖ → 0 so
n∑
j=1

(−1)n−j
(
n
j

)
jnqkn1 ·εu(jh[k])→

0. Therefore each fα(u) is a pointwise limit of the sequence of continuous

functions

{
1
∆

L−1∑
k=0

NDn(u, h[k])∆k

}
and is thus Baire 1. �

We will also need the following form of Dn(u, h) involving a second point
x.

Lemma 4 Let f be (n+ s(u))-times Peano bounded at u. Then

Dn(u, h) =
∑
|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm fα(x)

+

n∑
j=0

(−1)n−j
(
n

j

)
||u− x+ jh||n+s(x) · εx(u− x+ jh).



296 H. Fejzić and D. Rinne

Proof. Expanding as we did in the proof of Lemma 2, we get

Dn(u, h) =

n∑
j=0

(−1)n−j
(
n

j

)
f(u+ jh) =

n∑
j=0

(−1)n−j
(
n

j

)
f(x+ u− x+ jh) =

n∑
j=0

(−1)n−j
(
n
j

)( n∑
i=0

∑
|α|=i

(
i

α1,...,αm

) m∏
`=1

(u` − x` + jh`)
α` fα(x)

i!

)
+

n∑
j=0

(−1)n−j
(
n
j

)
||u− x+ jh||n+s(x) · εx(u− x+ jh) = T1 + T2.

The term T2 is as desired. We rearrange the triple sum T1 to get T1 =

n∑
i=0

∑
|α|=i

(
n∑
j=0

(−1)n−j
(
n
j

)(
i

α1,...,αm

) m∏
`=1

(u` − x` + jh`)
α` fα(x)

i!

)
.

If we write each (ul − xl + jhl)
αl as

αl∑
pl=0

(
αl
pl

)
(ul − xl)αl−pljplhpli , Then T1 =

n∑
i=0

∑
|α|=i

(
n∑
j=0

(−1)n−j
(
n

j

)(
i

α1, . . . , αm

)
m∏
`=1

α∑̀
p`=0

(
α`
p`

)
(u` − x`)α`−p`jp`hp`i

)
fα(x)

i!
.

When the product inside is expanded and then summed over j = 0, ..., n the
only nonzero term, by Lemma 1, will be the term containing jn. This happens

exactly when
m∑
l=1

pl = n, that is, when each pl = αl, and |α| = n. We then

obtain T1 =

∑
|α|=n

(
n∑
j=0

(−1)n−j
(
n

j

)(
n

α1, . . . , αm

) m∏
l=1

jαlhαli

)
fα(x)

n!
=

∑
|α|=n

(
n∑
j=0

(−1)n−j
(
n

j

)
jn

)(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm
fα(x)

n!
=

∑
|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm fα(x)

by Lemma 1. �
The main result of the paper is the following Theorem.
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Theorem 5 Let f : Rm → R be (n + s)-times Peano bounded on Rm and
let AN = {x| |εx(h)| ≤ N for all 0 < ‖h‖ < 1

N and s(x) ≥ 1
N }. Then there

is a constant K so that whenever u, x ∈ AN and ‖u− x‖ < 1
(1+n)N we have

|fα(u)− fα(x)| ≤ ‖u− x‖
1
N K for all |α| = n.

Proof. Let u, x ∈ AN with ‖u− x‖ < 1
(1+n)N . By Lemma 2, Dn(u, h) =

∑
|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm fα(u) +

n∑
j=0

(−1)n−j
(
n

j

)
||jh||n+s(u) · εu(jh).

(4)
By Lemma 4 we also have

Dn(u, h) =
∑
|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm fα(x) (5)

+

n∑
j=0

(−1)n−j
(
n

j

)
||u− x+ jh||n+s(x) · εx(u− x+ jh). (6)

For ‖u− x‖ ≤ ‖h‖ < 1
(1+n)N the error terms in (4) and (6) are uniformly

bounded on AN and

n∑
j=0

(−1)n−j
(
n

j

)(
||jh||n+s(u) · εu(jh)− ||u− x+ jh||n+s(x) · εx(u− x+ jh)

)
may be written as ||h||n+ 1

N · ε(h) where |ε(h)| ≤ H for some constant H
depending only on N . Equating (4) and (6) gives∑

|α|=n

(
n

α1, . . . , αm

)
hα1

1 · · ·hαmm (fα(u)− fα(x)) = ||h||n+ 1
N ε(h). (7)

As in the proof of Theorem 3 pick m distinct primes q1 > ... > qm and generate

L vectors {h[k]}L−1
k=0 by setting each h[k]i =

||u− x||qki
qk1

, 0 ≤ k ≤ L − 1.

Substitution in equation (7) gives a system of L equations in the L unknowns

fα(u)−fα(x). By Cramer’s Rule each fα(u)−fα(x) = ‖u− x‖
1
N ∆′∆ where ∆

is the Vandermonde determinant as in Theorem 3 and ∆′ is bounded and the
bound depends only on N . Thus |fα(u)− fα(x)| ≤ ‖u− x‖

1
N K where K =

∆′

∆ . It remains to show that the constantK holds for u, x ∈ AN with ‖u− x‖ <
1

(1+n)N . To see this, let u and x be in AN and pick un, xn ∈ AN approaching

u and x respectively. The calculation above shows that |fα(xn)− fα(x)| ≤
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‖xn − x‖sx Hx for xn sufficiently close to x, where sx = min{s(x), 1
N } but Hx

depends on x as well as N . A similar inequality holds for un and u. Then

|fα(u)− fα(x)| ≤ |fα(u)− fα(un)|+ |fα(un)− fα(xn)|+ |fα(xn)− fα(x)|

≤ ‖u− un‖suHu + ‖un − xn‖
1
NK + ‖xn − x‖sxHx.

Letting n→∞ we obtain |fα(u)− fα(x)| ≤ ‖u− x‖
1
N K as desired. �

Corollary 6 Let f : Rm → R be (n+ s)-times Peano bounded on Rm. Then
the nth order Peano derivatives of f are Baire∗1.

Proof. Let C be a closed subset of Rm. Since
∞⋃
N=1

AN = Rm, by the Baire

Category Theorem there is an open interval I ∈ Rm and an integer N such that
C ∩ I is nonempty and contained in AN . By Theorem 5, the nth order Peano
derivatives of f restricted to AN are continuous. Therefore, the restriction of
the derivatives to the set C ∩ I are also continuous. �

The next corollary follows easily from the Baire*1 property.

Corollary 7 Let f : Rm → R be (n+ s)-times Peano bounded on Rm. Then
there is a dense open set G ⊂ Rm such that the nth order Peano derivatives
of f are continuous on G.

Lastly, we summarize these results for (n + 1)-times Peano differentiable
functions.

Corollary 8 Let f : Rm → R be (n + 1)-times Peano differentiable on Rm.
Then the nth order Peano derivatives of f are Baire∗1 and are thus continuous
on some dense open set G ⊂ Rm.
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