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GENERALIZING THE BLUMBERG
THEOREM

Abstract

Given a collection of functions of some class defined on the real line,
when can you find a large set upon which the restriction of every func-
tion is continuous? We consider this problem (and related problems) for
various classes of functions and various notions of largeness. These prob-
lems can be considered in terms of finding the covering, uniformity(non),
additivity, and cofinality numbers for some ideal-like collections of sets.

1 Preliminaries

We use standard notation as in [4]. In particular, for a set X we denote
its cardinality by |X|. Given sets X and Y we denote by Y X the set of all
functions from X into Y . We denote by [X]<κ, [X]κ, and [X]≤κ the sets of
all subsets of X of cardinality less than κ, equal to κ, and less than or equal
to κ, respectively. We let R denote the set of real numbers and Q stand for
the set of rational numbers. The cardinalities of R and Q will be denoted by
c and ω, respectively. If A ⊆ R we let χA stand for the characteristic function
of A.

Suppose X is a topological space. For a set A ⊆ X we write clX(A),
intX(A), bdX(A) for the closure, interior, and boundary of A in X, respec-
tively. When it is understood what space we are referring to the subscript
will be dropped. When X is a metric space and ε > 0 we denote the open
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epsilon ball around x ∈ X by Bε(x). Let M, and G denote the meager, and
co-meager subsets of X, respectively. The dense subsets of X will be denoted
by D. The collection of compact subsets of X will be denoted by J. We say a
nonempty set S ⊆ X is perfect if S has no isolated points and S is compact.
Let K be the collection of all perfect subsets of X. Finally, we denote by T
the collection of all subsets S of R with the property that for any G ∈ G and
open set U ⊆ X the set S ∩G ∩ U contains a perfect set.

If a function f : X → Y has the property that for every open set U ⊆ Y
the set f−1(U) is an Fσ set of X, then we say f is a Borel class one function.
Let B1 denote the Borel class one real functions. We let B denote the real
functions with the Baire property. For a function f : X → R and S ⊆ X we
let osc(f, S) = sup{|f(x)− f(y)| : x, y ∈ S}.

We will also need some cardinals connected with the ideal of meager subsets
of a space X:

covX(M) = min{|M | : M ⊆M & ∪M = X}

addX(M) = min{|M | : M ⊆M & ∪M /∈M}

nonX(M) = min{|S| : S ⊆ X & S /∈M}

cfX(M) = min{|M | : M ⊆M & (∀n ∈M)(∃m ∈M)(n ⊆ m)}.

These cardinals have been heavily studied, for example see [2]. In particular,
it is known that if X is a separable complete uncountable metric space, then
covX(M) = covR(M) and nonX(M) = nonR(M). For this reason we will
usually drop the subscript and write cov(M) and non(M) when dealing with
separable complete uncountable metric spaces.

2 Introduction

In 1922 H. Blumberg proved the following theorem.

Theorem 1. [5] For any f : R → R, there is a dense set D ⊆ R such that
f |D is continuous.

In what follows we will consider the following cardinals which involve gen-
eralizing Blumberg’s Theorem. Let F ⊆ RR and J a family of subsets of R.
In interpreting the definitions of the following cardinal numbers it is helpful
to mentally associate with each pair, (F ,J ), an ”ideal-like” collection of sets
of the form:

{H ⊆ J : ∃f ∈ F such that f |S is not continuous for all S ∈ H}.
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We now define the cardinal numbers associated with the pair (F ,J ).

cov(F ,J ) is the smallest cardinality of a collection F ⊆ F such that for
every D ∈ J , there is an f ∈ F such that f |D is not continuous.

non(F ,J ) is the smallest cardinality of a collection H ⊆ J such that for
every f ∈ F there is an S ∈ H such that f |S is continuous.

cf(F ,J ) is the minimum cardinality of a collection F ⊆ F such that for
any g ∈ F there is an f ∈ F such that

{K ∈ J : g|K is discontinuous} ⊆ {K ∈ J : f |K is discontinuous}.

add(F ,J ) is the smallest cardinality of a collection F ⊆ F such that for
every g ∈ F there is an f ∈ F and a H ∈ {K ∈ J : f |K is discontinuous} such
that g|H is continuous.

One of these cardinals, cov(RR,D), is indirectly suggested in other places in
questions about co-Blumberg spaces. Recall a space X is called co-Blumberg
provided that for any function f : R → X there is a D ∈ D such that f |D is
continuous. In particular, given the results and questions of author suggested
[3] it is natural to ask for which cardinals κ is 2κ with the usual product topol-
ogy a co-Blumberg space. The following easy observation shows the connection
between the question above and cov(RR,D).

Proposition 2. The following cardinals are equal:

(a) cov(RR,D),

(b) cov(2R,D),

(c) λ = min{κ : 2κ is not co-Blumberg}.

Proof. Since 2R ⊆ RR, we have that cov(RR,D) ≤ cov(2R,D).
We show that cov(2R,D) ≤ λ. Let κ < cov(2R,D) and f : R → 2κ. For

each α ∈ κ let πα be the projection of 2κ onto the αth coordinate. Define
fα ∈ 2R by fα(r) = πα(f(r)). Since |{fα : α ∈ κ}| < cov(2R,D), there is a
D ∈ D such that fα|D is continuous for every α ∈ κ. It follows that f |D is
continuous in each coordinate. Thus, f |D is continuous. So, cov(2R,D) ≤ λ.

We show that λ ≤ cov(RR,D). Let F ⊆ RR be such |F | = cov(RR,D)
and

⋃
f∈F {D ∈ D : f |D is discontinuous} = D. Let {Bn}n∈ω be a countable

base for R. Let F ∗ = {χBn ◦ f ∈ 2R : f ∈ F & n ∈ ω}. Note that |F ∗| ≤
max{ω, cov(RR,D)}. Notice also that for every f ∈ F

{D ∈ D : f |D is discontinuous} ⊆
⋃
n∈ω
{D ∈ D : (χBn ◦ f)|D is discontinuous}.
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So, D = {D ∈ D : f∗|D is discontinuous for some f∗ ∈ F ∗}. Define g : R →
2F

∗
by the formula g(r) = 〈f∗(r)〉f∗∈F∗ . We show that g is continuous on

no dense subset of R. Let D ∈ D. There is an f ∈ F such that f |D is not
continuous. So there is an n ∈ ω such that (χBn ◦ f)|D is not continuous.
Letting f∗ = χ

Bn ◦ f ∈ F ∗ and πf∗ be the projection of 2F
∗

onto the (f∗)th

coordinate, we have that (πf∗ ◦ g)|D is not continuous. Thus, g|D is not con-
tinuous. So, λ ≤ max{ω, cov(RR,D)}. However, 2ω is clearly a co-blumberg
space since it embeds into R, so ω < λ. Therefore, λ ≤ cov(RR,D) which
completes the proof.

The information we have on the pair (RR,D) is contained in the following
two results.

Theorem 3. If c = ω2, then cov(RR,D) = ω1.

Theorem 4. add(RR,D) = ω1.

Aside from working with the pair (RR,D) we also consider some pairs
involving more regular functions.

Theorem 5.

(a) cov(B1,D) = cov(B1, T ) = cov(B, T ) = cov(B,D) = cov(M).

(b) non(B,D) = non(B1,D) = non(M).

(c) add(B1, E) = add(B, E) = add(M) for E ∈ {D,G, T }.

(d) cf(B1, E) = cf(B, E) = cf(M) for E ∈ {D,G, T }.

(e) cov(B1,G) = cov(B,G) = add(M).

(f) non(B1,G) = non(B,G) = cf(M).

Notice that the values of non(B1, T ) and non(B, T ) are not mentioned in
Theorem 5. The values of these cardinals remains an open question.

To state our results about the pair (B1,K) we need some definitions. For
each F ⊆ R let N(F ) = {P ∈ K : F ∩ P is not P -open}. Let Zp denote the
set of all subsets H of K such that there exist a countable collection of closed
sets {Cn : n ∈ ω} such that H ⊆

⋃
n∈ω N(Cn). Clearly, Zp is a σ-ideal. The

relationship between Zp and the pair (B1,K) is described in the following
theorem

Theorem 6. Z ∈ Zp if and only if there is a B1 function f : R→ R such that
Z ⊆ {P ∈ K : f |P is discontinuous}. In particular, Zp is a proper σ-ideal.
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More facts about Zp and its structure can be found in Section 5. Since Zp
is a σ-ideal, we can define the usual cardinals associated with a σ-ideal.

cov(Zp) = min{|F| : F ⊆ Zp &
⋃
F = K}

non(Zp) = min{|F | : F ⊆ K & (F /∈ Zp)}

add(Zp) = min{|F| : F ⊆ Zp &
⋃
F∈F

F /∈ Zp}

cf(Zp) = min{|F| : F ⊆ Zp & (∀G ∈ Zp)(∃F ∈ F)(G ⊆ F )}

Theorem 7.

(a) cov(B1,K) = cov(Zp) ≥ cov(M).

(b) non(B1,K) = non(Zp) ≤ non(M).

(c) add(B1,K) = add(Zp) = ω1.

(d) cf(B1,K) = cf(Zp) = c.

In the proof of Theorem 7 we will use the following notion which actually
allows us to give a new characterization of the B1 functions. For a function
f : R → R we call a collection of closed sets C an f -family provided that for
any P ∈ K and x ∈ P we have that, if f |P is discontinuous at x then, there is
a C ∈ C such that x ∈ C and x /∈ intP (C ∩ P ).

Theorem 8. If f : R→ R, then the following are equivalent:

(a) f ∈ B1,

(b) there is a countable f -family, and

(c) there is an f -family of cardinality less than cov(M).

3 Proof of Theorem 5

We will use the following lemma often in what follows.

Lemma 9. If {An : n ∈ ω} is a collection of closed sets in R then there is
a g ∈ B1 such that for any set X ⊆ R if X ∩ An is not open in X for some
n ∈ ω, then g|X is not continuous.
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Proof. For every n ∈ ω let gn = χ
An . Considering 2ω as being embedded in

R, define g : R → 2ω by the formula g(r) = 〈gn(r)〉n∈ω. It is easily seen that
g ∈ B1. Suppose X ⊆ R and X ∩ An is not open in X. Clearly, gn|X is not
continuous. Since gn is a coordinate function of g, we have that g|X is not
continuous. So, g is as desired.

We first show (b), (c), (d), (e), and (f) of Theorem 5.

We show (c). Suppose F ⊆ B and |F | < add(M). For each f ∈ F the
restriction of f to the complement of some meager Fσ-set Nf is continuous.
Since |F | < add(M), there is a meager Fσ-setM such that

⋃
f∈F Nf ⊆M . Let

M =
⋃
n∈ωMn where each Mn is closed and nowhere dense in R. By Lemma 9

there is a g ∈ B1 such that g|X is discontinuous for anyX ⊆ R such thatX∩Mk

is not X-open. Let f ∈ F and D ∈ D be such that f |D is not continuous.
Since D∩Nf 6= ∅ and Nf ⊆M , there is a k ∈ ω such that D∩Mk is not empty.
Since Mk is nowhere dense, Mk ∩D is not D-open. So, g|D is not continuous.
Thus,

⋃
f∈F {D ∈ D : f |D is discontinuous} ⊆ {D ∈ D : g|D is discontinuous}.

Since F ⊆ B and g ∈ B1, we have

add(M) ≤ min{add(B1,D), add(B,D)}. (1)

On the other hand, let F = {Fα}α∈κ be a collection of nowhere dense closed
sets such that κ = add(M) and

⋃
α∈κ Fα is non-meager. Let gα = χ

Fα note
that gα ∈ B1 for every α ∈ κ. Let f ∈ B. There is a dense Gδ-set G such
that f |G is continuous. By our choice of F , there is is an α ∈ κ such that
Fα ∩ G 6= ∅. Thus, gα|G is discontinuous. Since each gα ∈ B1 and f was
arbitrary chosen from B, we have

max{add(B1,G), add(B,G)} ≤ add(M). (2)

Since G ⊆ T ⊆ D, (1) and (2) imply (c).

We now work for (d). Let F = {Fα}α∈κ be a collection of meager Fσ-sets
such that κ = cf(M) and F witnesses the definition of cf(M). For every α ∈ κ
we may use Lemma 9, as before, to define a gα ∈ B1 so that for any D ∈ D if
D ∩ Fα 6= ∅, then gα|D is not continuous. Let f ∈ B. There is a dense Gδ-set
G such that f |G is continuous. For any D ∈ D if f |D is discontinuous then
D∩ (R\G) 6= ∅. By our choice of F , there is is an α ∈ κ such that R\G ⊆ Fα.
So, D∩Fα 6= ∅. Thus, for any D ∈ D if f |D is discontinuous then gα|D is also
discontinuous. Since f ∈ B was arbitrary and {gα : α ∈ κ} ⊆ B1, we have

max{cf(B1,D), cf(B,D)} ≤ cf(M). (3)

Suppose we have a collection F ⊆ B such that |F | < cf(M). For each f ∈ F
there is a Gf ∈ G such that f |Gf is continuous. Since |{R \ Gf : f ∈ F}| <
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cf(M), there is a meager Fσ-set M such that M ∩Gf 6= ∅ for all f ∈ F . Let
g ∈ B1 be such that for any D ∈ D if D ∩M 6= ∅ then g|D is not continuous.
It follows that g|Gf is discontinuous for every f ∈ F . So, for any collection
F of less than cf(M)-many functions in B there is a g ∈ B1 such that {G ∈
G : g|G is discontinuous} is not contained in {G ∈ G : f |G is discontinuous} for
any f ∈ F . Thus,

min{cf(B1,G), cf(B,G)} ≥ cf(M). (4)

Since G ⊆ T ⊆ D, (3) and (4) imply (d).

We now show (e). Clearly, add(M)=add(B,G) ≤ cov(B,G) ≤ cov(B1,G).
It is enough show that cov(B1,G) ≤ add(M). Let F be a collection of closed
nowhere dense subsets of R such that

⋃
F /∈M and |F| = add(M). For each

F ∈ F let gF = χ
F . For any D ∈ D if D∩F 6= ∅ then gF |D is not continuous.

For any G ∈ G there is an F ∈ F such that F ∩ G 6= ∅. Thus, {gF : F ∈ F}
witnesses the definition of cov(B1,G). Thus, (e) holds.

The proof of (f) is of the same form as the proof of (e).

We now work for (b). We show that non(M) ≤ non(B1,D). Let D ⊆ D
and |D| < non(M). We may assume each element of D is countable, so
E =

⋃
D has cardinality less than non(M). So, there a meager Fσ-set M ⊆ R

such that E ⊆ M . Let M =
⋃
k∈ω Nk where each Nk is closed and nowhere

dense. By Lemma 9 there is an f ∈ B1 such that f |X is discontinuous for any
X ⊆ R such that X ∩Nk is not X-open. Let d ∈ D be arbitrary. There is an
Nk such that d∩Nk is nonempty. Clearly, d∩Nk is not d-open. So, f |d is not
continuous for all d ∈ D. Thus, non(M) ≤ non(B1,D).

We now show that non(B,D) ≤ non(M). Let X ⊆ R be such that |X| =
non(M) and X is non-meager. For each x ∈ X define Dx ∈ D by Dx =
{x + q : q ∈ Q}. Clearly, |{Dx : x ∈ X}| ≤ non(M). Let f ∈ B. There is a
G ∈ G such that f |G is continuous. Notice that H =

⋂
q∈Q q+G is in G. Since

X is non-meager there is an x ∈ X such that x ∈ H. By definition of H we
have Dx ⊆ H ⊆ G. So, f |Dx is continuous. Thus, non(B,D) ≤ non(M).

The inequality non(B1,D) ≤ non(B,D) is obvious. So we have (b).

To get the item (a) of Theorem 5 we will have to consider the hyperspace
J(R) of compact subsets of R with the Hausdorff metric which we will denote
by Hd. Note that J(R) is an uncountable separable complete metric space. In
particular, the meager covering numbers and non-meager numbers of R and
J(R) are equal.

Lemma 10. If G ⊆ R is a dense Gδ-set then the set G1 = {E ∈ J(R) : E ⊆
G and E ∈ K} is a dense Gδ-set of J(R).
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Proof. Let G =
⋂
n∈ω Un where each Un is open and dense in R. By defini-

tion of the Vietoris topology, Vn = {x ∈ J(R) : x ⊆ Un} is open in J(R). Using
the fact that the finite subsets of R form a dense subset of J(R) it is easy to
check that Vn is dense in J(R) for every n ∈ ω. Thus, H = {x ∈ J(R) : x ⊆ G}
is a dense Gδ-set of J(R).

Since G1 = K ∩ H it is enough for us to check that K is a dense Gδ-set.
For each n ∈ ω let

Fn = {x ∈ J(R) : there exists p ∈ x such that dist(p, x \ {p}) > 1/(n+ 1)}.

We leave it to the reader to check that each Fn is closed and nowhere dense
in J(R). Notice now that K = J(R) \

⋃
n∈ω Fn.

Lemma 11. If f ∈ B then there is a dense Gδ-set G in J(R) such that f |SG

is continuous and each E ∈ G is perfect.

Proof. Since f has the Baire Property there is a dense Gδ-set H ⊆ R such
that f |H is continuous. By Lemma 10 the set G = {E : E ⊆ H and E ∈ K}
is a dense Gδ-set in J(R). Clearly, f |SG is continuous.

We now work for (a). We first show that

cov(B1,D) ≤ cov(M). (5)

Let {Nα}α<cov(M) be a collection of closed nowhere dense subsets of R which
cover R. For each α < cov(M) let fα = χ

Nα ∈ B1. We claim that F =
{fα : α ∈ cov(M)} witnesses the definition of cov(B1,D). Let D ∈ D be
arbitrary. There is an α < cov(M) such that D ∩ Nα 6= ∅. Since D ∩ Nα is
not open in D it follows that fα|D is not continuous. Therefore, we have (5).

Let F ⊆ B and |F | < cov(M). For each f ∈ F let Gf ⊆ J(R) be as in
Lemma 11. Since |{Gf : f ∈ F}| < cov(M), the set G =

⋂
{Gf : f ∈ F} is

non-empty and everywhere of second category. It follows that H =
⋃
G ∈ T

and f |H is continuous for all f ∈ F . So, cov(M) ≤ cov(B, T ). Since T ⊆ D
and B1 ⊆ B, we have

cov(M) ≤ cov(B, T ) ≤ cov(B1, T ) ≤ cov(B1,D) (6)

and
cov(M) ≤ cov(B, T ) ≤ cov(B,D) ≤ cov(B1,D) (7)

(5) together with (6) and (7) yield (a).
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4 Proof of Theorem 8

Lemma 12. If f : R→ R is a B1 function, then there is a f -family C of size
ω.

Proof. Let {Bn}n∈ω be a base for R. For n ∈ ω define An = f−1(Bn). Since
Bn is open, An is an Fσ-set. So, there exist closed sets {Ekn : k ∈ ω} such
that An =

⋃
k∈ω E

k
n for each n ∈ ω. Let C = {Ekn : k, n ∈ ω}. Clearly, C is a

collection of closed sets of size ω.
We now show that C is an f -family. Fix P ∈ K and x ∈ P . Suppose f |P

is discontinuous at x. Pick a convergent sequence xl → x contained in P such
that liml→∞ f(xl) 6= f(x). We may find, using a subsequence if necessary, a
Bn such that f(x) ∈ Bn and f(xl) /∈ Bn for all l ∈ ω. Pick k ∈ ω so that
x ∈ Ekn. Since xl /∈ Ekn for all l ∈ ω, it follows that x /∈ intP (Ekn).

Lemma 13. If X is a metric space and f : X → Y has an f -family of car-
dinality less than cov(M) then for any P ∈ K(X) there is an x ∈ P such
thatf |P is continuous at x.

Proof. Let κ < cov(M) and {Cα}α∈κ be an f -family. Let P ∈ K(X). By
way of contradiction, assume that f |P is nowhere continuous. Let p ∈ P .
There is some α ∈ κ such that p ∈ (P ∩ Cα) \ intP (Cα ∩ P ). It follows that
P =

⋃
α∈κ((P ∩Cα) \ intP (P ∩Cα)). However, each (P ∩Cα) \ intP (P ∩Cα)

is nowhere dense in P and κ < cov(M) a contradiction to the fact that P
is an uncountable complete metric space. Thus, f |P is continuous at some
point.
Proof of Theorem 8. Lemma 12 shows that (a) implies (b). That (b)
implies (c) is just the Baire Category Theorem (i.e. cov(M) > ω). We show
that (c) implies (a). If there is an f -family of size less than cov(M) then by
Lemma 13 f |P has a continuity point for each P ∈ K which, by a well known
theorem implies that f ∈ B1.

5 Proof of Theorem 6 and Related Topics

Proof of Theorem 6. Suppose Z ⊆ {P ∈ K : f |P is discontinuous} and
that f ∈ B1. By Lemma 12 there is a countable f -family C. By, definition
of f -family, we have that Z ⊆ {P ∈ K : f |P is discontinuous} ⊆

⋃
C∈C N(C).

Thus, Z ∈ Zp.
Suppose now that Z ∈ Zp. Then, there exists a collection of closed sets

{Cn : n ∈ ω} such that Z ⊆
⋃
n∈ω N(Cn). By Lemma 9, there is an f ∈ B1
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such that for any set X ⊆ R if X ∩ Cn is not open in X for some n ∈ ω then
f |X is not continuous. We now have that⋃

n∈ω
N(Cn) ⊆ {P ∈ K : f |P is discontinuous} (8)

which completes the proof of Theorem 6.

We will now take some time to investigate what the elements of Zp look
like.

Proposition 14. If C ⊆ R is closed, then N(C) is a nowhere dense Gδ-subset
of K.

Proof. It is easy to check that N(C) is exactly the collection of perfect sets for
which the B1 function f = χ

C is not continuous. Since V = int(C)∪ (R\C) is
dense and open in R and f |V is continuous, we have thatH = {A ∈ K : A ⊆ V }
is dense and open in K and that H ∩N(C) = ∅. So, N(C) is nowhere dense in
K.

We now show that N(C) is a Gδ-set of K. Again, we let f = χ
C . Pick a

sequence of continuous functions 〈fn〉n∈ω so that fn → f pointwise and,

(i) f0(x) = 1 for all x ∈ R,

(ii) fn+1 ≤ fn for every n ∈ ω,

(iii) for every x /∈ C there exists an mx ∈ ω such that 1 > fmx(x) > 0, and

(iv) for every x /∈ C there is an open set U and a nx ∈ ω such that x ∈ U
and fnx [U ] = {0}.

Let En = {P ∈ K : fn[P ] ⊆ {0, 1}} for every n ∈ ω. Notice En is closed in
K, since by continuity f−1

n ({0, 1}) is closed in R and P ∈ En if and only if
P ⊆ f−1

n ({0, 1}). Let E =
⋃
n∈ω

⋂
m≥nEm. Clearly, E is an Fσ-set. We will

be done if we show that P ∈ E if and only if P /∈ N(C).
Suppose P ∈ E. There is an n ∈ ω such that P ∈

⋂
m≥nEm. Let x ∈ P .

If f(x) = 1, then by (ii) fn(x) = 1. If fn(x) = 1, then by (iii) and the fact
that P ∈

⋂
m≥nEm we have that f(x) = 1. So, f |P = fn|P . Since f |P is

continuous, we must have that P /∈ N(C).
Suppose P /∈ E. For infinitely many n ∈ ω there is an xn ∈ P such that

0 < fn(xn) < 1. Taking a subsequence if necessary, we may assume there is
an x ∈ P such that limn∈ω xn = x. By (ii) and (i) we know that xn ∈ P \ C
for every n ∈ ω. We claim that x ∈ C. Suppose x /∈ C. Then, there is by
(iv) and (ii) an open set U such that fm[U ] = {0} for all m ≥ nx and x ∈ U .
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So there is a p ∈ ω such that fm(xn) = 0 for all m ≥ nx and n ≥ p, which
contradicts that 1 > fn(xn) > 0 for every n ∈ ω. So x ∈ C. Thus, P ∈ N(C).
Therefore, P ∈ E if and only if P /∈ N(C).

It follows immediately from Proposition 14 that Zp is a Gδσ supported
σ-ideal. We now show that Zp is neither Fσ supported nor Gδ supported. I
do not know if Zp can be shown to be Fσδ supported.

Proposition 15. If C is nowhere dense and perfect, then there is no Fσ-set
in Zp which contains N(C). In other words, the ideal Zp is not Fσ supported.

Proof. By way of contradiction, assume there is an Fσ-set F ∈ Zp such that
N(C) ⊆ F . Let L = {P ∈ K : P ∩C 6= ∅} and notice L is closed in K. Since C
is nowhere dense, it is easy check that N(C) is dense in L. By Proposition 14,
we have that N(C) is actually a dense Gδ-set in L. Since N(C) ⊆ L ∩ F and
F is an Fσ-set, there is an L-open set U such that U ⊆ F . By Theorem 6,
there is a g ∈ B1 such that U ⊆ {P ∈ K : g|P is discontinuous}.

We claim that D = {P ∈ L : P ∩ C ∈ K & P \ C ∈ K} is dense in L. Let
Q ∈ L and ε > 0. Since C is perfect and Q ∩ C 6= ∅, there is a perfect set J0

such that Q ∩ C ⊆ J0 ⊆ C and Hd(Q ∩ C, J0) < ε. Since Q \ J0 is bounded,
there is a finite set x1 . . . xn ∈ Q \ J0 such that Q ⊆

⋃
k≤n Bε(xk). For each

1 ≤ k ≤ n pick a perfect set Jk ⊆ Bε(xk) \ C such that xk ∈ Jk. It is now
straight forward to check that J =

⋃
0≤k≤n Jk is in D and that Hd(J,Q) < ε.

Since ε was arbitrary, we have established the claim.
Pick A ∈ D ∩ U . Since g ∈ B1, there is a Gδ-set H ⊆ A ∩ C such that

H is dense in A ∩ C and g|H is continuous. Since g ∈ B1, there is a Gδ-set
I ⊆ A \ C such that I is dense in A \ C and g|I is continuous. We can now
pick perfect sets P ⊆ I and Q ⊆ H such that Hd(P ∪Q,A) is as small as we
want. Thus, we may assume P ∪ Q ∈ U . However, it is clear that g|P∪Q is
continuous which contradicts our choice of g.

We show that Zp is not Gδ supported. To see that let Z =
⋃
n∈ω N({qn}),

where {q1, q2, . . .} is an enumeration of the rationals. It is easy to show that
Z is dense in K. Hence any Gδ-set H containing Z would be a dense Gδ in K.
However, by Proposition 14 such an H could not be in Zp.

While we are considering Zp to be an ideal of small sets the next theorem
says that these sets can be to some extent large.

Theorem 16. Let C ⊆ K be compact. There is a Gδ-set G ⊆ C such that G
is dense in C and G ∈ Zp.

Before proving Theorem 16 we will need some definitions and a lemma. In
what follows given an x ∈ R and A ⊆ R we will write dist(x,A) to stand for
inf{|x− a| : a ∈ A} and we write diam(A) to stand for sup{|a− b| : a, b ∈ A}.
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Lemma 17. Let C ⊆ K be compact. For every ε > 0 there is a δ > 0 such
that for any P ∈ C and x ∈ P

diam(P ∩ Bε(x)) > δ. (9)

Proof. Suppose the lemma is false. There is an ε > 0 such that for every
n ∈ ω there exists Pn ∈ C and xn ∈ Pn such that diam(Pn ∩ Bε(xn)) < 1/n.
Since C is compact, there is, taking a subsequence if necessary, a P ∈ C such
that limn→∞ Pn = P . Taking a subsequence if necessary we may also find an
x ∈ P such that limn→∞ xn = x. We will derive a contradiction by showing
that x is isolated in P . Let B = Bε(x) and D = diam(P ∩ B), it is enough to
show that D = 0. Suppose D > 0 then there is a w ∈ (P ∩ B) \ {x}. Pick
n ∈ ω so large that

(a) Hd(Bε(xn), B) < dist(w,R \B)/3,

(b) |x− xn| < |x− w|/3,

(c) Hd(Pn, P ) < min{|x− w|/3,dist(w,R \B)/3}, and

(d) diam(Pn ∩ Bε(xn)) < |x− w|/3.

By (c), there is a point z ∈ Pn so that

|z − w| < min{|x− w|/3,dist(w,R \B)/3}. (10)

So, dist(z,R \ B) > 2dist(w,R \ B)/3. So by (a), we have that z ∈ Bε(xn).
Since z ∈ Pn ∩ Bε(xn) we have, by (d) that

|z − xn| < |x− w|/3. (11)

Using (10) and (11) with (b) we get that

|x− w| < |x− xn|+ |xn − z|+ |z − w| < |x− w|

a contradiction. Thus, D = 0.

Proof of Theorem 16. Let {Pn : n ∈ ω} be a dense subset of C. We
construct a closed set Q such that Pn ∈ N(Q) for every n. Since C is a compact
subset of K, there is an D > 0 such that diam(P ) > D for every P ∈ C.
Inductively we will define sequences {xn ∈ R : n ∈ ω} and {δn > 0: n ∈ ω}
such that for every n ∈ ω we have

(an) xn ∈ Pn,

(bn) Bδk(xk) ∩ Bδl(xl) = ∅ if 0 ≤ k < l ≤ n,



Generalizing the Blumberg Theorem 435

(cn) for every P ∈ C we have P \ cl(
⋃
k≤n Bδk(xk)) 6= ∅

If we choose x0 ∈ P0 and δ0 < D/2, then (a0), (b0), and (c0) are satisfied.
Suppose we have constructed {xk : k ≤ n} and {δk : k ≤ n} so that (an), (bn),
and (cn) are satisfied. We show how to pick xn+1 and δn+1. By (cn), we can
pick xn+1 ∈ Pn+1 \ cl(

⋃
k≤n Bδk(xk)). Let ε = dist(xn+1, cl(

⋃
k≤n Bδk(xk))

and notice that ε > 0. By Lemma 17, there is a δ > 0 such that

diam(P ∩ Bε/3(x)) > δ (12)

for every P ∈ C and x ∈ P . We let δn+1 < min{ε/3, δ}. We now show
that (an+1), (bn+1), and (cn+1) are satisfied. It is easy to see that (an+1)
is satisfied. To see that (bn+1) is satisfied it enough to notice that δn+1 <
ε/3 by (12). We check (cn+1). By way of contradiction, suppose P ⊆
cl(

⋃
k≤n+1 Bδk(xk)) for some P ∈ C. By (cn), P ∩ Bε(xn+1) 6= ∅. Also,

P ∩ Bε(xn+1) ⊆ cl(Bδn+1(xn+1)). Pick w ∈ P ∩ cl(Bδn+1(xn+1)). Since
|w − xn+1| < δn+1 < ε/3, we have that cl(Bε/3(w)) ⊆ Bε(xn+1). So we
now have that P ∩ Bε/3(w) ⊆ P ∩ Bε(xn+1) ⊆ cl(Bδn+1(xn+1)). Hence,
diam(P ∩ Bε/3(w)) ≤ δn+1 < δ. On the other hand, by (12), we have that
diam(P ∩Bε/3(w)) > δ a contradiction. So we have (cn+1).

Let Q = cl{xn : n ∈ ω}. Let n ∈ ω. Clearly, xn ∈ Pn ∩ Q. Moreover, by
the (b) conditions of the inductive construction we have that xn isolated in
Pn ∩ Q. Since Pn has no isolated points, Pn ∩ Q is not open in Pn. Thus,
Pn ∈ N(Q) for all n ∈ ω. Since {Pn : n ∈ ω} ⊆ N(Q), we have that C ∩ N(Q)
is dense in C. By Proposition 14, N(Q) ∩ C is a Gδ-set in C. Finally, by
definition N(Q) ∈ Zp.

6 Proof of Theorem 7

Proof of Theorem 7.
We show (a). We show cov(B1,K) ≤ cov(Zp). Suppose F ⊆ Zp, |F| =

cov(Zp), and
⋃
F = K. For each F ∈ F there is, by Theorem 6, a gF ∈ B1

such that F ⊆ {P ∈ K : gF |P is discontinuous}. Thus, K ⊆
⋃
F∈F{P ∈

K : gF |P is discontinuous}. So, cov(B1,K) ≤ cov(Zp).
We show cov(B1,K) ≥ cov(Zp). Let F ⊆ B1 be such that |F |=cov(B1,K)

and for every P ∈ K there exists an f ∈ F such that f |P is not continuous.
Then, K =

⋃
f∈F {P ∈ K : f |P is discontinuous}. However, by Theorem 6,

{P ∈ K : f |P is discontinuous} ∈ Zp for each f ∈ F . Thus, cov(B1,K) ≥
cov(Zp).

We show (b). We show non(B1,K) ≤ non(Zp). Suppose F ⊆ K, |F | =
non(Zp), and F is not contained in

⋃
n∈ω N(Cn) for any countable collection
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{Cn : n ∈ ω} of closed sets. Let f ∈ B1 be arbitrary. By Theorem 6, we have
that {P ∈ K : f |P is discontinuous} ∈ Zp. By our choice of F there is a perfect
set M ∈ F such that M /∈ {P ∈ K : f |P is discontinuous} which implies that
f |M is continuous. Thus, non(B1,K) ≤ non(Zp).

We show non(B1,K) ≥ non(Zp). Suppose F ⊆ K and |F | < non(Zp).
Since F ∈ Zp, by Theorem 6 there is an f ∈ B1 such that F ⊆ {P ∈
K : f |P is discontinuous}. Thus, non(B1,K) ≥ non(Zp).

We show (c). We show add(B1,K) ≤ ω1. Let A ⊆ R and |A| = ω1. Let
F = {χ{a} : a ∈ A} and note that |F | = ω1 and F ⊆ B1. Clearly,⋃

f∈F

{P ∈ K : f |P is not continuous} = {P ∈ K : P ∩A 6= ∅}.

Let M = {P ∈ K : P ∩ A 6= ∅}. Let g ∈ B1 be arbitrary. Since |g|A| = ω1,
there is a B ⊆ A such that |B| = ω1 and for every b ∈ B and ε > 0 we have

|Bε(〈b, g(b)〉) ∩ g|A| = ω1. (13)

Pick distinct {bα : α ∈ ω + 1} ⊆ B so that limn→∞〈bn, g(bn)〉 = 〈bω, g(bω)〉.
We may assume that 〈bn〉n∈ω is a strictly decreasing sequence. By the fact
that g ∈ B1 and (13), we can pick perfect sets Pn such that bn+1 ≤ inf(Pn) <
sup(Pn) < bn−1 and g|Pn is continuous and osc(g|Pn∪{bn}) < 1/n. Now P =
{bω}∪

⋃
n∈ω Pn is a perfect set such that g|P is continuous and P∩A 6= ∅. Thus,

M is not contained in {P ∈ K : g|P is not continuous}. Thus, add(B1,K) ≤
ω1.

We show that add(Zp) ≤ add(B1,K). Suppose F ⊆ B1 and |F | < add(Zp).
By Theorem 6, {P ∈ K : f |P is discontinuous} ∈ Zp for each f ∈ F . Since
|F | < add(Zp), ⋃

f∈F

{P ∈ K : f |P is discontinuous} ∈ Zp.

By Theorem 6, there is a g ∈ B1 such that⋃
f∈F

{P ∈ K : f |P is discontinuous} ⊆ {P ∈ K : g|P is discontinuous}.

Thus, add(Zp) ≤ add(B1,K). Since Zp is a σ-ideal, we have add(Zp) ≥ ω1

which completes the proof of (c).

We show (d). We show cf(B1,K) ≤ cf(Zp). Suppose F ⊆ Zp and |F | <
cf(B1,K). By Theorem 6, for every Z ∈ F there is a fZ ∈ B1 such that
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Z ⊆ {P ∈ K : fZ |P is discontinuous}. Since |F | < cf(B1,Zp), there is a
g ∈ B1 such that

{P ∈ K : g|P is discontinuous} \ {P ∈ K : fZ |P is discontinuous} 6= ∅. (14)

for every Z ∈ F . By Theorem 6, {P ∈ K : g|P is discontinuous} ∈ Zp. So, by
(14), we have

{P ∈ K : g|P is discontinuous} \ Z 6= ∅

for every Z ∈ F . Thus, cf(B1,K) ≤ cf(Zp)
We show that cf(B1,K) ≥ c. Suppose F ⊆ B1 and |F | < c. For each f ∈ F

let Af = {x ∈ R : there is an ε > 0 such that |Bε(〈x, f(x)〉)∩ f | ≤ ω}. Notice
that Af is countable for every f ∈ F . Pick x ∈ R \

⋃
f∈F Af . Let g = χ{x}.

Let f ∈ F be arbitrary. Since f ∈ B1 and x /∈ Af , we can find as, in the proof
of (c) above, a perfect set P such that x ∈ P and f |P is continuous. Clearly,
g|P is not continuous. Thus,

{P ∈ K : g|P is discontinuous} \ {P ∈ K : f |P is discontinuous} 6= ∅

for every f ∈ F . Therefore, cf(B1,K) ≥ c. By Theorem 6, M = {{P ∈
K : f |P is discontinuous} : f ∈ B1} is a cofinal family in Zp. Since |M | = c, we
have cf(Zp) ≤ c.

7 Proofs of Theorem 4 and Theorem 3

Proof of Theorem 4. We first show that add(RR,D) ≥ ω1. Let F =
{fn}n∈ω be a subset of RR. Define h : R → Rω by the formula h(x) =
(fn(x))n∈ω. Let j : R \Q→ Rω be a continuous onto function. Let S ⊆ R be
such that j|S : S → h[R] is a bijection. Define g ∈ RR by g(x) = j|−1

S (h(x)).
By Blumberg’s Theorem there is a D ∈ D such that g|D is continuous. We
claim that fn|D is continuous for every n ∈ ω. By way of contradiction, as-
sume that there is an n ∈ ω such that fn|D is not continuous. It follows that
h|D is also not continuous. So, there is a convergent sequence xn → x such
that {xn : n ∈ ω} ∪ {x} ⊆ D and limn→∞ h(xn) 6= h(x). Since j|S is contin-
uous, we have limn→∞ j−1

S (h(xn)) 6= j−1
S (h(x)). Thus, g|D is not continuous

contradicting our choice of D. So, we have the claim. Thus, add(RR,D) ≥ ω1

We show that add(RR,D) ≤ ω1. Let {Pα}α∈ω1 be a partition of R into
disjoint everywhere of second category subsets. For each α ∈ ω1 let fα = χ

Pα .
Notice that if D ∈ D, and fα|D is continuous, then D ∩ Pα is open in D. Let
g ∈ RR be arbitrary. Since each Pα is everywhere of second category, there is
for each α ∈ ω1 a Dα ∈ D such that Dα ⊆ Pα and g|Dα is continuous (to see
that such a Dα may be found for an everywhere second category set see [1]).
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For each α ∈ ω1 pick 〈xα, g(xα)〉 ∈ g|Dα . Since ω1 is uncountable, there exist
distinct {αξ : ξ ∈ ω + 1} such that limn→∞〈xαn , g(xαn)〉 = 〈xαω , g(xαω )〉.
Without loss of generality we may assume that {xαn}n∈ω is an increasing
sequence. For each n ∈ ω pick δn > 0 such that osc(g|Dαn∩Bδn (xαn )) < 1/n
and Bδn(xαn) ∩ Bδk(xαk) = ∅ for any distinct n, k ∈ ω. Let

E =

[ ⋃
n∈ω

(Dαn ∩ Bδn(xαn))

]
∪

[
Dαω \

⋃
n∈ω

cl(Bδn(xαn)

]
.

Notice that g|E is continuous and E ∩ Pαω is not open in Pαω . Thus, there
is no g ∈ RR such that,

⋃
α∈ω1

{D ∈ D : fα|D is discontinuous} is contained in
{D ∈ D : g|D is discontinuous}. Therefore, add(RR,D) ≤ ω1.

To prove Theorem 3 we will need the following proposition.

Proposition 18. (Thm.1.2 [6]) There is a collection of sets {Aα ⊆ ω1 : α ∈
ω2} such that |Aα| = ω1 for every α ∈ ω2 and |Aα ∩ Aβ | = ω1 if and only if
α = β.

Proof of Theorem 3. Let {Aα ⊆ ω1 : α ∈ ω2} be as in Proposition 18. Let
{rα : α ∈ ω2} be an enumeration of R. For each β ∈ ω1 define fβ : R→ 2

fβ(rα) =

{
0 if β /∈ Aα;
1 if β ∈ Aα.

By way of contradiction, assume there is a D ∈ D such that fβ |D is continuous
for every β ∈ ω1. Pick x ∈ D and a strictly increasing sequence 〈xn〉n∈ω of
points in D which converge to x. By continuity we have that for every β ∈ ω1

there is an nβ ∈ ω such that fβ(xn) = fβ(x) for all n ≥ nβ . There is an α ∈ ω2

such that x = rα. Since |Aα| = ω1, there are ω1-many β ∈ ω1 where fβ(x) = 1.
So there are ω1-many β ∈ ω1 with the property that fβ(xnβ ) = fβ(x) = 1.
Since ω < ω1, there is an N ∈ ω and a B ∈ [ω1]ω1 such that nβ = N for every
β ∈ B. Let xN = rζ . Now ζ 6= α but B ⊆ Aζ ∩Aα, a contradiction.
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