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ON THE APPROXIMATELY CONTINUOUS
FORAN INTEGRAL: COMPLETING OUR

CHART

Abstract

The paper is a follow-up to our previous work [P. Sworowski, An an-
swer to some questions of Ene, Real Analysis Exchange, 30(1) (2004/05),
183–192], where we have given a chart of relations between four approx-
imately continuous Denjoy-Khintchine type integrals. Here we complete
that chart with the approximate Foran integral.

1 Preliminaries.

Let us make use of Preliminaries of [10]. The only thing we would like to
recall are the following definitions.

Definitions 1.1. We say that an f : [a, b]→ R is F4-integrable (F2-integrable),
if there exists an approximately continuous VBG-function (resp. [VBG]-fun-
ction) F : [a, b] → R satisfying Lusin’s N condition, such that F ′ap(x) = f(x)
for almost all x ∈ [a, b]. We say f is F3-integrable (F1-integrable), if there
exists an approximately continuous ACG-function (resp. [ACG]-function)
F : [a, b] → R such that F ′ap(x) = f(x) for almost all x ∈ [a, b]. In each
case the integral of f is defined as F (b)− F (a).

The F4-integral is AKN -integral of Gordon [6], while F2 is equivalent to
Sarkhel’s TapD-integral [9], F1 is known as Kubota integral [7].

In present paper we shall deal with the property A(N) and the class F.
These notions originate from [4].
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Definition 1.2. Let E ⊂ D ⊂ R, F : D → R, and let N be an integer. We
say that F is A(N) on E if for each ε > 0 there exists a number δ > 0 with
the property that for any sequence (Jj)j of nonoverlapping intervals meeting
E with

∑
j |Jj | < δ and for each j, the image F (E ∩ Jj) is contained in N

intervals, Ij1, . . . , IjN such that
∑
j

∑N
i=1 |Iji| < ε.

We say that a function G : [a, b]→ R belongs to the class F, if there is an
[a, b]-form {En}∞n=1 with a suitable sequence of integers {Nn}∞n=1 such that
for each n, G is A(Nn) on En. We do not assume that members of F are
continuous as was done in [4].

Definition 1.3. [4]. We say that an f : [a, b] → R is integrable in the sense
of Foran, f ∈ F for short, if there exists a continuous function G ∈ F such
that G′ap(x) = f(x) for almost all x ∈ [a, b]. The integral of f is defined to be
G(b)−G(a).

With the aid of, for instance, O’Malley’s monotonicity lemma the cor-
rectness (uniqueness) of the above definition remains valid if approximately
continuous primitives are considered; see [5]. This observation gave rise to
an integral encompassing both the Foran integral and the Kubota integral
(F1-integral).

Definition 1.4. [5]. We say that an f : [a, b] → R is integrable in the ap-
proximate sense of Foran, f ∈ AF for short, if there exists an approximately
continuous function G ∈ F such that G′ap(x) = f(x) for almost all x ∈ [a, b].
The integral of f is defined to be G(b)−G(a).

It is easy to see that a G is AC on E iff it is A(1) on E. So, the AF-integral
is more general than the F3-integral, not only the F1-integral. However, its
relation to F2- and F4-integrals is not as clear and, as it seems, so far has
not been considered. It is the main concern of our note (Sections 2&3). Some
results of the paper have already been announced at Walla Walla symposium
[11].

2 Relation to F2-Integral.

Lemma 2.1. [4, p. 361]. If F and G are respectively A(N1) and A(N2) on
E, then F +G is A(N1N2) on E.

Lemma 2.2. Let E be closed. If a VB-function F : E → R satisfies N , then
it is A(3) (on E).

Proof. Take the Lebesgue decomposition of F : F = F1+F2, F1 a continuous
VB-function, F2 a jump function. Since F and F2 satisfy N , so does F1 (see
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Corollary 3.2 in the sequel). Since E is closed, by the Banach-Zarecki theorem
we get F1 is AC; i.e., A(1). In view of Lemma 2.1 it is enough to check if F2

is A(3). Let {xn}n be the set of jumps of F2. We have

V (F2;E) =
∑
n

(
|F2(xn−)− F2(xn)|+ |F2(xn+)− F2(xn)|

)
<∞,

so for a given ε > 0 there is an N with∑
n>N

(
|F2(xn−)− F2(xn)|+ |F2(xn+)− F2(xn)|

)
< ε. (1)

Consider a number δ > 0 such that no interval with length less than δ contains
more than one point among x1, . . . , xN . Take any sequence (Jj)j of intervals
meeting E with

∑
j |Jj | < δ. Each Jj contains at most one point xn, n ≤ N .

If xn ∈ Jj , n ≤ N , put

Ij1 =
[
inf F2(E−j ), supF2(E−j )

]
, Ij2 =

[
inf F2(E+

j ), supF2(E+
j )
]

where E−j = E ∩ Jj ∩ (−∞, xn), E+
j = E ∩ Jj ∩ (xn,∞), and Ij3 = [F2(xn)−

ε
N , F2(xn) + ε

N ]. In the opposite case put just

Ij1 =
[
inf F2(E ∩ Jj), supF2(E ∩ Jj)

]
, Ij2 = Ij3 = ∅.

From (1) follows∑
j

(|Ij1|+ |Ij2|+ |Ij3|) =
∑
j

(|Ij1|+ |Ij2|) +
∑
j

|Ij3| < ε+ 2N
ε

N
= 3ε.

Since clearly for each j, Ij1 ∪ Ij2 ∪ Ij3 ⊃ F2(E ∩ Jj), F2 is indeed A(3).

Remark 2.3. It is seen that if the F above is one-sided continuous, then it
is A(2) (We don’t need Ij3’s.), but it need not be so without this assump-
tion (what we overlooked on page 26 in [11]). However, in the case from
Lemma 2.2 one can always split E into a sequence of sets on which F is A(2)
(by considering each discontinuity point separately).

Corollary 2.4. The F2-integral is covered by the approximate Foran integral.

3 Relation to F4-Integral.

Ene [3] gave various variational characterizations for Lusin’s N condition in
case of a VB-function (on arbitrary sets). We will use one of them (Lemma 3.1).
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Let E ⊂ D ⊂ R, F : D → R, r > 0. Let

V (F ;E; r) = sup
n∑
i=1

|F (bi)− F (ai)|, V (F ;E; 0) = inf
r>0

V (F ;E; r), [9]

µF (E) = inf
∑
m

V (F ;Em; 0),

where sup ranges over all families of nonoverlapping closed intervals {[ai, bi]}ni=1

with both endpoints in E, such that
∑n
i=1(bi−ai) < r. The second inf ranges

over all E-forms {Em}m.
Note that an F is AC on a set E iff V (F ;E; 0) = 0. The lemma below

follows from Lemma 10 and Theorem 4, (iii)⇒(i), of [3].

Lemma 3.1. A VB-function F : E → R satisfies N iff µF (E) = 0.

As a consequence, the following can be deduced [3, Corollary 3].

Corollary 3.2. For any E ⊂ R, the class of VB-functions satisfying N defined
on E, is an algebra.

Let V (F ;D) stand for the ordinary variation of F onD ⊂ E; i.e., V (F ;D) =
V (F ;D;∞). For a VB-function F on a bounded set E define the function V
on E by

V(x) = V (F ; [a, x] ∩ E), (2)

where a = inf E.

Lemma 3.3. Let E ⊂ R be bounded. If a continuous VB-function F : E → R
satisfies N , then so does V.

Proof. Our purpose is to prove µV(E) = 0. Take arbitrary ε > 0 and let
an E-form {Em}m be such that

∑
m V (F ;Em; 0) < ε. For each m one can

find a number rm > 0 so that
∑
m V (F ;Em; rm) < ε. Fix an m. Let (an, bn),

n = 1, 2, . . . , be intervals contiguous to the closure of Em. There is an N with∑
n>N

(V(bn+)− V(an−)) <
ε

2m
.

Here and in what follows we agree that V(bn+) (V(an−)) means V(bn) (resp.
V(an)) if bn (resp. an) is right (resp. left) isolated in E. Take sm > 0 less
than rm and b1 − a1, . . . , bN − aN . Take arbitrary nonoverlapping intervals
[c1, d1], . . . , [cq, dq] with both endpoints in Em, such that

∑q
i=1(di − ci) < sm.

Notice that none of them overlaps with any among [a1, b1], . . . , [aN , bN ]. Fix i
and put

Ii = {n : (an, bn) ⊂ [ci, di]}.



The Approximately Continuous Foran Integral 33

Clearly, n > N for each n ∈ Ii. Choose points ci = ci0 < ci1 < · · · < cil = di
in E with

V(di)− V(ci) = V (F ; [ci, di] ∩ E) <
l∑

j=1

|F (cij)− F (ci,j−1)|+ ε

q2m
. (3)

Let Ji be the collection of all n ∈ Ii with some cij in (an, bn). To simplify
notation we assume that bn′ ≤ an′′ if n′ < n′′ and n′, n′′ ∈ Ji. Since V is
continuous, we can assume that if cij ∈ (an, bn) for some n > N and j, then
for the last j with cij ≤ an, say α(n), and the first j with cij ≥ bn, say ω(n),
we have V(an−)−V(ciα) < ε

lq2m+1 and V(ciω)−V(bn+) < ε
lq2m+1 (it is possible

despite α, ω depend on l, since we would be to append here at most twice that
many cij ’s as members of Ji). Notice that for an n ∈ Ji

ω∑
j=α+1

|F (cij)− F (ci,j−1)| < V(bn+)− V(an−) +
ε

lq2m
.

If cij /∈ (an, bn) for any n, then cij ∈ clEm. Up to continuity of F , there is a
γij ∈ Em ∩ [ci, di] such that

|F (cij)− F (γij)| <
ε

lq2m

and γij′ < γij′′ for any j′ < j′′ with cij′ , cij′′ ∈ clEm. Estimate (there is at
most l − 1 members of Ji)

l∑
j=1

|F (cij)− F (ci,j−1)|

=
( ∑
n∈Ji

ω(n)∑
α(n)+1

+
∑
n∈Ji

α(n)∑
ω(n−1)+1

+
l∑

ω(max Ji)+1

)
|F (cij)− F (ci,j−1)|

≤
∑
n∈Ji

(
V(bn+)− V(an−) +

ε

lq2m
)

+
( ∑
n∈Ji

α(n)∑
ω(n−1)+1

+
l∑

ω(max Ji)+1

)(
|F (cij)− F (γij)|

+ |F (γij)− F (γi,j−1)|+ |F (ci,j−1)− F (γi,j−1)|
)

<
∑
n∈Ji

(V(bn+)− V(an−)) +
ε

q2m
+ 2

ε

q2m
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+
( ∑
n∈Ji

α(n)∑
ω(n−1)+1

+
l∑

ω(max Ji)+1

)
|F (γij)− F (γi,j−1)|.

We agree that ω(min Ji − 1) = 0. From (3), since γij ∈ Em ∩ [ci, di] and
sm ≤ rm, we get

q∑
i=1

(V(di)− V(ci)) <
∑
n>N

(V(bn+)− V(an−)) + 3
ε

2m
+ V (F ;Em; rm).

That means,
V (V;Em; sm) < 4

ε

2m
+ V (F ;Em; rm),

where from

µV(E) ≤
∑
m

V (V;Em; 0) ≤
∑
m

V (V;Em; sm) < 5ε.

By Lemma 3.1, V : E → R satisfies N .

Remark 3.4. One could have dropped the continuity assumption in Lemma 3.3.

Lemma 3.5. Let F1, F2 : E → R be monotone functions satisfying N , and let
G : E → R be A(N) (on E). Then, the sum F1 + F2 +G satisfies N too.

Proof. Let a D ⊂ E be of measure zero. Fix ε > 0 and l = 1, 2. There is an
open subset Ol ⊃ Fl(D) with measure less than ε. Let {I li}i be the family of
its components. Put

Kl
i =

(
inf F−1

l (I li), supF−1
l (I li)

)
and Kij = K1

i ∩K2
j .

Let δ be appropriate for ε in the sense of Definition 1.2. As
⋃
iK

l
i ⊃ D, one

can cover D with a sequence of open intervals (Mk)k, so that
∑
k |Mk| < δ

and so that each Mk is contained in some Kij . For each k there are intervals
∆k1, . . . ,∆kN such that G(D ∩Mk) ⊂

⋃N
j=1 ∆kj and

∑
k

∑N
j=1 |∆kj | < ε. For

a k and l = 1, 2 put

M l
k =

[
inf Fl(D ∩Mk), supFl(D ∩Mk)

]
.

Since Fl is monotone, M l
k’s are nonoverlapping, l = 1, 2. Moreover, for each k

there are i and j with M1
k ⊂ I1

i , M2
k ⊂ I2

j . Thus,
∑
k |M l

k| < ε, l = 1, 2. We
have Fl(D ∩Mk) ⊂M l

k. Hence (F1 + F2)(D ∩Mk) is a subset of the interval
M1
k +M2

k with the length |M1
k |+ |M2

k |. Consequently,

(F1 + F2 +G)(D ∩Mk) ⊂
N⋃
j=1

(
∆kj +M1

k +M2
k

)
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and so ∣∣(F1 + F2 +G)(D ∩Mk)
∣∣ ≤ N∑

j=1

(
|∆kj |+ |M1

k |+ |M2
k |
)
.

Thus the measure of (F1 + F2 +G)(D) does not exceed

∑
k

N∑
j=1

(
|∆kj |+ |M1

k |+ |M2
k |
)
≤ N

∑
k

2∑
l=1

|M l
k|+

∑
k

N∑
j=1

|∆kj | < 2Nε+ ε.

Hence, |(F1 + F2 +G)(D)| = 0.

Corollary 3.6. Let F : E → R be a continuous VB-function with N , G : E →
R a function with the A(N) property (on E). Then, their sum F +G satisfies
N too.

Proof. By Corollary 3.2 and Lemma 3.3, the functions V+ = 1
2 (V + F ),

V− = 1
2 (V −F ) satisfy N ; V is given by (2). Since V+,V− are nondecreasing,

from Lemma 3.5 it follows that also F +G = V+ − V− +G satisfies N .

For the proof of compatibility of F4- and AF-integrals we can employ the
aforementioned O’Malley’s monotonicity theorem [8]. Let us quote it.

Lemma 3.7. Suppose that a Baire one H : R→ R satisfies the following two
conditions:

(i) At each x ∈ R

lim apt→x− H(t) ≤ H(x) ≤ lim apt→x+ H(t).

(ii) The image

H
(
{x : upper right approximate derivative of H at x is not positive}

)
has void interior.

Then H is nondecreasing.

Theorem 3.8 together with Example 3.9 are the main result of this note.

Theorem 3.8. Let a function f : [a, b] → R be F4- and AF-integrable. Then
both values of integral are equal. In other words, F4- and AF-integrals are
compatible.
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Proof. Let F ∈ F4 and let G ∈ F be primitives for f . We apply Lemma 3.7.
Take arbitrary ε > 0 and consider an auxiliary function H defined by

H(x) =


F (x)−G(x) + εx for x ∈ [a, b]
H(b) for x > b

H(a) for x < a.

Clearly, H is approximately continuous (hence Baire one), so (i) holds. We
have

H ′ap(x) = ε > 0 almost everywhere on R. (4)

There is an [a, b]-form {Dn}n such that F is VB and G is A(Nn) on each
Dn. By Lemma 2.1, x 7→ εx−G(x) is A(Nn) on Dn. We can assume that F
restricted to Dn is continuous. By Corollary 3.6, H satisfies N on each Dn;
hence so on all of R. Together with (4) this gives (ii). From Lemma 3.7 we get
H(b)−H(a) ≥ 0. The arbitrariness of ε implies F (b)− F (a) ≥ G(b)−G(a).
The converse inequality can be justified in a similar way.

Example 3.9. For F4-integral and the approximate Foran integral there are
functions integrable in one sense and not in the other.

Proof. The function F from [10, Example 3.5] is an approximately continu-
ous VBG-function with N . However, it is not a primitive for AF-integral since
it coincides with the Cantor’s ternary function on a Gδ dense subset of C. By
Theorem 3.8 its derivative is not AF-integrable. On the other hand, there are
primitives for AF-integral (even for the ordinary Foran integral) without VBG,
see [2]; their approximate derivatives cannot be F4-integrable (Theorem 3.8
again).

 
F2   

F4

F1  F2 ∩ F3 6⊂ 6⊃ F2 + F3 6⊂ 6⊃

 
F3

  
AF

Question 3.10. Is the inclusion F2 + F3 ⊂ F4 ∩AF, strict?

4 F3-Integral Versus [AF]-Integral.

In order to make the chart above more self-complete, we would like to fill it
also with the integral given by the class of primitives that are defined with
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the property A(N) and closed [a, b]-forms. We shall not however, extend the
chart further graphically, as the result produced would not be too neat. We
will only explain how this should be done.

Definitions 4.1. We say that a function G : [a, b] → R belongs to the class
[F], if there is a closed [a, b]-form {En}∞n=1 with a suitable sequence of integers
{Nn}∞n=1 such that for each n, G is A(Nn) on En. We say that an f : [a, b]→
R is [AF]-integrable, f ∈ [AF] for short, if there exists an approximately
continuous function G ∈ [F] such that G′ap(x) = f(x) for almost all x ∈ [a, b].
The integral of f is defined to be G(b)−G(a).

The immediate relations are: F1 ⊂ F2 ∩ F3 ⊂ F2  [AF](Lemma 2.2),
[AF] ⊂ AF, [AF] 6⊂ F4 ⊃ F2 + F3 ⊃ F3, [AF] 6⊃ F4. The rest depends on the
second relation between F3 and [AF].

Theorem 4.2. We have F3 6⊂ [AF].

Proof. We will consider the function F : [0, 1] → R from [10, Example 3.1].
(The notation used below comes from therein.) It has been shown in [10] that
F is an approximately continuous ACG-function, but it is not [VBG]. In view
of Theorem 3.8, it is enough to show F /∈ [F].

Suppose not. By the Baire Category Theorem, there is a portion J (m)
l ∩C,

l ∈ {1, . . . , 2m}, of C such that F is A(N) on J
(m)
l ∩ C for some N . Take

arbitrary δ > 0 and pick an r ∈ N with

2rl∑
k=2r(l−1)+1

∣∣J (m+r)
k

∣∣ < δ.

Note that J (m)
l ∩ C =

⋃2rl
k=2r(l−1)+1 J

(m+r)
k ∩ C. Let (Iki )Ni=1, k = 2r(l − 1) +

1, . . . , 2rl, be intervals satisfying

N⋃
i=1

Iki ⊃ F
(
J

(m+r)
k ∩ C

)
.

According to the definition of F , for each k = 2r(l − 1) + 1, . . . , 2rl and for
each s ≥ m+ r, 1

s ∈ F
(
J

(m+r)
k ∩ C

)
. So, for each k either

1
t
,

1
t− 1

∈ Ikik (5)

for some t ∈ {m+ r + 1, . . . ,m+ r +N} and ik, or[
0,

1
m+ r +N + 1

]
⊂ Ikik , (6)
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for some ik. In case (5) we have

N∑
i=1

|Iki | ≥
∣∣Ikik ∣∣ ≥ 1

t− 1
− 1
t

=
1

t(t− 1)
≥ 1

(m+ r +N)(m+ r +N − 1)
,

while in (6),
∑N
i=1 |Iki | ≥

∣∣Ikik ∣∣ ≥ 1
m+r+N+1 . So,

2rl∑
k=2r(l−1)+1

N∑
i=1

|Iki | ≥
2r

(m+ r +N)(m+ r +N − 1)
.

As r could have been taken arbitrarily large, m and N are fixed, we arrived
at a contradiction. The function F does not belong to [F].

Corollary 4.3. [AF]  AF, [AF] 6⊃ F2 + F3.

5 DF is Nowhere Dense.

We conclude the note with a continuity property of primitives for AF-integral.
The result is analogous to that for F4-integral [10, Theorem 4.4].

Definition 5.1. We say that a real function F is quasi-continuous if the set
F � CF is dense in F (in the sense of graphs).

The following lemma we borrow from [1].

Lemma 5.2. Every Darboux Baire one function (on an interval) which sat-
isfies N is quasi-continuous.

Theorem 5.3. Let an F ∈ F be approximately continuous. Then, the set DF
(of discontinuity points of F ) is nowhere dense.

Proof. Suppose not. By the Baire Category Theorem there is an interval I
such that F is A(N) on a dense subset E of CF∩I, and such that DF∩int I 6= ∅.
Take an x ∈ DF ∩ int I and pick a sequence of points x0

n ∈ I with x0
n → x and

|F (x0
n)−F (x)| ≥M > 0 for all n. We may assume (x0

n)∞n=1 is decreasing and
also F (x0

n)−F (x) ≥M for all n. (If not, we would just pass to a subsequence
or consider −F in place of F .) Since F is Darboux, the right cluster set of F
at x contains the interval [F (x), F (x) +M ]; i.e., each member of this interval
is a right limit point of F at x. Hence, for i = 1, . . . , N there is a sequence
(xin)∞n=1, xin ↘ x, with

F (x) ≤ F (x) +M
2N − 2i

2N
≤ F (xin)

≤ F (x) +M
2N − 2i+ 1

2N
< F (x) +M

(7)
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for each n. Sequences (xin)n, i = 0, . . . , N , may be found step by step so that

x0
n > · · · > xNn > x0

n+1

for each n ≥ 1.
By Lemma 5.2, F is quasi-continuous. Set zN0 = max I. Since E is dense

in CF ∩ I, from quasi-continuity of F it follows that for each n = 1, 2, . . .
there are points z0

n ∈ E ∩ (x1
n, z

N
n−1), zin ∈ E ∩ (xi+1

n , zi−1
n ), i = 1, . . . , N − 1,

zNn ∈ E ∩ (x0
n+1, z

N−1
n ), such that |F (zin) − F (xin)| < M

8N , i = 0, . . . , N . Fix
an n. If i 6= j, by (7) we have

|F (xin)− F (xjn)| ≥ M

2N
,

whence

|F (zin)− F (zjn)| ≥ |F (xin)− F (xjn)| − |F (xin)− F (zin)|

− |F (xjn)− F (zjn)| ≥ M

2N
− 2

M

8N
=

M

4N
.

(8)

Choose δ for ε = 1 according to Definition 1.2 (for F being A(N) on E). There
is an n0 with z0

n0
− x < δ. Clearly,

∑∞
n=n0

(z0
n − zNn ) < δ. For each n ≥ n0

consider any intervals In1, . . . , InN covering F (E ∩ [zNn , z
0
n]). At least one of

them, say Inin , must contain two points among F (z0
n), . . . , F (zNn ). Thus by

(8) we have |Inin | ≥ M
4N . Summing this up over all n ≥ n0, we obtain

∞∑
n=n0

N∑
i=1

|Ini| ≥
∞∑

n=n0

|Inin | ≥
∞∑

n=n0

M

4N
=∞ > 1,

a contradiction.
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