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FIXED SETS OF INVOLUTIONS

FRANK L. CAPOBIANCO

In their work Differentiable Periodic Maps, Conner and
Floyd posed the following question: Given a closed smooth
n -manifold M", for what values of k does there exist a closed
(n +/c)-manifold Vn+k with smooth involution T whose fixed
point set is diffeomorphic to M"? In this paper we show that
for many values of k there is a closed manifold with involution
(T, Vn+k) whose fixed point set is cobordant to Mn.

We begin by defining Ik
n to be the set of classes in the n -dimensional

unoriented cobordism group 3ln which are represented by an n -manifold
which is the fixed point set of a closed (n + k)-manifold with smooth
involution. Some properties of Ik are easy to see—for instance, that Ik

is a subgroup of 31 m that I°n= 3lm and that 1$ = S;=o I* is an ideal in
9?*. It follows from [4] that if the manifold with involution (T, Vn+1) has
fixed point set Fn, then Fn bords; hence Pn = (0). It is well-known that if
the manifold with involution (T, Vn+k) has fixed point set Fn, then the
mod 2 Euler characteristics wn(F

n) and wn+k(V
n+k) are equal; hence for k

odd Ik is contained in Xn, the subgroup of classes in 3ln with zero Euler
characteristic.

The main result of this paper is the following:

THEOREM. For 2^-k^n and k even, Ik=3ln; for 2 < fe ̂  n and k
odd,Ik=Xn-

To prove this result we first verify that I* is as claimed for k = 2,3
and that Ik contains an indecomposable cobordism class for each n not of
the form 2r - 1 and each k such that 4 ̂  k ^ n. Once these facts are
established, the theorem itself follows easily by induction.

It is tempting to conjecture that Ik = (0) for k> n. In fact, the
techniques employed in Section 2 of this paper originally appeared in a
dissertation written under the suprevision of R. E. Stong at the Univer-
sity of Virginia which verified this conjecture for n ̂  5. In this regard,
the author wishes to express his gratitude and indebtedness to Professor
Stong for the generous advice which underlies most of this work.

2. The structure of Pn. Because a smooth involution on a
closed manifold can not fix an odd number of points, Ik = (0) for
k > 0. In this section we shall prove that for n > 0, Pn = 5Rn, by using the
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Boardman homomorphism / ' introduced in [1]. In what follows we
adopt the notation and terminology of [4].

Let JL =S ;
m

= 0^(BO(m-/)). We define a map/ ' : M*^W*[[0]l
where Sft*[[0]] denotes the ring of formal power series in one variable, as
follows: If x is an element of Mm, set J'n(x) = AmJJn+1(jc). As an element
of $ftn(Z2), J'n(x) may be written as a sum 2r=0A[A, S"1"1] for a unique
choice of classes ft G %. We define J'(x) = 27=0 0,0'• Arguments
similar to those found in [3] prove that / ' is a homomorphism of rings.

LEMMA 2.1. Let U"=ov
m~J -»F y be a disjoint union of (m - ; ) -

plane bundles. Let (3 be an element of $lm. There exists a manifold with
involution (T, Vm) such that j8 is the class of Vm and U JL0 v

m"] -> F1 is
the normal bundle to the fixed point set of (T, Vm) if and only if
J'(2JLO [vm-> -> F']) = /30m + higher power terms.

Proof Without loss of generality we may suppress the fact we are
considering a disjoint union of bundles. Assume (T9 V

m) fixes
vm-i^FK T h e n jm([v>*-i -*FJ]) = AmJIm+1([vm->^>F1]) = [Vm][A,S°]
by [4]; so J'([vm~J ~>FJ]) = [Vm]0m + higher power terms. Assume
J'([vm-} -> F;]) = pom + higher power terms. By definition,

0 = Jm-i([vm-] -^F>]) = Amjr([vm->^F>\) = [A, S(vm~')\.

Suppose (A, S(vm-])) bounds (S, Mm). Let

Vm = (D(vm-')UMm)/(S(vm->)^ dMm)

and T = A U S. The normal bundle to the fixed point set of (T, Vm) is
vm-j _> F / a n d hence /3 = [Vm].

We use Lemma 2.1 to explicitly compute / ' on a basis for M*\ Let T
be the involution on RP(n +1) defined by mapping [x0, • * %*n+i] to
[ - xQ, XU - - -,xn+i]. The normal bundle to the fixed point set of
(T,RJP(n + l)) is Rn + 1^RP(0)UA-»RF(n), where A is the canonical
line bundle. Let An denote the cobordism class of A —>RF(n). Then
by 2.1, J'(\n) = 1 + 2:=0[V(n + 1, i)]6n+l+\ where the V(n + 1, i) are the
manifolds studied in [5]. In particular, [ V(n + 1,0)] = [RP(n + 1)] and

[V(n + 1, i)] = [RP(n + i + 1)] + [RF(A ©R'+1)]

where RP(A©RI+1) is used here to denote the total space of the
projective space bundle associated to A 0RI+1—»RP(n).
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LEMMA 2.2. Let a E$ln. a belongs to I2 if and only if there exists a
2-plane bundle v2^>Fn such that a = [Fn] and the first nonzero term
appearing in the power series expansion of J'([v2->Fn]) is at least
(n + 1)-dimensional.

Proof. Lemma 2.1 implies that a belongs to I2
n if and only if there

exists a 2-plane bundle v2->Fn such that a = [Fn] and the first nonzero
term appearing in the power series expansion of J'(\y2-*Fn\) is at least
(n + 2)-dimensional. By [5;2.1], J($ln(BO(2)))C3ln+l(Z2). Thus, re-
quiring that the first nonzero term be at least (n + l)-dimensional is
sufficient.

LEMMA 2.3. l\ = $ln for n ^ l .

Proof. We use Lemma 2.2 to show that for each positive dimension
n, not of the form 2r - 1, I\ contains an indecomposable cobordism class;
the result then follows from [7]. Because conjugation on CP(2) fixes
RF(2), I\ contains the class of RP(2). Because / ' (A^Ao* AL+i) =
([ V(4n + 3,1)] + [ V(2n + 2,0)]2)04n+4 + higher power terms, Hn+2 contains
the class of RP(4n + 2). Because /'(A^Ao + AL) =
[V(4n + l,l)]04n+2 + higher power terms, I\n contains the class of
RP(4n)URjP(2n)xRP(2n). Suppose n=2p(2q + l)-l for p,q>
0. For each /, O^j^n, let the cobordism class y} be defined by

1 / = 0

0 l g ; ^ 2 p + l

1 [V(2" + l , / - 2 ' - 1)] + [V(2p+1q,j -2"+lq)] 2p+lq ^j^n.

Let y = 2;=o y^-fa- Then J'(\ ?A /;'_, + y) = /3fl "+1 + higher power
terms, for some class /3 E 9 n̂+i. By Lemma 2.2, the base of A£A2%-i + y
belongs to J^; by [5; 4.2] and [6; 3.4], this class is indecomposable.

3. The structure of Ik
n, 2 < k ^ n. Let £k -> Mnl [+1 be an

arbitrary fc-plane bundle and let RP(^|C) denote the total space of the
associated projective space bundle.

LEMMA 3.1. Ik
n contains the cobordism class of RP(£k) U M"~k+X x

RP(k -1).
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Proof. Consider the Whitney sum £k ©Rk-»M""k + 1 and the total
space RP(£k 0 Rk) of the associated projective space bundle. Multiplica-
tion by - 1 in the fibers of £k induces an involution on RP(fk 0 R k )
whose fixed point set is RF( | k) UM""k+1 x RP(fc - 1).

LEMMA 3.2. Pn= Xn-

Proof. Recall from §1 that I* is contained in x * = ^n=oXm the ideal
of classes in 9?* with zero Euler characteristic. It is not hard to see that
Xn contains an indecomposable cobordism class for each dimension
n^4, n/2r -1, and that x* is generated by these elements. In [6; 8.1]
Stong exhibited for each n § 4, n ^ 2 r - l , a 3-plane bundle £3->Mn"2

such that the cobordism class of RP(£3) is indecomposable. Thus by
Lemma 3.1 J3 contains the indecomposable class RP(£3) U Mn~2 x RF(2),
and therefore II = x*-

To prove that Ik is as stated in §1 we need finally to show that Ik
n

contains an indecomposable cobordism class for each dimension n not of
the form 2r - 1 and each k such that 4 ̂  k ^ n.

LEMMA 3.3. Jk contains an indecomposable cobordism class for
each n/2r — 1 and each k such that 4 ^ k ^=a(n), where a(n) denotes
the number of ones in the dyadic expansion of n.

Proof. Recall the Stong manifolds from [6]: Let (nu • • •, nk) be a
partition of n + k - 1 and let p: R(P(nu • • •, nk)-> RF(nO x • • • x RP(nk)
be the projective space bundle associated to Ai 0 • • • 0 Afc ̂ RP(n i ) x
• • • x RP(nk), where A, is the pullback of the canonical line bundle over
the ith factor. By Lemma 3.1 Ik contains the cobordism class of
RP(nu '-,nk)U RP(nx) x • • • x RP(nk) x RP(k - 1); and by [6; 3.4] this

class is indecomposable if and only iff J+ M j = l mod

2. It suffices then to exhibit for each choice of n and k a partition

(fi!, • • -, nk) of n - k + 1 such that (n ~ *) + • • • + (n ~ ! ) = 1 mod 2. If
\ Hi / \ nk j

n = 2r> + • • • + 2\ rt > • • • > rt > 0, and 4 g k ^ t, then

(2ri + • • • + 2r-fc+% 2r'—3 - 1, • • -, 2r-» - 1,2r'"! - 1, T'-1 - 1)

is as required. If n =2ri-\ + 2% where r2 > • • • > rt = 0 and there
exists an i, 2 S i ^ t, such that r,_i > r, + 1, and 4 ̂  fc ^ t, then

(2r- - 2,2r* - 1, • • •, 2 r-2 - 1,2^-« + • • • + 2r'~\ 1)

is as required.
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To prove that Ik
n contains an indecomposable class for each n^2r -

1 and each k such that a{n) < k ^ n we must use a different technique,
provided by the following:

LEMMA 3.4. If M" is a closed manifold such that wt(M
n) = 0 for

i > a(n) + 1, then Ik contains the class of Mn for a(n)<k ^ n.

Proof The twist involution on M" x Mn is defined by sending
(x,y) to (y, x) and has fixed point set Mn ; furthermore, the normal
bundle to Mn in Mn x M* is the tangent bundle rMn -> M". By
Lemma 2.1 J ' ( [TM" -> Mn]) = [Mn x M"]02n + higher power terms. By
[4], since w,(Mn) = 0 for i> a(n)+l there exists an (a(n) + l)-plane
bundle £->Nn such that ^0Rn- a ( n )-1->Nn is cobordant to
rMn -» M\ Therefore, J'{[£ -*Nn]) = J\[rMn -> Mn]) =
[Mn x Mn]02fl -f higher power terms. By Lemma 2.1, for each k such
that a(n) < k ^ n there exists a manifold with involution (T, Vn+k) such
that the normal bundle to the fixed point set of T is
f ©Rk-a(n)-1->iV'1. Therefore the cobordism class of Mn, which is the
same as that of Nn, belongs to Ik

n for a ( n ) < k ^ n.
It remains then to show that for each dimension n/ 2r - 1 there is an

indecomposable manifold Mn such that wI(M
fI) = 0 for i >

a(n) + l. For this purpose we define generalized Stong manifolds as
follows: Let N = (Nu • • •, Nk) be a fc-tuple where for each i, 1 ̂  i ^ k, N,
is a t-tuple (n,i, • • •, nltt) of nonnegative integers. Define
RP(NU'--,Nk) to be the total space of the projective space bundle
associated to A i 0 • • - 0 Ak~>RP(N!)x - • • x RP(Nk), where A, is the
pullback of the canonical line bundle over the Strong manifold
RP(Nt). Letting | Nt | denote nlX + • • • + nltl + tt - 1 and | N | =
iJVilH h|2Vfc| + fc — 1, we see that RP(Nly'-,Nk) is an \N\-
dimensional manifold.

LEMMA 3.5. RP(NU • • -,Nk) represents an indecomposable cobor-
dism class if and only if

Proof. There is a degree one map RP(AT,)x • • • x
RP(|N1 | )x---xRP(|N*|) such that the pullback of
A 1 0-- -0A k ^RP( | iV 1 | )x - - -xRF( |N f c | ) is A,© • • • © A, ^ R P ( N , ) x
•••xRP(Nk). By [6; 2.4], RP(N,, • • -,Nk) is indecomposable if and
only if RP(\Nl\,--;\Nk\) is; but, by [6; 3.4] RP(|N,|, • • -,\Nk |) is
indecomposable if and only if
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The cohomology and Stiefel-Whitney classes of RP(NU • • •, Nk) are
explicitly computable from [4]. In fact, let H*(RP(nlJ); Z2) =
Z2[alJ]/(a?J«

+1 = 0) and c, and e represent the characteristic class of the
canonical line bundle over RP(JVI) and RP(NU- -,Nk)
respectively. Suppressing all bundle maps, we may write

k)) = f l El
1

Proof.
RP((2" - 1 ,

If
•" '>2

n = 2r- +
,0),

••• + 2",
- 1 )

>
>

• • > r, >
(2r'"1-o,

-I))-

w(RP(Nl5 - • •, Nk)) = fl El (1 + a¥)*
+1(l + c, + a,)(l + e + c,).

i - l ; = 1

LEMMA 3.6. For each dimension n ̂  2r — 1 fftere is an indecomposa -
We manifold Mn such that wt(M

n) = 0 /or i > a ( n ) + 1.

let Mn =
If n =

, 1 t j , let M" =
RP((2" - 1, • • •, 2r-> - 1,2'-1 - 1,0), (2r'-! - 1), (2J - 1), • - •, (2° - 1)). That
these manifolds are indecomposable is a direct consequence of Lemma
3.5. That wI(M

n) = 0 for i > a(n)+l is immediate from the given
expansion of w(RP(Nu - • •, Nk)) taken with the fact that multiplication in
H*(RP(NU - • -, JVk); Z2) is subject to the relations I I ^ c , + al}) = 0 for
each i, 1 ̂  i ^ fc, and nf=1 (e + c.) = 0.

Let now assemble the above lemmas to prove:

THEOREM. For2^k^n and k even, Ik
n =$ln; for 2 < fc S n and k

odd, Ik
n = Xn-

Proof. Let 4 ̂  fc ^ n and assume inductively that for 2 ̂  / < fc ^ n
and / even, Vn = Sftn, while for 2 < / < fc ^ n and / odd, I i = Xn- We
must show that Ik

n is as claimed. Let a E.$ln, with wn(a) = 0 if fc is
odd. If a is decomposable, say a = j8y where p E3lp and yESRq with
w<?(y) = 0 if fc is odd, then by induction j8 G Ip and y G l\r2. Clearly
I2

pI
k~2Clk

n, so a G Ik
n. If a is indecomposable, then by Lemmas 3.3-3.6

a belongs to Ik mod decomposables; but, since Ik contains all decom-
posables, a E Ik.
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