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A COMPARISON OF TWO NATURALLY ARISING
UNIFORMITIES ON A CLASS OF

PSEUDO-PM SPACES

Z. FlEDOROWICZ

In this paper, we shall consider an important class of
probabilistic pseudometric spaces, the so-called pseudometrically
generated spaces, i.e., spaces with a collection of pseudometrics
on which a probability measure has been defined. Specifically,
we shall examine the relationship between the uniformity
introduced on the space probabilistically by means of the so-
called ε, λ uniform neighborhoods and the uniformity obtained
by considering all the uniform neighborhoods generated by
each of the pseudometrics as a subbase.

A probabilistic metric (PM) space is a pair (S, &~) where S is a
set, &~ is a mapping from S x S into Δ, the set of all one-dimensional
left continuous distribution functions, whose value ^(p, q) at any
(p> q) e S x S is usually denoted by Fpqy satisfying

(I) Fpp - H
(II) Fpq = H implies p = q
(III) 2^,(0) = 0
(IV) Fpq = Fqp

(V) Fpq(x) = Fqr(y) = 1 implies Fpr(x + y) - 1,
where H is the distribution function defined by

m = I0'" ~ °
(1, x > 0 .

A Menger space is a triple (S, &~, T) where (S, ^~) is a PM
space, T is a mapping (called a ί-norm) from the unit square [0, 1] x
[0, 1] into [0, 1] which is nondecreasing in each place, symmetric, as-
sociative, satisfies boundary condition

Γ(α, 1) = α ,

and with the additional property

(Ym)Fpr(x + V)^ T(Fpq(x), Fqr{y)) .

A probabilistic pseudometric (pseudo-PM) space is a pair (S, ^~)
satisfying (I), (III), (IV), and (V). Similarly, a pseudo-Menger space
is a triple (S, J^ T) satisfying (I), (III), (IV), and (Vm).

For further information on the basic properties of PM spaces,
the reader is referred to Schweizer and Sklar [3].
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DEFINITION 1. A metrically generated (MG) space is a PM space
(S, J?~) together with a probability space ( ^ , ^ , μ) such that £& is
a set of metrics on S and such that for any (p, q) e S x S and any
x > 0

( 1 ) { d e ^ : d(p, tf) < x} e ^ .

and

( 2 ) FPff(aj) - μ{d e ^ r : d(p, 9 ) < x} .

A pseudometrίcally generated (pseudo-MG) space is a pseudo-PM space
(S, &~) together with a probability space ( ^ , ^ , μ) of pseudometrics
on S such that conditions (1) and (2) hold.

In the sequel, we will use the notation (S, ^\ 3f, &, μ) to denote
MG and pseudo-MG spaces.

In his paper [5], R. Stevens showed that any MG space is a
Menger space under the £-norm Tm where

Tm(a, b) = max {a + b - 1, 0} .

His proof may be easily generalized to show that any pseudo-M? space
is a pseudo-Menger space under Tm.

DEFINITION 2. Let S be a set and let ^ be a collection of
pseudometrics on S. Then the gage uniformity of 3f on S (denoted
by ^/^) is the uniformity generated by the following subbase

[{(p, q)eS x S: d(p, q) < x}]de^tX>0 .

It is shown in Kelley [1] that any uniformity on a set may be
regarded as the gage uniformity of some collection of pseudometrics
on that set.

THEOREM 1. Let (S, J^~, T) be a pseudo-Menger space with the
property that sup x < 1 T(x, x) = 1. Then the sets

U(ε, λ) = {(p, q) eS x S : Fpq(e) > 1 - λ}

form a base for a pseudometrizable uniformity on S.

The above theorem was proven by Schweizer, Sklar, and Thorp
[4]. Since pseudo-MG spaces are pseudo-Menger spaces under Tm, a
continuous ί-norm, it follows that the sets
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U(ε, λ) - {(p, q)eSxS: Fpq(e) > 1 - λ}

- {(p, q) : μ{d e 2f\ d(p, q)< ε} > 1 - λ}

form a base for a uniformity on the pseudo-MG space (S,
This uniformity will be referred to as the ̂  uniformity and will be
denoted by ̂ > .

Given a pseudo-MG space (S, _^; ̂ , . ^ , μ), it follows from the
above that we can put two uniformities on S, namely the gage uni-
formity <ZSS and the ^ uniformity ^ r . A natural question that
arises is whether there is any relationship between the two uniformities.
We shall first examine this question for pseudo-MG spaces generated
by a countable family of pseudometries.

THEOREM 2. If (S, J^Ί &, &, μ) is a pseudo-MG space and &
is countable, then ^ > £Ξ ^S&.

Proof. We shall first show that & = 2*.

First of all, since for any (p, q) e S x S and any ε > 0

{d e 3ί\ d(p, q) < ε} e <5$ ,

it follows that its complement {d: d(p, q) ̂  ε} is also ^-measurable.
Similarly

{d: d(p, q) ̂  ε} = f| \d: d{p, q) < ε + —} e & .

Hence, we have for any (p, q) e S x S and any ε > 0

{d: d(p, q) = ε} = {d: d(p, q) ̂  ε} Π {d: d(p, q) ̂  ε} e &? .

Now pick any d0 e 2H and well order &ί — {d0} as

{d[,dί, . . . } .

Now since d0Φ d'k, there is a pair (pk, qk) eS x S for which

do(Pk, Qk) Φ dr

k{pk, qk) .

Hence it follows that

oo

{̂ o} = Π {d: d(pk, qk) = do(pk, qk)} e & .

Since any subset of 3f is a countable union of unit sets {d}, it follows
that & = 2s.
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To show that ^ V £ ^W> it suffices to show that any base element
Z7(ε, λ) of ^V, contains a base element

V = Π {(P, 9): d(j>, ί) < ed} ,

of ^ ^ , where A is a finite subset of 2f and each εd > 0. Well order
3f as

{(Zi, C?2, } .

Clearly

Pick w large enough so that

Let V be defined by

V = ή {(P. ί ) : d*(i>, ? ) < ε} .
Λ = l

Clearly, if (p0, g0) e F, then

and

1 - λ < μ(v {dkή ^ ^{d: d(pOf ffo) < ε} = FPoqo(ε) ,

so that (p0, q0) e Z7(ε, λ). In other words,

FSί7(β, λ),

which is what we wished to prove.

THEOREM 3. Let (S, ^~; 3f, &, μ) be a pseudo-MG space with
the property that Si is countable, and μ is nonzero on all nonempty
measurable subsets of &. Then *&& = ^V.

Proof. In view of the preceding theorem, it is sufficient to show
^ S % " . In the proof of the preceding theorem we have already
shown that all subsets of 3f are /^-measurable. It follows that

> 0 f° r a n y doe &- Now, for any s > 0,

μ{d: d(p, q) < ε} > 1 — μ{d0} implies do(p, q) < ε .
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It follows that

U(6, μ{d0}) £ { ( p , q) : do(p, q)< s} .

Taking finite intersections, we have that any base element of *%ss

contains a base element of ^ > and the desired result is an immediate
consequence of this.

THEOREM 4. Let (S, ̂ ~; £&, &, μ) be a pseudo-MG space suck
that £& is countable. Let £&'£& be defined by

3? = {de 3f\ μ{d) > 0} .

Then ^jr = ^ , .

Proof. Let {2f\ &\ μf) be the probability space naturally induced
by ( ^ , &, μ). By the previous theorem, the ̂ 9 uniformity of (S,
&~'\ 3f\ &', μ'), ^V/, is equivalent to "U^,. Since ^ - &' is a
countable union of sets of ^-measure 0,

F'vq(x) - μ'{d e 3f'\ d(p, q)<x} = μ{d e &\ d(p, q)< x} = Fpq(x) ,

SO that ^fjr = ^jr, = %ί&,.

Thus, we have essentially solved our problem for spaces generated
by a countable family of pseudometrics. It is reasonable to ask whe-
ther any of these results can be extended to arbitrary pseudo-ikTG
spaces. The following example shows that this is not the case.

EXAMPLE 1. Let S be the set of all real-valued measurable func-
tions on the unit interval [0, 1]. For any t e [0, 1] define a pseudome-
tric dt on S by

*(/ι/*) = !/(<)-/*(«) I

for any /, /* in S. Let 2f = {dt: t e [0, 1]}, and let μ be the pro-
bability measure on £& induced by the Lebesgue measure on [0, 1].
Let &~\ S x S -> Δ be defined by

J H / , /*)(») = μ{dt: dt(f, /*) < x) .

Hence (S, ̂ \ 3f, &, μ) is a pseudo-M? space. (The pseudometrics
dt may be interpreted as giving the distance between two particles
at time t)

It is easy to show that ^ > and ̂ ^ are not even comparable.
For two particles may be close to one another at any finite number
of instants but still be far away from each other the rest of the time.
Conversely, given our finite number of instants we can find two
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particles which are far apart at these instants but arbitrarily close
to each other at all other times.

However, the question still remains, whether any of our results
on countably generated pseudo-M? spaces can be generalized to the un-
countable case when sufficiently strong restrictions are placed upon the
generating family of pseudometries. A natural restriction that comes
to mind is the requirement that all the pseudometrics be comparable.

DEFINITION 3. Two pseudometrics dx and d2 on a set S are said
to be comparable if one of the following relations holds

( i ) d,{p, q) ^ d2(p, q) for all (p, q)eS x S; or

( i i ) d2(p, q) ^ dγ{p, q) for all p, q e S x S.

DEFINITION 4. A linearly ordered set (S, ^) is said to be countably
bounded if there exists a countable subset A g S such that for every
element seS, there exists an element aeA such that s <£ a.

The real numbers with the usual ordering are countably bounded
where as the collection of ordinals less than the first uncountable is
not countably bounded.

THEOREM 5. Let (S, &~\ £&> &, μ) be a pseudo-MG space, such
that any two pseudometrίcs of & are comparable. If £z? is countably
bounded under the induced linear ordering, then ^ V C *&&•

Proof. If £& has an upper bound, this result may be proven
very easily. If 3? does not have an upper bound, then neither does
A, the countable bounding set, and we can construct from A a strictly
increasing sequence {dk}ΐ=1 such that for every d e 2$, there exists a
k such that d < dk.

Let (pk, qk) be a point of S x S such that dk(pk, qk) < dk+1(pk, qh).
Let Ak be defined by

Ak = {de 3f\ d(pk, qk) < dk+1(pk, qk)} .

It is obvious that {Ak}^t forms an increasing sequence of ^-measurable
sets. It is also obvious that lim^oo Ak = &, whence lim^c* μ(Ak) =
μ(&) — 1. Thus for any λ > 0 there exists a N such that μ(AN) >
1 — λ. Hence for any d e AN

dN+1(p, q) < ε implies d(p, q) < e

and

μ{d: d(p, q) < ε} ^ μ{AN) > 1 — λ ,

so that

{(p,qy.dN+ι(p,q)<ε}^U(s, λ)
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which proves that % . £ % .

Theorem 5 might seem to indicate that perhaps ^ V £ ^ holds
for all pseudo-MG spaces with comparable pseudometrics. But even
this is false as the following example shows.

EXAMPLE 2. Let Ω denote the set of all ordinal numbers less
than the first ordinal having the power of the continuum. Let φ
denote a one-to-one correspondence from the closed unit interval / =
[0,1] onto Ω. Now define a function / „ : ! — • / for every yel as
follows:

1, if φ(x) ^ φ{y)

a/4, if 9?(a?)

Also define for every y el a function dy: I x I—+R by

(0, if ^ = £2

Define a measure μ on the Boolean tf-algebra & of 2^ (where
& — {dy: 7/ e /}) consisting of all subsets of £& which have a cardinal
numbers less than that of the continuum and of the complements of
these sets by

0, if card (A) < <£

1, if card (& ~ A) < ® .

One may easily verify that μ satisfies all the conditions for a pro-
bability measure.

It may also be easily verified that dy is a metric on I for every
y e l and t h a t <p(yx) < φ(y2) implies t h a t dyι(x19 x2) ^ dV2(xly x2) for every

(x19 x2)el x / .

To show /, ^ , and μ determine an MG-space, it suffices to show
that for (x0, zo)el x I and any ε0 > 0, the set

{dy e 3f\ dy(x0, z0) < ε0}

is ^-measurable. If x0 — z0 or ε0 > 2, this is obviously true. If ε0 <̂

2, let xf = ^"^max {<p(x0), <p(̂ o)}} Then

A = {dy e Sf\ dy(x0, z0) < ε0 ^ 2} S {dy e &: φ{y) < <p{x')} = B ,

since if φ(xf) ^ φ(y) held, then φ(x0) g φ(y) and φ(zQ) ^ φ(y) and

ώ,(̂ o, ô) = Λ W + Λ(«o) = 1 + 1 = 2 .
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We have card (23) < (£ and so card (A) < (£. Hence A is //-measurable
and μ(A) = 0.

We shall now show that the proper inclusion ^ v g ^ v holds>
(instead of % - g ^ ) . We have

Z7(l, i) = {x19 x2) e I x I : μ{dy: dy(x19 x2) < 1} > i} = Z),

where Dz is the diagonal set on I x I, since, as shown in the preced-
ing paragraph, xt Φ x2 implies

μ{dy: dy(xlf x2) < 1} = 0 .

To show that proper inclusion holds, assume the contrary. Then,
we would have to have

n

for some {cZ ĵLi and {εjf=1, e4 > 0. Let

ε0 = min {εx, ε2, , ε%} and (ZVo = max {dVι9 , ώ̂ }̂ .

Then

Since card {#: 9)(a;) ^ φ(y0)} < ^> there exist two points x0 Φ z0 in t h e

open interval (0, ε0) such t h a t <p(x0) > <p(y0) and <p(z0) > <p(yQ). Thua

dyo(xQ, Zo) = fy(xQ) + fy(zQ) = (xo/A) + fe/4) ^ (εo/4) + (εo/4) < ε0 ,

so that (xQ, zQ) e B, but (x09 z0) $ DIy which contradicts our assumption.

Hence Theorem 5 cannot be extended to arbitrary pseudo-ilfG
spaces with comparable pseudometrics. However, Theorem 5 does
admit generalization in another direction. For it may be easily seen
that a pseudo-M? space (S, &~\ 3f, &, μ) with comparable pseudome-
trics such that 3f is countably bounded, also has the property that
the gage uniformity of <2ί is also generated by some countable sub-
family J ^ S ^ , for instance the countable bounding set; i.e., <%s& =
^ ^ . We shall now show that in any pseudo-MG space with this
property, ^ > £ fs& holds. We shall derive this result by first prov-
ing an even more general result.

THEOREM 6. Let (S, &~\ 3r, έ%, μ) be a pseudo-MG space. Let
& be an arbitrary countable collection of pseudometrics upon S with
the property that ^ S ^ W Then ^ g % .

Proof. Consider the countable collection of uniform neighborhoods
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, ff): d(p, q) < — } : d e &, n = 1, 2, .

Well-order ^ as

We shall now show that for every uniform neighborhood U(ε, λ) e
there exists an M such that

For, consider the sets AmQ& defined as follows

Am = jd e ^ : Π V* S {(p, β): d(p, ff) <

Obviously {Am}̂ =1 is an increasing sequence of sets. It is also very
easy to show that lim^oo Am = &f. Now extend μ to an outer measure
μΐ on 3f by defining

μf(A) = inf {/i(J5): A S ΰ a n d ΰ G ^ } .

It may be shown (see, for instance, Munroe [2], p. 99) that μf is a
regular outer measure on £gr. We then have

\imμ*{Am) = μ*(li

Therefore, there exists an M such that

μf(Ax) > 1 - λ .

Now if (p0, g0) e Π £ i Vi9

AMS{de 3f\ d(p0, q0) < e} .

Hence

μ{d e 3t\ d(p0, q0) < ε} ^ μί(Aκ) > 1 - λ ,

so that (p0, qQ) e U(e, λ) and f|£=i ^ S £f(e, λ). This completes the proof
that ^ ^ - S ^ ; ^ .

COROLLARY, Lei (S, &~\ 3f, 3$, μ) be a pseudo-MG space. If
there exists a countable collection & of pseudometrics on S such that
• ^ = ^W, then ΉfsrSΉfs:
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