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OPERATOR-VALUED FEYNMAN INTEGRALS OF
FINITE-DIMENSIONAL FUNCTIONALS

G. W. JOHNSON AND D. L. SKOUG

Let C[a, b] denote the space of continuous functions x on
[a, b]. Let {au ••,«»} be an orthonormal set of functions of
bounded variation on [a, b]. Let

Fix) = f(V a^dxit), , P an(t)dx{t)\ .

Recently, Cameron and Storvick defined certain operator-valued
function space integrals, and, in particular, an operator-valued
Feynman integral. In their setting, we give existence the-
orems as well as explicit formulas for the function space in-
tegrals of functionals F as above. We also study the properties
of the operators which arise by "integrating" this type of
functional.

Insofar as possible we adopt the definitions and notation of our
earlier paper [6]. For a better motivated definition of the operator-
valued function space integrals Iλ(F) and Jq(F) see [3] and [4].
Throughout the paper we assume that F has the form given above
•where / is a measurable function on Rn.

Four cases arise: (a) The normalized constant function ao(t) =
(b — α)~1/2 is orthogonal to span {a19 , an}. (b) aQ e {a19 , an}, say
a0 — ax for convenience, (c) a0 $ {a19 , an) but a0 e span {alf , an}.
In this case, one may choose a new orthonormal basis {βly •••,/?„} for
span {aly •••, an} such that a0 = βx. Now by an appropriate change
in /, one has case (b). (d) a0 g span {aly , an} and a0 is not orthogonal
to span {aly , an}. In this case one may choose a basis {βly , βn+1}
for span {a0, a19 •••,««} such that a0 — βx Again after making an
appropriate change in /, we are back to case (b) except that the
•dimension is raised by one. Examples of cases (a) and (b) are easily
given. Choose one of the standard orthonormal sets on [α, 6]. Pick
out a finite subset. If the constant function is not included, we have
(a); if it is included, we have (b). Cases (c) and (d) will be illustrated
in § 4 of the paper; (c) in connection with the important example of
functions of independent increments. Throughout, the hypotheses are
made on the function / which arises after the conversion has been
made, if necessary, to cases (a) or (b).

To obtain the existence of Iλ{F) for Re λ > 0 we require only that
f(ulf •••,%») exp [ — p{u\ + + u2

n)] be integrable for all p > 0. For
the existence of Jg(F) we require the integrability of f(u19 •• , u j .
In both cases, the restriction on / is much weaker than in [2] or [9]
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where Cameron's earlier definition of the Feynman and related integrals
was employed to study functionals of the same type. It is perhaps
worth mentioning that the existence theorems of this paper are the
first results in the theory (see [3], [4], and [6]) in which the func-
tional F is allowed to be unbounded.

In our earlier work [6], the existence of Iλ{F) was obtained quite
readily but the existence of Jq{F) was more difficult to establish*
Here, the situation is reversed. In establishing the existence of Iλ(F), a
probabilistic interpretation of Iσ

λ{F) for λ > 0 allows us to write I\{F)
in a more manageable form.

To obtain the existence of Jq(F), one needs to show that it is the
weak operator limit of Iλ(F) as λ goes to — iq along the line p — iq,
p > 0. We get a stronger result than this; in case (a), as in [6], we
show that Jq(F) is the strong operator limit of Iλ{F) as X-+—iq
through the right half plane. In case (b), we actually get Jq(F) as
the limit in operator norm of Iλ(F). Also, as in [6], we get the ex-
istence of Jq(F) for every q Φ 0. In this respect, our results resemble
the "deterministic theorem for Jg(F)" from [4], an improvement over
Theorem 5 of [3] which gave existence of Jq(F) for almost every q.
The type of functional dealt with in those two theorems is quite dif-
ferent from ours however. In our case, the operators arising as the
function space integrals will turn out to be convolution operators, and
so, known results on such operators [5, p. 951-964] can be applied to
give information on Iλ{F) and Jq{F).

Finally we mention that the class of functionals studied here
neither includes nor is included in the class studied earlier [6]. The
most obvious difference is that, in the present case, F(x) may depend
upon the values of x throughout [a, b] whereas a functional F of the
form F(x) = fι{%{Q) fn(x(tn)) depends only on the values of x at

2* The operator Iλ(F). We let a0, alf , an and F be as be-
fore. For convenience we let eλ(u) = λ1/2[2τr(ί> — α)]~1/2 exp ( — Xu2/2(b — a))
and let * denote the operation of convolution. The following theorem
establishes the existence of Iλ(F).

THEOREM 1. Let f(uu " ,un) be such that

f(uιy •••,<) exp [-p(ul + + <)]

is ίntegrable on Rn for all p > 0. Then the operator Iχ(F) exists for
all λ such that Reλ > 0. (a) // aQ is orthogonal to span {au , an}f

then Iχ(F) is given by the formula
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where

d, = (λ/2π) '* Γ •(»)•(" / H . •••,«•)
J_oo J_oo

e x p [ — λ ( v ? + + vl)/2]dv1 --- dvn ,

ψe L2 and — oo < ξ < oo. (b) // α0 = «„ ίfceπ Iχ(F) is given by the
formula

2 (Iχ(F)ψ)(ξ) ^_Jιλ(v - ξ)eλ{v - ζ)f(v)dv

= Mv)eλ(v)]*[ψ(v)](ξ)

where

hλ(u) = (\/2πy*-M~ (n - 1 ) . Γ f(u(b - α)~ 1 / 2 , %, . . . , v.)
J—oo J — oo

exp [-λ(^ + + vl)/2]dv2 dvn ,

ψe L2 and — oo < £ < oo.

Proof, (b) We first establish the existence of the operator I*n(F).
Let ψeL2. For λ > 0 the following Wiener integral exists and is
given by

F(x-ll2x

= t /fλ-1'* [* αt(ί)ίte(t), , λ-1'2 (' an(t)dx{t))

= (2τr)-'IΓ •(»).(" /(λ- 1 ^, , X-l»un)t(X-li\b - aY"Ul + ξ)
J_OO J-OO

exp [— \(u\ + . . + ul)]duλ

which is in L2 since Aλβλ is in Lx. Now for Re λ > 0 let

Then A(λ; ψ ) is in L2 for Reλ > 0. Furthermore for any φeL2, an
application of Morera's theorem (together with the Fubini theorem
and the Cauchy Integral theorem) to (A(X; ψ), φ), as in [3, p. 533]
enables us to conclude that A(X; ψ) is analytic (as a vector valued
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function) in X for Re λ > 0. But for λ > 0,

A(X; ψ)(ζ) = ( F(X~ίl2x + f)ψ(λ-1/2£(δ) + ξ)dx ,
JC0[α,6]

and so IΓ{F) exists for Re λ > 0 and is given by

(lΓ(F)ψ)(ξ) = [hλ(v)eλ(v)]*[ψ(v)](ξ) .

Let σ: [a — t0 < tx < < tm = b] be a partition of [α, b] and let
Γλ(F) be defined by (4.7) of [3] or (2) of [6]. We must show that
I°λ{F) —* I?{F) in the weak operator topology as | | α | | - * 0 . This will
establish the existence of I\eq{F) (and hence of Iλ(F), the common
value of Is

λ

eq(F) and Ia

λ

n(F)) and verify (2). We begin with an outline
of the proof. Using the general multivariate normal probability density
function, we obtain an alternate expression for Γλ{F) for λ > 0. This
expression and the old expression agree on the real axis and are both
analytic throughout the right half-plane; hence they agree for all X
such that Re λ > 0. Using the new expression for I°λ{F) we are able
to prove the necessary limit statement; the key here is showing that
the covariance matrix associated with the multivariate normal density
function converges to the identity matrix.

As is pointed out in [3, p. 530], for λ > 0,

= \ f(\haMdfa-^x, + £),•••, [an(t)d(\-ί{2xσ + ζ))

.ψ(\-lί2x(b) + ξ)dx .
But, as a^t) = (b — α)~1/2, we have

JC0ίa,bl

(t)dx(t) + ήdx .

Now let Xl denote the random variable on the Wiener space CQ[a, b]

S b

a^fydxit). It is well known [7] that X{ is dis-
a

tributed normally with mean 0 and variance 1; i.e., X[ — ΛΓ(0,1).
Also [x{tj] - αKίj -i)] ~ N(0, ts - t^) and, for j Φ k, [x{tά) - x{t^\ and
[x(tk) — a?(ίΛ_i)] are independent. Hence for i = 2, , n, the random
variable Xl defined by Xl{x) = Σ?=i ai(h)[x(h) - x{tό^)] satisfies

Now let us consider the convariance matrix Co associated with

the random variables X{, « ,XJ. Since each Xl has mean 0, the

ikth entry, aσ

ik, of Cσ is given by \ XlXσ

kdx. We will now show
JCQ[a,bl
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that Cσ—>I in operator norm as \\σ\\—»0 where / denotes the n by
n identity matrix. It suffices to show that aσ

ik—>δik (the Kronecker
S) as | | σ | | — 0 . Since {(td - t^YU2W3) - x(t^)\}l=i is a family of
independent random variables each distributed N(Q, 1) we obtain

= Σ
for all i — 1, 2, , n and k = 1, 2, , n. Thus aσ

n = 1 for all σ.

For i = 2, 3, , n, aσu is an approximating sum for the Riemann in-

tegral \ a\(t)dt = 1 and so α?< — 1 as | | σ [ | - * 0 . For i ^ fc, α?fc is an
ja

Γb

approximating sum for the Riemann integral \ ai{t)ak{t)dt = 0 and so
Ja

for iΦk,aσ

ik~+<d as | |α | |—*0. Hence Cσ—>I in operator norm as
||0 | |~+O. Thus for | |σ | | sufficiently small, Cσ is a positive-definite
matrix and is invertible and has a positive determinant [1]; we assume
throughout the remainder of the proof that | |σ | | is small enough so
that Ca has these properties. Thus Cσ —> I, C~ι -* / and | Ca |-

1/2 —> 1 as
JJcr || —- 0. Now let ^ , •-,!;») = (2π)"- /2 |α|-1 / 2exp{-i((Vi, ,i; ),
C" 1 ^!, , vΛ))} be the multivariate normal density function associated
with Xi, , Xl [1]. Here ( ,) refers to the inner product. Then we
can write [8, p. 41],

( / ! ( * » ( £ ) - Γ {n). Γ f(X-^vly , λ - 1 ^ . ) ^ ^ , . . . , * . )
( 3 ) J-°° J-°°

a)1/2X- i ;y + ξ)dvx - dvn

which upon a change of variables becomes

J-oo J_co

•exp [-λ(((^ - ζ)(b - α)~1/2, %2, , uj,

CΛ(u, - ξ)Φ - α)-1/2, u2, . ,

We now have our alternate expression for Γλ(F) for λ > 0. This
formula defines an operator-valued analytic function of λ for Re λ > 0
as can be shown in the usual manner [3, p. 533] by applying Morera's
theorem. To check the details of this, one should keep in mind the
properties of Cσ and may also wish to consult the remainder of this
proof.

Now (4) and the defining expression for Γλ(F) are equal to the
same Wiener integral for λ > 0 and both expressions are analytic for
Re λ > 0. Thus (4) gives Iσ

λ(F) whenever Re λ > 0.
Now let λ be fixed (Re λ > 0) and let ψ, ψ0 e L2 We finish by

showing (iftF)^, ψ0) ~> {I'Γ(F)t, to) as | |<7||->0. It will suffice to
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show this for an arbitrary sequence of partitions {σk} such that
||σfc||—>0. Comparing (4) and (2) carefully and recalling that C^1—*!
and |C«,J"~1/2-*l, we see that the proof of (b) will be finished if we
can justify an application of the dominated convergence theorem to

( 5 ) (2π) "λ-'8(δ - ay*\ CO]t |
1/2(I

Now since C~l —»/, it is easy to see that there exists N such that
k^> N implies

((w19 , wn), C^(w19 , wn)) ^ i{(wιy , wn), (w19 , wn))

for all vectors (wιy , wn). Hence for k ^ N, a dominating function
is given by

I f((Ul - ξ)(b - a)-«\ u2,-.., O || ψ W || ψo(ξ) I

which is integrable by our hypotheses. Thus the proof of (b) is finally
complete.

(a) In this case we note that for λ > 0 and ψ e i 2 the following
Wiener integral exists and is given by

F(X-il2x + ξ)ψ(χ-1/2x(b) + ζ)dx
Cola,b]

= \ f(λ~1/2 \ha&)dx(t), , X~llz [ an(t)dx(t))

.ψ(χ~ll2(b - α)1/2Γao(t)dx(t))dx

*(n + 1). Γ /(λ- 1 ^, . ., λ-1 / 2Of (λ-1/2^ + ί)
o J-oo

• exp { — i(u2 + ul + + u\)}dudut (Z ŵ

The remainder of the proof in this case is similar to the proof of the
above case and is omitted.

Using the lemma from [6] and results on convolution operators
found in [5, p. 951-964], we easily obtain the following corollary.
Ix{Ff will denote the adjoint of Iλ(F).

COROLLARY. For all λ such that Re λ > 0, Iλ{F) is a normal
operator. In case (a): (i) Iλ{Ff is given by the formula
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(ii) | |/A(F)| | = \dλ\. (iii) The spectrum of Iλ(F) consists entirely of
continuous spectrum and is {0} U {^e"(δ"~α)1/2/2λ: — oo < y < co}. (iv)

The range of Iλ{F) is contained in the set of equivalence classes of
L2 which contain a continuous function, (v) If dλ Φ 0, Iχ(F) is one-
to-one. In case (b): (i) Iχ(F)* is given by the formula

(ii) \\Iλ(F)\\ = sup {\Jr(hλeλ)(y)\: — oo < y < oo} where ^ denotes the
Fourier transform, (iii) The spectrum of Iλ(F) is the closure of the
range of ^

3* The Operator Jq(F).

THEOREM 2. Assume f(ulf , un) is integrable on Rn. Then the
operator Jq{F) exists for all q Φ 0. (a) If a0 is orthogonal to span
{aly •• ,αw}, then Jq(F) is given by

= d_iq \~ e_iq(v - ξ)f(v)dv
( 6 )

for f GL 2) where the integral is interpreted in the mean [3, p. 521],
Furthermore Jq(F) is the strong operator limit of Iχ(F) as λ—» — iq
in the right half plane. (6) If a0 — alf then Jq(F) is given by

for ψ 6 L2. In this case Jq(F) is the limit in operator norm of Iχ{F)
as λ —> —iq in the right half plane.

REMARK, (i) In case (a), Jq(F) is not the limit in operator norm
of Iχ(F) since, if cLίg Φ 0, Jq(F) lies in the open set of invertible
operators [5, p. 862] while by the corollary above we see that Iχ{F)
is never invertible. (ii) The integrability of

f{uxi , O exp {-p(ul+ + ul)}

for all p > 0 is not sufficient to insure the existence of Jq{F), in fact
the boundedness of f(u19 , un) is not sufficient.

Proof, (a) The proof of this case follows from the theorem in
[6]. (b) Let q Φ 0 be given. Let Kq(F) denote the map defined by
{Kq(F)ψψ)^[h_φ)e^iq{v)h[ir{v)]{ξ). Kq{F) is an operator since
h_iqe_iq is in L1# It will suffice to show that Kq{F) is the operator



422 G. W. JOHNSON AND D. L. SKOUG

norm limit of I?(F) as λ—> — iq. However, by [5, p. 953], it suffices
to show that hλeλ converges in Lι norm to h_iqe_iq as λ~> — iq. But
for all λ such that | λ | ^ 2\q\ and Reλ > 0, \hλ(v)eλ(v)\ is dominated
by the Lλ function

[° Γ \f(vfv2, ",vn)\dvt- dvn.

Thus the result follows upon application of the dominated convergence
theorem.

Again using [5, p. 951-964] and the lemma from [6], we easily
obtain the following corollary.

COROLLARY. In case (a): (i) For d_iq Φ 0, (d^^J^Fyis a unit-
ary operator and so Jq{F) is a normal operator and \\Jq{F)\\ = \d_iq\.
(ii) Jq(Fy is given by the formula

(Jq(F)*ψ)(ξ) = d_iq[° eiq(v - ζ)ψ{v)dv

where the integral is interpreted in the mean, (iii) If d_iq Φ 0, Jq(F)
is invertible as an element of ^f(L2), and Jq{F)~ι = \d_iq\~2Jq{Ff. In
case (b): (i) Jq{F) is a normal operator, (ii) Jq{F)* is given by the
formula (Jq(F)*ψ)(ξ) = [h_iq(-u)eiq(u)]*[f(u)](ξ).

(iii) \\Jq(F)\\ = sup {\jr(h_iqe_iq)(y)| : - - < „ < oo} .

(iv) The spectrum of Jq(F) is the closure of the range of J^~(h__iqe_iq)*

4* Examples*

EXAMPLE 1. Let

F(x) = exp U Γ [x(t) - a;(α)]dt| = exp U Γ (6 - t)dx{t)\

- exp{i(δ - α)3/23-1/2Γ(6 - α)-3/23~1/2(6 - t)dx{t)\ .

Now this is a functional of the type we are considering where

aL(t) - 31/2(δ - α)-3/2(6 - ί)

and f,{ux) = exp {i(b - α)3/23-1/2^}. This illustrates case (d) of the in-
troduction. If we let β2(t) = 31/2(δ - a)-%l\a + b - 2ί) then {β, = a0, β2)
is an orthonormal basis for span {aO1 α j . Also a^t) = i(β2(t) + 31/2A(^))
Thus

F(x) = exp jΐ(δ - aYl22-ιZ-ιi2Ϋβz{t)dx(t) + i(b - af1^-1^βL(t)dx(t)\ .
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Thus the appropriate function is

f(ulf u2) = exp (i(b - aψ*2r^\u2 + 31/2O}

and so case (b) of Theorem 1 is applicable. We obtain

hλ(u) = exp {i(b - ά)u/2 - (b - α)3/24λ}

and ^(hλeλ)(y) = exp {-(& - α)3/24λ - (6 - a - 2y)2(b - α)/8λ}. Thus,
by the corollary, we see for example, that

In [3] the functional

F0(x) = exp IΛ* x(t)dt\

is considered. But (Iλ(F0)ψ)(ξ) = eiζ{b-a)(Iλ(F)ψ)(ξ), so that Iλ(FQ) is
simply Iλ(F) followed by the unitary operator of multiplication by

β«<»-«> # I n particular, 11 J,(F0) 11 =

EXAMPLE 2. (Functions of independent increments.) Let

σ: [a = t0 < tx < < tn = 6]

be a partition of [α, 6] Let

F(x) = ^(α;^) - #(α), a?(ίa) - α?^), , x(b) - x(tn^)) .

We wish to illustrate how such functional may be treated in the
framework of our theorems. We consider the case where n = 3. Now

gixfa) - x(a), x(t2) - a?(ii), x(b) - x(t2))

fk - aY^\(t)dx(t), (t2 - ty^a^dxit), (b - t2y

where

and α3(ί) = (6 — ^)~1/2Z[<2'«(ί) ^s a n orthonormal set. This situation
illustrates case (c) of the introduction. Accordingly, we seek another
orthonormal basis {βu /32, /33} for span {alf a2, a^ with β1 = α0. Routine
but tedious computations show that we may take

- fa - α)1 / 2(6 - ^ )
and
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&(«) = (δ - *2)
1/2(*2 - *1)~1/2(& - ί i ) - 1 " ^ . ^ * )

- (ί, - ix)l/1(6 - Q-1I2Φ - tO-^^wίί)

Then writing the α/s in terms of the /3/s and letting

f(uί9 u2, u9)

= ff((ίi ~ a)ll2(b - a)-^[(b - t^u2

+ (tx - α)1'^], (ίa - ^" [-( ί , - ί^'U -

+ (t, - ίi)1/2(δ - α ) - 1 ^ ] , (6 - ί2)1 / 2[- (6 - ί2)
1/2& - α)1/2(& - ^)"1/2(δ - a)-ll2u2

- (U - ίχ)1/2(& - O " 1 7 ^ + (6 ~ t2)
112Φ - α ) - 1 ^ ] ) ,

we obtain

which is case (b). In connection with Theorem 2 we mention that if
g is integrable, so also is / .

u + M )EXAMPLE 3. Let f(ul9 u2) = e-(ui+M2) and let

F(x) -

where a^t) = (b — α)~1/2 and {a19 oc2) are orthonormal. In this case,
hλ(u) = λ1/2(λ + 2)-1/V-*2/<*-α> and ^{hλeλ){y) = λ(λ + 2)-1e- ( δ-α )^2 / 2 ( ; ι + 2).
Thus for example | |I a CF)| | = |λ | |λ + 2I ' 1 and || Jq(F)\\ = \q\ |2 - iq\~\

The authors would like to thank R. H. Cameron for a helpful con-
versation and Professors Cameron and Storvick for an opportunity to
see an early version of [4]
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