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REFINEMENTS OF WALLIS’S ESTIMATE
AND THEIR GENERALIZATIONS

T. S. NANJUNDIAH

Some refinements of Wallis’s estimate for = noticed in
the recent literature are pointed out as already contained in
a certain continued fraction expansion due to Stieltjes. A
property of the approximants to this continued fraction is
established which yields a simple proof of the expansion and
furnishes, in particular, interesting monotone sequences of
rational numbers with limit . Two estimates of the Wallis
type involving quotients of gamma functions are derived.
They include estimates for I'(a) and = csc na (0 < @ < 1) both
of which reduce for @ = 1/2 to one of the known refinements
of the Wallis estimate.

0. Introduction. Let
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We have the well-known Wallis estimate
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Obtaining the case x = n + 1/2 of the inequalities
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by an application of a theorem in mathematical statistics, John
Gurland [3] notes that
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The first inequality here has been found earlier by D. K. Kazarinoff
[4]. On the basis of a result of G. N. Watson, A. V. Boyd [1] has
shown that one cannot have
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for all » =1 with b, = 32 and b, = 48. All these facts are, however,
overshadowed by the following continued fraction expansion due to
Stieltjes [5]:
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Indeed, this result, together with its obvious transformation
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suffices to dispose of (1) and the two observations made in [1], the
second of which is seen to hold even with b, = 12 and b, = 27. We
wish to point out a simple and informative proof of (I) which shows,
in particular, that
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A direct proof of (1) is easy. In fact, assuming throughout that
0 < a <1, we prove the two generalizations
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As special cases of interest, we have estimates for I'(a) and 7esera
generalizing Gurland’s estimate for z:
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where

gn(a)=(a+n~l>, Gn(a)=aﬁ(1—i2>.
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One should compare (II), (III) and the inequalities

_ I'z + ) ]1/"‘

(2) x 1+a<[~——r(x) <z, x>0,
which follow at once from the log-convexity of the gamma function.
Wallis’s estimate is the special case of (2) in which a« =1/2 and
2 =mn + 1/2 — the two together actually yield 7°(1/2) = /7 . This is
a simple evaluation of I"(1/2) that goes back to Stieltjes [2]; it is simple
because (2) for &« = 1/2 requires only Schwarz’s inequality for integrals.

The proofs of (I), (II) and (III) all utilize this familiar asymptotic
formula implied by (2):

(3) I'(x + a) o 2°I'(x) , X — oo,

1. The expansion (I). We have

Coy=c+L = @k =17 _ A)
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W, = Aix) and W, = B,(x) being the two solutions of the recursion
Wi = 2eW, + 2k + 1)*W,_,
defined by the initial values
A ) = —x, A(x) =1; By(x) =1, B_(x) =0.
It is easily verified that the above recursion is equivalent to
Wie = 2(x + 2o) Wi + 2k + 1)*W,_,,

where

W=+ 2k + 2e)W, + Qk + 1)*W,_,, e= =+1.
This establishes the matrix identity

[(w + 1) Bi(w +2) Au(e + Z)J
(r — 1) Bu(w — 2) Au(z — 2)

x+ 2k +2 2k + 1)

[x—Zk—z (2k+1)2} )
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' [ 4 (@) Bm(m]

by an induction from the cases £ — 1 and k(= 0) to the case k + 1.
Passing to determinants, we at once see that

sgn{(@ — 1)*Ci(@ + 2) — (@ + 1)’ Culw — 2)} = (=D)*,  =2>2,

which, on replacing « by 42 + 3 and introducing
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[T+ T _1
(@) _[m] Cilde + 1), n> -2,

may be written
sgn{vi(@ + 1) — 7(@)} = (=1)*.
By (8), this yields
@) Tu@ +n) T4, Yunl@+mn)l4, nloeo.
Hence 7:,(®) < 4 < 7Ya:(x) and so we obtain (I):

lim v,(x) =4.
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The existence of this limit is assured by a known theorem [5, p.239]
on the convergence of an infinite continued fraction with positive
elements.

2. The inequalities (II). Consider
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We have
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The first of these assertions is easily checked and the last is obvious
from the first two. The second, restated in the more convenient form
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follows on observing that

1 at
2y u) =— — —— <0,
() shu shiau <

(shu)/u being increasing in (0, «), while
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Hence, by (3), we have the following limit relations which contain
more than (II):
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(**) Al — )2, 2 +n) 11, flo@+n),z+n)]l, nfoe.

3. The inequalities (III). Proceeding as before, let
I™(%)
I'c+alxz+1—a’
x>0, —c0o <g< + o0,

9(g,2) = (x — q)

The readily verified facts
sgn{g(q, = + 1) — 9(¢q, )} = sgnfg — q(®)} ,

_ al—-oaox _ -
aw) = g tat—a), 0 el

9(q@), x) = g(q@), * + 1) > g(g(x + 1),z + 1),
together with (3), prove more than (III):
(***) glal —a),z+n) 11, gl@+mn),z+n) |1, nlow.

An alternative proof is given by the product expansion

= xI™(%) - all — a)
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which is evident from

_G@) _ g al—a) - _
GerD T aerD lim G(z) =1,

where the limit relation is a consequence of (3). The case # =1 of
the above expansion occurs in [6].
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