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ON ARITHMETIC PROPERTIES OF THE TAYLOR

SERIES OF RATIONAL FUNCTIONS, II

DAVID G. CANTOR

Suppose an, bn, and cn = anbn are sequences of algebraic
integers and that all bn are nonzero. It is easy to verify that
if both a(z) = ̂ ^oanz

n and b(z) = Σ~=o^£w are rational func-
tions, then so is c(z) = Σ?=<A Λ We a r e interested in
studying the conjecture that if b(z) and c(z) are rational func-
tions, then so is a(z). We shall prove this in the case that
b(z) has no more than three distinct singularities.

Let k be an algebraic number field; denote by Mk the set of valua-
tions of k, normalized so as to satisfy the Artin product-formula. We
assume, whenever convenient, that each valuation in Mk has been
extended in some fashion to Ω, the algebraic closure of k. Let S be
a finite subset of Mk containing all Archimedean valuations. We say
that aek is an S-integer if \a\υ <^ 1 for all ve Mk — S and that a is
an S-unit if a and I/a are both S-integers. Let an be a sequence of S-
integers of k. Suppose there exist rational functions b(z) = Σn=oKzn

and c(z) = Σn=oCnz
n whose coefficients lie in an extension field K (possi-

bly transcendental) of k; suppose that none of the bn are 0 and that
α» = cjbn for n ^ O In [1], I showed that if b(z) has only one singu-
larity (possibly a pole of high multiplicity) then a(z) = ΣSUαnzw is a

rational function. In [6] G. Pathiaux extended this result by showing
that, under the additional assumption that K is algebraic, if b(z) has
at most two distinct singularities, then a(z) is rational.

Here we shall study various extensions of these results. In par-
ticular we shall show that if b(z) has at most three distinct singulari-
ties, then a(z) is rational.

We note that since b(z) and c(z) are rational functions, we may
write bn and cn as exponential polynomials:

(1) δ = Σ Mn)θ7

(2) cn = Σ μi(n)<PΪ
ΐ - 1

for all sufficiently large n. Here the \(n) and fain) are polynomials
in n. By appropriately enlarging K, if necessary, we may assume
that the θi7 the φiy and the coefficients of the polynomials Xi(n) and
μt(n) all lie in K. By omitting a finite number of terms from each
of the sequences an, bn, cn we may assume that (1) and (2) hold for
all n 2̂  0. The purpose of the first lemma is to show that we may
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assume that K is algebraic over h.

LEMMA 1. Suppose anf bn, cn are sequences as above. There exist
sequences bn, cn lying in a finite algebraic extension of k with b(z) =
Σ~=o bnz

n and c(z) = Σ~=o<vs% rational functions such that anbn — cn

for all integral n ^ 0 and such that only finitely many bn are 0.

Proof. As above we may write bn = ΣJU ^iin)^ and cn ==

If all the coefficients of the \ and the μi9 and the θ{ and ^ are
in k, then the Lemma is true with the bn — bn and cTO = cn. We hence-
forth assume this not the case. Let R be the ring generated by
adjoining the # ί? the <pif the ratios ΘJΘί9 and the coefficients of the Xt

and the ^ to k. By the assumption above the transcendence degree
t of R/k is Ξ>1. We are going to construct a homomorphism τ oί R
into a finite algebraic extension of k such that τ, when restricted to
&, will be the identity. If τa is abbreviated a then bn — Σί=iλi(w)0f and
thus Σ δ ^ % is rational; similarly Σ cn«* is rational and since anbn = cn

clearly anbn — cn. The remainder of this proof is devoted to con-
structing such a homomorphism τ for which only finitely many bn are
zero. By the Noether normalization lemma [3], there exists a tran-
scendence basis x = (xlf x2, , xt) for R/k such that each element of
R is integral over k[x]. Since R/k[x] is algebraic and finitely gener-
ated, its degree d is finite. Each element a in R satisfies a polynomial
equation f(a) = 0, where

is a polynomial with coefficients pt(x) in k[x], of degree e ^ d, and
monic (po(#) = 1) Any homomorphism r of ά[#] into A;, which is the
identity on k, has the form p(x) —• p(^) where u = (^, %2, , wt) is a
ί-tuple of elements of k and p(x) is in &[α?]. Such a homomorphism r can
be extended to a homomorphism of R into £?, the algebraic closure of k
[3]. The image a of α will satisfy the monic polynomial Σ?=o PiW Y6"1

and hence have degree ^e over A:. Since e ^ d, every element in rϋ?
will have degree ^d over k and hence τiϋ will be contained in a finite
algebraic extension of k. Moreover if pe(u) Φ 0, then a Φ 0. Denote
by Φk{h) the degree of the field generated by the primitive hth roots
of unity over k. It is easy to verify that Φk{h) ^ ΦQ(h)/[k: Q] where
Q is the field of rational numbers and ΦQ{h) is, of course, Euler's phi-
function. Since ΦQ(h)-+o° as h—>oo, so does Φk{h). Let h be the
largest integer for which Φk{h) ^ d. Let m be the least common
multiple of all of the orders of all of the roots of unity which can be
written in the form ΘJΘj. We can write
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= Σ
i

where the σi are the distinct mth powers of the θiy and the f]is{n) are
polynomials, not all 0 (for each value of s). Let a be the product of
all the nonzero coefficients of the Ύ)is{n) and the elements (aja^11 — 1
for i Φ j (the latter quantities are not 0 since the ratios oi\σj cannot
be roots of unity). Now let u — (uu u2, , ut) be elements of h for
which pe(u) Φ 0. Then under the homomorphism r, defined above,
a = τa will be nonzero, and Ϋfu(ri) (the polynomial obtained by applying
τ to each coefficient of the polynomial ηi8(ri)) will be the zero-polynomial
if and only if ηi8{n) is the zero-polynomial. None of the ratios σ^σ^
with i Φ j , are roots of unity, for since (σjσ^1 Φ 1, if σi\ai were a
root of unity, it would have to have order >h and hence degree >d
over k; but the latter is not the case. If any of the m sequences
bmn+8 had infinitely many zeros then either all of the polynomials rjis{n)
would be zero or by a theorem of Mahler [4] and Lech [5] the zeros
would be periodic, and two of the δi would have ratio a root of unity.
Thus the sequence bn has only finitely many zeros.

LEMMA 2. Suppose an is a sequence of S-integers of k, that an —
cjbn where bn — Σ XiM^ΐ is never 0 and cn = Σ PiWΨVi suppose the
θif ψi and the coefficients of the Xi(n) and the μ^n) are integers of k.
Suppose there exists a valuation voe S such that | θγ \VQ > | θ{ \VQ for i }> 2.
Then Σn-o anz

n is rational.

Proof. Elementary est imates show there exist M > 0 and R > 0
such t h a t \bn\υ and \cn\υ are ^MRn for all veS and n ^ 0, and t h a t
\bn\υ ^ 1 for all v$S and n ^ 0. Since J[veS \bn\v ^ 1, if we S, then

^ Π \bn\υ ^ Ms~lR{s-l)n

veS

where s is the cardinality of S. Then \an\w = \cjbn\w ^ MsRsn. It
follows that Σ*-oΛw2Λ has positive radius of convergence in kw, the
completion of k under the valuation w. Let kw be the algebraic closure
of kw and assume that w has been extended to kw. Let Rw be the
radius convergence of a(z) = Σ"=o »^% in kw. Then α(«) is analytic in
kw for |^L < i2w. Now

Xl{^)θni^n — Cn ~

or

In the field kVQ, the algebraic closure of k , the last equation expresses
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n as a rational function plus a sum of functions each
meromorphic for \z\H) ^ δRVQ where δ = min^2 \ΘJΘi\VQ is > 1 . Thus by
analytic extension Y^^\{n)anz

n is meromorphic for \z\VQ < δRVo.
Repeated applications of the above transformation show that
Σjn-^\(n)janzu is meromorphic for \z\VQ < δjRυo. Elementary estimates
show that ΣΓ=o \(n)janz

n has radius of convergence Rυ for all v e S.
Choosing j so large that δj]JveSRv is > 1 , we find, by a theorem of
Dwork [2], that Σ,n=,o\Wanz

n is a rational function. By [1] so is

LEMMA 3. Suppose an is a sequence of S-integers of k, that an —
cn/bn where bn = Σ λ»(w)0? is never zero and cn = Σ ftW^ , suppose
the θi, ψi and the nonzero coefficients of the \(ri) and the μ^n) are
S-units of h. Suppose there exists a valuation v0 of h such that \ex\Vo <
I θi \n for i >̂ 2. TΛew Σ~r=o &nZn is rational.

Poof. Extend the definition of cn and bn to negative n by their
formulas. If infinitely many such bn were zero, then by a theorem
of Lech [4] and Mahler [5], bn would be zero for all n in a doubly
infinite arithmetic progression, contradicting the hypotheses. Extend
the definition of an to negative n by putting an — cjbn if bn Φ 0 and
otherwise put an — 0. Now let v be any valuation of Mk not in S.
Then v is an extension of a p-adic valuation | \p of Q. There exists
an integer / such that if aek and \a\v = 1 then | α p / — ![„ < 1.
Letting m be an integer of the form ph(pf — 1), where h is large, we
find that \am — l | v can be made very small. In particular we can
choose m so large that if bn Φ 0 then \bn+m\v = \bn\v and that |c% + m — cn\v<
I δ% L We can choose m so large that m + n^0 and then | cm+jbm+n \υ ̂  1.
Thus \an\v ^ 1. Restating all this, we have shown that there exists
n0 such that if n ^ %0 then δΛ Φ 0 and if v e S then lα^^ g 1. We
apply Lemma 2 to the sequences < = αWo_n, δή = &%_% and < = c%0_%,
to conclude that X"= o αU% is rational. It follows that an can be written
in the form

= Σ

for n ^ π 0. Then the exponential polynomial

Σ fMn)<pΐ - Σ M? Σ %
i

is 0 for 7£ ̂  w0. By the theorem of Mahler [5] and Lech [4], it is
identically 0. Thus an = Σi=i Vi(n)σi f o Γ n = ° a n ( i α(^) = ΣΓ^o ̂ %^n

is a rational function.

We now come to the result mentioned at the beginning of this
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paper.

THEOREM 4. Suppose an is a sequence of S-integers of k and that
bn and cn are sequences of elements of an extension field K of k such
that ΣΓ=o bnz

n and Σ~=o cnz
n we rational functions and bn is never zero.

If an = cjbn and the rational function Σn=o bnz
n has at most 3 distinct

singularities then Σ~ = o &%zn is rational.

Proof. By Lemma 1, we may assume K is algebraic over k and
that bn = Σί=i ^i(n)θi and that cn = Σί=i A W ? ? where the θi9 Ψi and
all coefficients of the λf and μt are algebraic over k. By replacing k
by a larger field and S by the set of extensions of the valuations in
S to this new field, we may assume that the above quantities are, in
fact, in k. By increasing S appropriately, we may assume that those
of the above quantities which are not zero are S-units. Now if r — 1,
the theorem follows immediately from [1]. If r = 2 then either ΘJΘ2

is a root of unity, in which case the theorem follows from the case
r = 1 or there is a valuation v such that \θλ\v > \Θ2\V, and the theorem
follows from Lemma 2. If r — 3 then either |θ1 \v = |θ2\v = \θz\v, for
all ve S and ΘJΘ2 and ΘJΘ3 are roots of unity, so the theorem follows
from the case r = 1, or there is a valuation vQe S for which not all
of the three values are equal. In the latter case we may assume that
i θx |,0 ^ I θ2 \vo ̂  I θz \vo and I θx |,0 < | ̂  I v If I θ, |,0 - | ί. |.o then the theorem
follows from Lemma 3, and otherwise from Lemma 2.

It is worth noting that the method of the theorem cannot be
extended to the case where b{z) has 4 singularities. In fact, consider
the case where k is the field Q(i) where i = V — 1 and θι — (1 + 2i) x

The ideals generated by (1 + 2i), (1 — 2i), (1 + 4ΐ), (1 — 4ί) are prime
and give rise to 4 valuations of Q(i) At each of these valuations,
two of the θj take one value and two another. For example at the
valuation corresponding to the prime ideal generated by 1 — 2i, θι and
#2 both have value 1, while θz and θ4 both have the same value which
is less than 1. All 4 θ5 take the same value at all other valuations.
Thus the hypotheses of Lemma 2 or Lemma 3 cannot be met.
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