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TOPOLOGIES FOR PROBABILISTIC METRIC SPACES

ROBERT M. TARDIFF

Profile functions are used to construct a family of closure
operators (in the sense of Cech) on a probabilistic metric
space. Relationships among the various closure operators
are considered, and products and quotients of probabilistic
metric spaces are reexamined in light of this new topological
structure.

0* Introduction* In their original paper [9], B. Schweizer
and A. Sklar introduced a neighborhood structure for a probabilistic
metric (PM) space, which, under suitable conditions, is metrizable
[11]. However, the usefulness of this neighborhood structure is
limited to those spaces in which, for every ε > 0, there exist pairs
of distinct points which have probabilities greater than 1 — ε as-
signed to the event that the distance between them is less than ε.
For example, C-spaces [10] do not have this property, with the
result that the neighborhood structure of Schweizer and Sklar is
discrete.

In [13] E. Thorp and in [6] R. Fritsche tried to overcome this
difficulty, but, in so doing, each imposed a neighborhood structure
on the PM space which, in general, failed to satisfy the following
fundamental neighborhood axiom: If JVΊ and N2 are neighborhoods
of a point p, then there is a neighborhood JV3 of p such that JV3 is
contained in the intersection of iVΊ and N2. Thus, each of their
neighborhood structures did not yield a topology on the PM space,
nor even a closure operator in the sense of Cech [2].

In this paper we use the profile functions introduced by Fritsche
in [6] to construct a family of neighborhood structures for a PM
space. With these neighborhood structures the difficulties incurred
by Schweizer and Sklar are easily overcome. Furthermore, we
show that for each profile function, the associated neighborhood
structure satisfies the aforementioned neighborhood axiom, and hence,
yields a closure operator on the PM space in the sense of Cech, and
we determine sufficient conditions for this closure operator to be a
closure operator in the sense of Kuratowski. We also study the
relationships among the neighborhood structures determined by
different profile functions and discuss the separation axioms in this
context.

Next, we extend the work of R.J. Egbert [3] on products of
PM spaces, the probabilistic diameter, and the probabilistic Hausdorff
metric in two directions: First, we redefine these concepts in terms
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of triangle functions rather than ί-norms [7]; second, we study their
properties in terms of our new family of neighborhood structures
rather than the neighborhood structure introduced by Schweizer
and Sklar. Finally, we show that under suitable conditions, a pro-
file function and the probabilistic Hausdorff metric can be used to
define an equivalence relation on the points of a PM space which is
related to the tolerance relation recently studied by B. Schweizer [8].

1* Preliminaries* The axiomatic characterization of a PM
space is quite similar to that of a metric space. In such a space
the range of the distance function is the set A+ of one dimensional
cumulative distribution functions on [0, °o), rather than the set of
nonnegative real numbers; and a suitable semigroup operation defined
on Δ+ replaces the operation of addition in the triangle inequality.

More precisely, let

J + = {F: R —* [0, 1] I F is nondecreasing, left-continuous,

and F(0) = 0} .

The set zί+ has a natural partial order; namely, F^G if and only
if F(x) ^ G(x), for every x. The maximal element in A+ with respect
to this order is the distribution function

_ JO, for x ^ 0 ,
So{x) " (l, for x > 0 .

In [12] D.A. Sibley exhibited a natural metric for J+, called the
modified Levy metric ^f and showed that the metric space (J+, <2f)
is compact and arc-wise connected. This metric can be defined as
follows: for any F and G in zί+ and any h > 0, let A and B denote
the following properties:

(1.1) A(F, G; h) <=* F(x - h) - h ^ G(x) , for x e Γo, — + h) ,
L h I

(1.2) B(F, G; h) <=> F(x + h) + h ^ G(x) , f or x e Γo, — ) .

Then,

(1.3) J2f (F, G) = inf {h | A(F, G; h) and B(F, G; h)} .

DEFINITION 1.1. A probabilistic semi-metric space (briefly, a
semi-PM space) is an ordered pair (S, ^ " ) , where S is a set, and ^~
is a mapping from S x S into J+ such that for all pairs of points
p and q in S:
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( i) ^(p, q) = ε0 if and only if p = q,
(ii) ^(p, q) = jT(q, p).
The function ^~(p, q) is usually denoted by Fpq, and Fpq(x), its

value at x, is interpreted as the probability that the distance
between p and q is less than x.

DEFINITION 1.2. A two place function τ mapping zf+ x zί+ into
J + is called a triangle function if, for all F, G, and H in zί+

(α) τ(F,εo) = F,
(β) τ(F, (?) ^ τ(F, H) whenever G ^ H,
(7) τ(F, G) = τ(G, F),
(δ) τ(F, τ(G, H)) = r(r(F, G), H).
For any argument a;, the value of the distribution function

τ(F, G) at x is denoted by τ(F, G x). A triangle function is conti-
nuous, if it is a continuous function from z/+ x Λ+ into z/+, where
z/+ is endowed with the topology induced by the modified Levy
metric, and Δ+ x z/+, with the corresponding product topology.

There are many examples of triangle functions in the literature
(see [7]). One is convolution. In addition, two families of triangle
functions arise from ί-norms [7]; i.e., suitable semigroups on the
unit interval [0, 1], which satisfy conditions corresponding to (a)
through (δ) of Definition 1.2. These are given by:

(1.4) τT(F, G; x) - sup T(F(u), G(v));
u + v—x

(1.5) ΠT(F, G; x) - T(F(x),

where T is a ί-norm. For example, Min (α, 6), Prod (α, b) — ab, and
Tm(a, b) = Max (a + b — 1, 0) are all ί-norms.

DEFINITION 1.3. Let (S, &~) be a semi-PM space, and let τ be a
triangle function. Then (S, ^~) is a probabilistic metric space under
T (briefly, a PM space) if, for every triple of points p, q, and r in S:

Fpq ^ τ(Fpr, Frq) (triangle inequality).

If this is the case, then we say that (S, J^~, τ) is a PM space.
Finally, we collect the results about closure spaces which will

be needed in the sequel. The concept of a closure space is due to
E. Cech, and the proofs of the various statements may be found
in his book [2]. Many of the results may also be found in the
work of M. Frechet [5] and A. Appert and Ky-Fan [1].

DEFINITION 1.4. A closure space is a pair (S, C), where S is a
set, and C is a mapping from &*(S), the power set of S, into itself
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such that

(i) c(π) = α,
(2) AdC(A) for every Ae&(S),
(3) C(AΌB) = C(A) U C(B) for all A, B e
Note that, in general, the mapping C, defined above, fails to

be a closure operator in the sense of Kuratowski, since it is not
required that C(C(A)) = C(A). A subset A of S is C-closed, if
C(A) = A; and, G-open, if its complement S\A is C-closed. The
interior of any subset A of S, denoted by Int(A), is the set
S\C(S\A).

THEOREM 1.5. Let (S, C) be a closure space. Then the collection,
^, of all C-closed subsets of S is closed under finite unions and
arbitrary intersections.

THEOREM 1.6. Let (S, C) be a closure space. For each A
let ^A = {Be<έf\Ac:B}, and define C*(A) = Γ\Be^AB. Then C* is
a Kuratowski closure operator; i.e., satisfies (1), (2) and (3) of
Definition 1.4 and

C*(C*(A)) = C*(A) .

Furthermore, if A is C-closed, then A is C*-closed.

Thus, every closure space (S, C) has a natural Kuratowski
closure operator associated with it, and a topology in the usual
sense. In this topology the closed sets are precisely those subsets
of S which are C-closed. It is easily shown that the inclusion
C(A) £ C*(A) is possible.

Closure spaces may also be characterized by their neighborhood
structure:

DEFINITION 1.7. Let (S, C) be a closure space, and let peS be
given.

(1) A C-neighborhood of p is any subset, N, of S such that
p e Int (N).

(2) The C-neighborhood system at p, ~4^c(p), is the collection of
all C-neighborhoods of p.

( 3 ) A local base at p for ^Vc{p) is any collection <ZS of C-neigh-
borhoods of p which is equivalent to ̂ V^dp)-

(4) The C-neighborhood system, Λ^f is the collection Uges-^cίtf)-
(5) A base for Λ^c is any family, ^, of C-neighborhoods such

that for each pe S there is a subfamily %f(p) of ^/ which is a local
base at p.
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THEOREM 1.8. // (S, C) is a closure space, then for each p e S,
satisfies the following three neighborhood axioms:

(nbd 1) The collection ^Vc{p) is not empty;
(nbd 2) For each Ne^Γc(p), peN;
(nbd 3) For every Nx and N2 in ^Yh{p), there is an N5 e ̂ Vc{p)

such that Nz c iVΊ Π JVa.

To state a converse of Theorem 1.8 the following definition is
needed:

DEFINITION 1.9. Let S be a nonempty set and suppose that for
each peS there is a collection %S(p) of subsets of S. Then C^ is
the mapping from &{S) into &(S) given by:

C*(A) = {q e S \ U Π A Φ • for every

THEOREM 1.10. Let S be a nonempty set, and suppose that for
each peS there is a collection ^(p) of subsets of S which satisfies
(nbd 1), (nbd 2), and (nbd 3). Then (S, C^) is a closure space and,
for each p e S, ^(p) is a local base for NG^(p). In addition, if, for
each pe S, there is another collection T^ip) of subsets of S which is
equivalent to %f(p), then C^(A) = C^(A) for every AcS.

The importance of Definition 1.9 and Theorem 1.10 lies in the
fact that together they yield a method for generating closure
spaces. Indeed, this method will be used to induce a closure space
structure on a semi-PM space. The next theorem yields necessary
and sufficient conditions for a closure operator to be idempotent.

THEOREM 1.11. Let (S, C) be a closure space. The C-closure
C(A) of each Ad S is C-closed if and only if the following condition
is satisfied:

(nbd 4) For each peS and for each Ne^4^(p), there is a
Ve*sf^(p) such that qeV implies [there is a WeΛ^c(q) such that
WaN.

2* A family of closure operators for semi-PM spaces* Let
(X, d) be a metric space. For each fc^Oa closure operator Ch for
X can be constructed in the following manner: For each peX the
(h, ε)-neighborhood of p is the set Np(h, ε) — [q e S \ d(p, q) < h + ε}.
The h-neighborhood system at p, ^K(p)f is the collection of all (h, ε)
neighborhoods at p, ε > 0. For any A c X, let Ch(A) = {q e
XI Np(h, s ) n i ^ β e > 0}. It is clear that for every p in X,

satisfies (nbd 1), (nbd 2), and (nbd 3); and hence, by Theorem
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1.10, (S, Ch) is a closure space. Furthermore, in general, ^Y\iv)
fails to satisfy (nbd 4).

In an analogous fashion, we shall show that if (S, ̂ ~) is a
semi-PM space, then for each φ in J+, there is a closure operator
Cφ for S. We begin with:

DEFINITION 2.1. Let (S, &~) be a semi-PM space; let φ be in
+; and let ε be a positive number. For each p in S:

(1) The (φ, ε)-neighborhood of p is the set

= ίί € S I F,β(aj + ε) + ε ^ φ(x), for a? e [0, 1/ε)}

(2) The (φ, ̂ neighborhood system at p is the collection

Λ^(p) = W(Φ, ε) I ε > 0} .

(3 ) The (φ, ε)-neighborhood system is the collection

in S) .

When there is no ambiguity, the "^~" in the definitions of
fiΦ, ε), Λϊ^ip), and Λr^ will be suppressed.

Note that q e Np(φ, ε) if and only if B(Fpq, φ, ε) (viz. (1.2)). The
function φ is called a profile function [6], and its value at x, φ{x),
is interpreted as the maximum probability assignable to the event
that the distance between p and q is less than x.

THEOREM 2.2. Let (S, ̂ ) be a semi-PM space; let φ and ψ be
profile functions; and, for any A c S, let

(2.1) CΦ(A) = {peS\ Np(φ, e) n A Φ Q, for every ε > 0} .

Then (S, Cφ) is a closure space, having a countable local base at each
p e S. Moreover, if φ ̂  ψ, then C$(A) c Cψ(A) for every Ac S.

Proof. Let peS. Since Fpp = ε0, (nbd 1) and (nbd 2) follow
immediately. Next, if q e Np(φ, 3) and if rj > δ, then

Fpq(x + y)+ y^ Fpq(x + δ) + δ^ φ(x)t for xe[θ, l

whence qeNp(φ,η) and Np(φ, 3)czNp(φ, η). It follows that for any
εlf ε2 > 0,

Np(φf Min (e19 ε2)) c Np(φ, ε,) n Np(φ, ε2) ,

and (nbd 3) holds. Thus, by Theorem 1.10, (S, Cφ) is a closure
space. Furthermore, the family T{p) = {-W ,̂ r) | r is rational} is a
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countable local base for <yΓΦ{p). Lastly, if φ ̂  ψ, then Np(φ, ε) c
Np(ψ, ε) for every ε > 0, and thus, by (2.1), CΦ(A) c Cf(A) for every
AdS.

Thus, if (S, J^~) is a semi-PM space, then each profile function
φ induces a closure operator Cφ on S; and hence, a natural topology
on S in the sense of Theorem 1.6. This is an improvement over
Theorem 3.1 of [6], since the function φ is not restricted in any way.

In order to develop some of the deeper properties of the closure
spaces (S, Cφ), we need several lemmas. We begin with:

DEFINITION 2.3. Let FeJ+, and let fee [0,1] be given. Then
Fh is the function in A+ defined by:

0, for x^ 0

(2.2) {Fh(x) = Min [F(x + h) + h, 1], for x e (o, — 1

1, for O - ,

(Note that F° = F and Fι = ε0.)

It is easily shown that ^{F, Fh) ^ h for any F e J+ and any A € [0,1].

LEMMA 2.4. If τ is a continuous triangle function, then for
every ε > 0 there is a dQ > 0 such that for all d ^ δQ and for all
(F, G)eA+ x A+,

, G), τ(F\ Gs)) < ε

i.e.,

τ(F, G; x + ε) + ε ^ τ(Fδ, Gδ; x), for x e £θ, —) ,

and

τ(F, G; x - ε) - ε ^ τ(F\ Gδ; x), for xe[θ,— +

Proof. Since (A+, JZ*) is compact and since τ is continuous, τ
is uniformly continuous.

LEMMA 2.5. Let (S, ^~) be a semi-PM space) let φ be a profile

function, and let p, q e S. Then q e Np(φ, e) if and only if Fε

pq ^ φ.

Proof. This follows immediately from Definition 2.1.

THEOREM 2.6. Let (S, ^~) be a sβmi-PM space, let p, qeS and

let φ be a profile function. Then
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q 6 Cφ{p} if and only if Fpq ;> φ .

Proof. By (2.1),

(2.3) q e Cφ{p} if and only if p e Nq(φ, ε) for every ε > 0 .

This, combined with Lemma 2.5, yields

(2.4) q e Cφ{p} if and only if Fpq ^ φ for every ε > 0 .

But, since Fpq is nondecreasing and left-continuous, it follows that
Fpq ^ φ for every ε > 0 if and only if Fpq ^ φ.

An immediate consequence of Theorem 2.6 is the following neces-
sary and sufficient condition for the neighborhood system ^Vφ to be
Tx. This was obtained previously, first by E. Thorp [13; Theorem
3.4] and subsequently by R. Fritsche [6; Theorem 3.3].

COROLLARY 2.7. Let (S, ^) be a sβmi-PM space, and let φ be
a profile function. The neighborhood system <yy], is 2\ if and only
if for each pair of points p, q e S, p Φ q, there is an xpq > 0 such
that Fpq(xpq) < φ(xpq).

The next theorem yields an interesting and useful connection
between the neighborhood structures induced by two profile functions
φ and ψ.

THEOREM 2.8. Let (S, ̂ , τ) be a PM space with a continuous
triangle function τ, and let φ and ψ be profile functions. Then
for every pe S and for every ε > 0 there is a d > 0 such that

(2.5) q e Np(ψ, δ) implies Nq(φ, 3) c Np{τ{φ, f), ε) .

Proof. Let ε > 0 be given. By Lemma 2.4 there is a δ > 0
such that for all F,GeA+

(2.6) τ(F, G;x + ε) + ε^ τ{F\ Gδ; x), for x e Γo, -ί) .

If q e Np(ψ9 δ) and if r e Nq(φ, δ), then by Lemma 2.5,

(2.7) Fδ

pq ^ ψ a n d Fδ

qr ^ φ .

From (2.6), (2.7), and the triangle inequality, it follows that for
a e [0,1/e)

Fpr(x + ε) + ε ^ τ(Fpq, Fqr; x + ε) + ε

^ τ(Fδ

pg, Fδ

qr; x) ̂  τ(φt ψ; x) .

Whence, r 6 Np(τ(φ, ψ), ε) and Nq(φ, δ) c Np(τ(φ, ψ), ε).
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THEOREM 2.9. Under the hypotheses of Theorem 2.8, for every
AaS,

(2.8) C , ( φ ) ) c C r ( t , ( i ) .

Proof. Let p e Cψ(Cφ(A)), and let ε > 0 be given. By Theorem
2.8, there is a δ > 0 such that (2.5) holds. Since p e Cf(Cφ(A)), there
is a q e Np(ψ, δ) Π CΨ{A). Since q e Np(ψ, δ), our choice of δ yields:

Nq(φ,δ)aNp(τ(ψ,φ), £)•

But q 6 CΦ(A), so t h a t Ng(φ, δ) n A Φ Π

An inclusion similar to (2.8) occurs in the definition of a pro-
babilistic topological space [4], where (Aμ)λ is required to be contained
in ATU'μ). Example 2.13 shows that the inclusion (2.8) can be proper,
and thus the result of this Theorem is best possible.

We now consider necessary conditions for Cφ to be idempotent.

COROLLARY 2.10. Let (S, ̂ , τ) be a PM space, and let φ be a
profile function. If τ is continuous and τ(φ, φ) = φ, then Cφ is a
Kuratowski closure operator.

Proof. By (2) of Definition 1.4, Theorem 2.9, and the hypothesis
that τ(φ, φ) = φ, for every Ad S

CΦ(A) c CΦ(CΦ(A)) c Cτ{φ,φ)(A) - CΦ(A) .

Thus Cφ is idempotent and the conclusion now follows.
Letting φ = ε0 yields the following result:

COROLLARY 2.11. Let (S, ̂ ~, τ) be a PM space. If τ is conti-
nuous, then Cεo is a Kuratowski closure operator.

The conclusion of Corollary 2.10 can also be formulated in
terms of neighborhoods:

COROLLARY 2.12. Let (S, <^~, τ) be a PM space, and let φ be a

profile function. If τ is continuous and τ{φ, φ) = φ, then the neigh-

borhood system Λ^φ satisfies (nbd 4); i.e., for any peS and ε > 0,

there is a δ > 0 such that q e Np(φ, δ) implies Nq(φ, δ) c Np(φ, ε).

Corollary 2.12 generalizes Theorem 7.2 of B. Schweizer and A.
Sklar [9], (the case φ = ε0); and also both Theorem 3.13 of E. Thorp
[13] and Theorem 3.2 of R. Fritsche [6], (the case φ = kε0, 0 < k ^ 1).

The next example shows that the result of Corollary 2.10 is
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best-possible for continuous triangle functions.

EXAMPLE 2.13. Let S be the set of real numbers endowed with
the Euclidean metric d) let ^~\ S x S~>Λ+ be given by Fpq(x) —
εd{p,q)(%)', and let τ = τTm. I t is easily verified that (S, J^, τ) is a
PM space. Let φ(x) = l/2e1/2(x) and note that

CΦ{P) = {Q I d(p, g) £ 1/2}

CΦCφ{p) - {q I d(p, q) £ 1} Cτ{φ,φ){v) = S .

(This last equality follows from τ(φ, φ) = Soo Ξ 0.)

Thus C,{p} <= C,(C,{p}) £ Cr(,,,,{p}.

THEOREM 2.14. Let (S, «^r, τ) be a PM space, and let φ be a
profile function. If τ is continuous and if τ(φ, φ) = φ, then the
closure structure induced by Cφ is pseudo-metrizable. If Cφ{p) = {p}
for every pe S, then it is metrizable.

Proof. For each natural number n let Vn = {(p, q)eS x S\
Fpq(x + X(n)) + X(n) ^ φ(x), for x e [0, l/λ(^))}, where λ(^) is defined
as follows: λ(l) = 1. If x(n) has been defined, then by Theorem 2.8
there is a δn > 0 such that for every peS and all δ < δn q e Np(φ, δ)
implies t h a t Nq(φ, δ) c Np(φ9 X(n)). Define X(n + 1) = Min (<?„, 2~{n+1)).

It then follows that Vn = Vή1 and yΛ+1o Vn+1 a Vn.
This theorem generalizes Theorem 2 of B. Schweizer, A. Sklar,

and E. Thorp [11] (where φ = s0), Theorem 3.14 of E. Thorp [13],
and Theorem 3.2 of R. Fritsche [6] (where φ = kε0, 0 < k £ 1).

THEOREM 2.15. Lei (S, ^ " , τ) &e a PM space, and let φ be a
profile function. If τ is continuous, and if ^KiΦ,Φ) is T19 then Λ^
is T2.

Proof. Let p, q e S, and suppose pφq. Since ^K{φ,Φ) is Tίf there
is an ε > 0 such that q $ NP(τ(φ, φ), ε). By Theorem 2.8 there is a
δ > 0 such that

(2.9) r 6 Np(φ, δ) implies Nr(φ, 8) c Np(τ(φ, φ\ e) .

Suppose r e Np(φ, δ) Π Nq(φ, δ). Since jPgr = Frq, r e ΛΓ?(̂ , δ) implies
q 6 JVr(̂ , δ). Thus by (2.9), q e Np(τ(φ, φ), ε). This is a contradiction.
Thus Np(φ, δ) n Nq(φ, δ) = Π and ^ is T2.

Theorem 2.15 merits comparison with Theorem 7.2 of [10],
Theorem 3.7 of [13], and Theorem 2.2 of [6].

APPENDIX A. Different Topologies for A+.
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In addition to the modified Levy metric ^ defined in (1.3), two
other metrics for A+ are of interest. The first is the usual Levy
metric which is given by

L(F, G) = inf {h I F(x + h) + h ^ G(x) ^ F(x - h) - h, for

every x eR} .

The second is the usual sup norm which is given by

Σ(F, G) - inf {h I F(x) + h ^ G(x) ^ F(x) - h for

every x e R} .

Each of these metrics could have been used to define a neighborhood
structure for a semi-PM space; namely, by setting

NL

p(φ, ε) = {qeS\ Fpq(x + h) + h ^ φ{x) for every x)

and

Np(φf s) = {q e S I Fpί(a;) + Λ ^ ^(x) for every x} .

It is clear that Np(ψ, ε).aN£(φ, ε) aNp(φ, e) for every ε > 0, and that
each inclusion can be strict. Both of these neighborhood structures
will satisfy (nbd 1), (nbd 2), and (nbd 3) and hence induce a closure
space structure on the underlying space. The reason for choosing
the metric J*f is that (z/+, ^) is compact, whereas neither (zί+, L)
nor (J+, Σ) is [7]. Thus, in these spaces, continuity of the triangle
function is not enough to guarantee uniform continuity. Note that
uniform continuity of the triangle function is used in the proof of
Lemma 2.4 and that this lemma plays a crucial role in much of the
subsequent development.

APPENDIX B. Comparison τυίth the Work of E. Thorp and R.
Fritsche.

The neighborhood structure for a semi-PM space given in
Definition 2.1 is different from that given by E. Thorp in [13] and
that given by R. Fritsche in [6]. Since R. Fritsche has shown that
his neighborhood structure is essentially that of E. Thorp, and since
his definition more closely resembles Definition 2.1, we shall only
consider the neighborhood structure given by him. R. Fritsche
defines a (φ; ε, λ)-neighborhood of a point p to be the set

Np(φ; e,x) = {qeS\ Fpq(ε) > φ(ε) - λ} .

The resultant neighborhood structure satisfies (nbd 1) and (nbd 2),
but in general fails to satisfy (nbd 3). A necessary condition for
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(nbd 3), given in Theorem 2.2 of [6], is that Fpq — φ be nondecreas-
ing for every pair p, q e S. In this case we have:

THEOREM B. Let (S, ^") be a semi-PM space, and let φ be a
profile function. If Fpq — φ is nondecreasing for every pair of
points p, q e S, then for every pe S, the neighborhood system <yt^(p)
is equivalent to the (φ) ε, X)-neighborhood system at P.

REMARK. When φ — ε0, the (φ; ε, λ)-neighborhood system is the
(ε, λ)-neighborhood system studied by B. Schweizer and A. Sklar
[9]. Since Fpq — ε0 is always a nondecreasing function, it follows
from Theorem B that the (ε, λ)-neighborhood system is equivalent
to the (ε0, ε)-neighborhood system.

3* Products of semi-PM spaces*

DEFINITION 3.1. Let (S19 J^Γ) and (S29 J^) be semi-PM spaces,
and let σ be a triangle function. The σ-product of (S19 ^ Γ ) and
(S2, ^l) is the pair (Si x S29 ̂ Γ x σ^l) Here Sλ x S2 is the Carte-
sian product of S : and S29 and ^[ x a^l is the mapping from
(SL x S2) x (SL x S2) into zί+ given by:

^Γ x o^($, Q) = F h = σ(Fp*i> F ^ ) >

where p = (plf p2) and q — (ql9 q2) belong to Sλ x S2. (When there
is no ambiguity, we shall denote F^ by Fpq.)

If σ = Πτ (viz. (1.5)), then the σ-product of two semi-PM spaces
is the Γ-product as defined by R.J. Egbert in [3].

DEFINITION 3.2. If (S19 J^) and (S2, ^2) are semi-PM spaces,
then (S19 ^[) is isometric to (S2, J^7) if there is a bijection
M: Si —> S2 such that i ^ = FM{p)M{q) for every p, g e Slβ The mapping
M is called an isometry.

The fact that the σ in Definition 3.1 is a triangle function
ensures that the σ-product of two semi-PM spaces has several
natural properties. We enumerate these in:

THEOREM 3.3. Let (S19 J^) and (S29 ^l) be semi-PM spaces.
Then

( 1 ) (Sj. x S29 ̂ \ x σ ^ 7 ) is a semi-PM. space;
(2 ) (Sλ x S2, ̂ Γ X αŵ Γ) ^ isometric to (S2 x S^ J*7 x α^Γ)

under the natural map M(p19 p2) = (p2, px).
( 3 ) jPor every q2 e S2, the natural map Mq2: S1-^ St x S2 given

by Mg2(p) = (p, q2) maps (Slf Jβ\) isometrically onto the range of
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The associativity of σ is not needed in the proof of Theorem
3.3. We require σ to be associative so that we can unambiguously
extend Definition 3.1 to σ-products of a finite number of semi-PM
spaces.

We next direct our attention to finding necessary conditions for
the ^-product of two PM spaces to be a PM space. We begin with:

DEFINITION 3.4. Let σ and τ be triangle functions. Then:
( i ) σ is stronger than τ (written σ ^ τ), if σ(F, G) ^ τ(F, G)

for all (F, G) e J+ x Δ+.
(ii) σ dominates τ (written σ > τ), if σ(z(F19 GJ, Γ(JF2, G2)) ^

τ(σ(Flf F2), σ(Glf G2)), for all Flf F2, Glf and G2 in J + .
Letting Gλ = F2 — ε0 in (ii) shows that if σ > τ, then <r ̂  τ. The

converse is false.

THEOREM 3.5. Let (Sί9 J^, τ) and (S2, J^, τ) be PM spaces under
the same triangle function τ, and let σ be a triangle function
which dominates τ. Then the σ-product of (S19 ^\) and (S2, ̂ ) is
a PM space under τ.

Proof. In view of Theorem 3.3, we need only establish the
triangle inequality. To this end, let p = (p19 p2), q = (qlf q2), and
r = (rlf r2) be in Sx x S2. Since σ > τ and since both (Slf ^β^, τ) and
(S2, J^, τ) are PM spaces we have,

Fpr = σ(FPirι, FP2T2) ^ σ(τ(Fw FQιrι)9 τ(FP2q2, Fq^)

^ τ(σ{Fw FP2Q2), σ{FqχriJ FQ2V2)) - τ(Fpq, Fqr) .

(If (Xlf dj and (X29 d2) are metric spaces, then in order to define
a well-behaved metric on the Cartesian product of Xx and X2 a two
place function / mapping R+ x R+ —»R+ is required which satisfies
the following properties:

(1) Λα f0) = α,
(2) /(α, 6) - / ( δ , α),
( 3 ) /(α, δ) ^ /(c, δ), whenever α ^ c,
(4) f(a, /(δ, c)) = /(/(α, δ), c),
( 5 ) /(αx + δ1? α2 + δ2) ̂  /(αx, α2) + /(δx, δ2).
Note that condition (5) states that / dominates addition. In

particular if /(α, δ) = (ap + bψp, p ^ 1, then (5) is the familiar
Minkowski Inequality.)

COROLLARY 3.6. Let (Sί9 J^, τ) and (S2, ̂ , τ) be PM spaces.
If σ — πMin, if σ = τ, or if τ = τT and σ = πτ (for some ί-norm T),
then the σ-product of (Su ^\) and (S2, ̂ ) is a PM space under τ.
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Proof. For any triangle function τ, πM i n > τ and τ > r; and
for any ί-norm Γ, 7ΓΓ > τΓ. (This last result is due to R.J. Egbert
[3, Theorem 2].)

It can also be shown that the result of Theorem 3.5 is best-
possible in the sense that if σ and τ are triangle functions and σ
does not dominate r, then there exist PM spaces (Sί9 ̂ \, τ) and
(<S2, J^l, τ) whose (7-product is not a PM space under τ.

We close this section with several results-stated without proof-
concerning the relationship between the neighborhood systems
^rf-^^i and ΛY^ x ^ ^ 2 , where ^ x ^ denotes J*\ x

THEOREM 3.7. Let (Slf J^) and (S2, ̂ l) be semi-PM. spaces and
let φ and ψ be profile functions. Then:

(1) For any triangle function σ <yl/ll,^
lX^2 is finer than

^T^ x ^ / ^ 2 .
(2) If σ is continuous then Λ^1 x ^Ϋ^^Γ1 is finer than

σ{φ,Φ)

( 3) If in addition σ(φ, φ) = φ, then <yt^γ x ̂ V^Γ^ is equivalent
to yr/'^K

4. The probabilistic diameter and the probabilistic Hausdorfϊ
rαetrίc*

DEFINITION 4.1. Let (Fλ;xeΛ) be a family of functions in J+ .
The functions s u p ^ i ^ and infλeΛFλ are defined by:

(1) (sup;>e^ Fχ)(x) = sup^e^ Fλ(x), for each x e R;
(2 ) (infje ^ i^)(«) = liπi^x- infλeA Fλ(t), for each xeR.

It is easily shown that s\ιpχeAFλ is in A+; and inf; e J ^ is in Δ+ by
definition.

DEFINITION 4.2. Let (S, ̂ ) be a semi-PM space, and let A be
a nonempty subset of S. The probabilistic diameter DA of A is
given by DA = mΐp>qeAFp

pq.

THEOREM 4.3. Let (S, ̂ ~) be a sβmi-PM space, and let A and
B be nonempty subsets of S.

(1) If AaB, then DA ^ DB.
(2 ) DA = ε0 if and only if A — {p}, for some p e S.
(3) If there is a triangle function τ such that (S, ̂ " , τ) is a

PM space cmώ i/ i f] 5 ^ Π> then DAUB ^ τ(i5^, D5).

Proof. The proof is similar to the proofs of Theorems 8, 9,
and 10 of [3].
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THEOREM 4.4. Let (S, J^~) be a semi-PM space, let φ be a profile
function, and let Abe a nonempty subset of S. Then (1) DA^DCφ(A).
(2) If there is a continuous triangle function τ such that (S, ̂ , τ)
is a PM space, then

DCφ(A) ^ τ(τ{φ, DA), φ) = τ(τ(φ, φ), DA) .

Proof Since AczCφ(A), (1) follows immediately from Theorem
4.3.

Next, suppose τ is a continuous triangle function such that
(S, J?~, τ) is a PM space, and let 0 < ε < 1. Since τ is continuous,
Lemma 2.4 implies there is a 3 > 0 such that for all F, G, HeJ+

τ(τ(F, G), H; x) ̂  τ(τ(Fδ, G), Hδ; x - e) - ε, for x e Γo, i - - ε) .

Let p, q e CΦ(A). Then Np(φ, δ) n A Φ Π and Nq(φ, d) f] A Φ Π; whence
it follows from Lemma 2.5 that there exist r and s in A such that

Fδ

pr ̂  φ and i^ s ̂  ^ .

From the triangle inequality and the relations Frs ^ DA and
Fqs = ί7,,, it follows that for x 6 [0, 1/ε - ε)

Fpq(x) ^ τ(τ(Fpr, Frs), Fsq; x)

^ τ{τ{Fδ

pr, Frs), Fs

δ

q; x - ε) - ε ,

^ τ(τ(^, 2)^), ^ x - ε) - ε .

Letting ε —• 0 and using the left-continuity of τ(τ(φ, DA), φ) yields

Fpq ^ τ(τ(φ, DA), φ) for any p, q e CΦ(A) .

Consequently,

DCφ(A) ^ τ{τ{φ, DA), φ) = τ(τ(φ, φ), DA) .

Letting φ = ε0, we obtain the following result, which is due to
R.J. Egbert [3],

COROLLARY 4.5. Let (S, ̂ ~, τ) be a PM space. If τ is conti-
nuous, then DA = D

DEFINITION 4.6. Let (S, ̂ ) be a semi-PM space, let A and B
be nonempty subsets of S, and let σ be a triangle function. The
probabilistic Hausdorff distance (mod σ) between A and B, denoted
by FAB, is the distribution function given by

(4.1) Fσ

AB - σ(AB, BA), where
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(4.2) AB(x) = (inf sup Fpq)(x) .
peA qeB

When there is no ambiguity, we shall suppress the reference to σ
and denote FAB by FAB.

If σ = πτ, then FAB is the distance defined by R.J. Egbert [3],
The following are immediate:

THEOREM 4.7. Let (S, *β~) be a semi-VΉί space, and let A and
B be nonempty subsets of S. Then FAA = ε0 and FAB = i*7^.

LEMMA 4.8. Let (S, ̂ Q be a semi-PM. space, let φ be a profile
function, and let A and B be nonempty subsets of S. If AB ^
(snpteRφ(t))e0 = (sup0)εo, then AaCφ{B).

THEOREM 4.9. Let (S, J^) be a semi-VΉί space, let φbe a profile
function, and let A and B be nonempty subsets of S. If FAB ^
(sup0)εo, then

AaCφ(B) and BaCφ(A).

The next result is a restatement of Theorem 16 of [3].

COROLLARY 4.10. Let (S, J^, τ) be a PM space, and let A and
B be nonempty subsets of S. If τ is a continuous triangle func-
tion, then

FAB = ε0 if and only if Cεo(A) = Cεo(B) .

DEFINITION 4.11. Let (S, J*Q be a semi-PM space, let A and B
be nonempty subsets of S, and let φ be a profile function. Then
A is φ-equivalent to B, if

If follows immediately from Theorem 4.7 that ^-equivalence is
a reflexive and symmetric relation. The next theorem will yield
sufficient conditions for this relation to be an equivalence relation.
We begin with:

DEFINITION 4.12. The triangle function τ is snip-continuous if,
for every family of functions (Fλ;xeΛ) in J+ and for every HGΛ+,

( p , , ) p
λeΛ λeΛ

It follows immediately from the left-continuity of T that πT

and ττ are sup-continuous. On the other hand, convolution is not
sup-continuous.
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LEMMA 4.13. Let (S, J ^ , τ) be a PM space, and let A, B, and
C be nonempty subsets of S. If τ is sup-continuous, then AB ^
τ(AC, CB).

Proof. For any peA,qeB, and reC

(4.3) Fpq ^ τ(Fpr, Frq) .

The sup-continuity of τ and (4.3) yield

(4.4) s u p Fpq ^ τ(Fpr, s u p Frq) , f o r peA,reC.
geB geB

Since sup 9 6 5 Frq ^ Ίτdr&c s u p ? e 5 Frq = CB, (4.4) implies

(4.5) s u p F p q ^ τ(Fpr, CB) , f o r peA, reC .
geB

Again, since τ is sup-continuous, (4.5) implies

(4.6) sup Fpq ^ τ(sup Fpr, CB) , for p e A .
geB reC

And hence, (4.6) implies

AB = inf sup Fpq ^ inf τ(sup Fpr, CB) ̂  r(inf sup Fpr, CB)
peA geB peA reC peA reC

= τ(AC, CB) .

THEOREM 4.14. Let (S, ̂ , τ) be a PM space, and let A, B,
and C be nonempty subsets of S. If σ > τ and if τ is sup-continu-
ous, then

Fσ

AB ̂  τ(Fϊc, FSB) .

Proof. Using Lemma 4.13, the commutativity of τ and the
fact that σ > τ, we have:

F2B = σ(AB, BA) ^ σ(τ(AC, CB), τ(BC, CA))

= σ(τ(AC, CB), τ(CA, BC)) ̂  τ(σ(AC, CA), σ(CB, BC))

- τ{Flc, FSB).

COROLLARY 4.15. Let (S, ̂ ~, τ) be a PM space, and let φ be a
profile function. If σ > τ and if τ is sup-continuous, then φ-equi-
valence is an equivalence relation.

THEOREM 4.16. Let (S, ̂ , τ) be a PM space, let φ be a profile
function, and let Sφ = {CΦ(B) \ BaS, B Φ •}• Suppose that σ > τ
and that τ is both sup-continuous and continuous. Then (Sφ, J^~a, τ)
is a PM space.
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Proof. For A, B and C in Sφf by Theorems 4.1 and 4.14, we
have: (a) F°AB = ε0, if A = B; (b) 2 ^ = F*AB\ (c) 2 ^ "^ τ(Fl σ , 2 ^ ) .
Hence, all that remains to be shown is that if FAB = ε0, then
A = B. By Corollary 4.10, FAB — ε0 implies

(4.7) Cεo(A) = Cεo(B) .

Since A,BeSφ, there exist A', JS'ciS such that A = CΦ(A') and
5 = Q(J5'). Consequently GeQCφ(A') = Cεfiφ{B'). By Theorem 2.9 and
Definition 1.4

C,(A') c C.0C,(A') c C r ( iOf#)(A') = CΦ{A');

CΦ{B') c C.0C,(2?') c Cτiεo>φ)(B') = CΦ{B') .

Whence, by (4.8),

A = CΦ{A') = Cεfiφ{A')Cε£φ{B') = CΦ{B') = B .

In the special case when φ — e0, σ — Πτ and τ = τTf this is
Theorem 18 of [3].

We conclude with the observation that under the hypothesis of
Corollary 4.15 the relation

defines an equivalence relation on the points of S. In [8] B. Schweizer
defines a tolerance relation called "indistinguishable mod φ" by

p ~ q(mod φ) *=> Fpg ^ φ .

It is clear that p ~φq implies p ~ g(mod^). However, the con-
verse is false. Example 2.13 shows that if p = 0 and q = 1/4, then
p ~ q(moάφ)9 but Cφ{p} Φ Cφ{q] whence p ~φq is false.
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