THE DUNFORD-PETTIS PROPERTY FOR CERTAIN UNIFORM ALGEBRAS

F. DELBAEN

A Banach space B has the Dunford-Pettis property if $x_n^*(x_n) \to 0$ whenever $x_n \to 0$ weakly and the sequence x_n^* tends to zero weakly in B^* (i.e. $\sigma(B^*, B^{**})$). Suppose now that A is a uniform algebra on a compact space X. If ϕ is a nonzero multiplicative linear functional on A then M_{ϕ} is the set of positive representing measures of ϕ . If A is such that a singular measure which is orthogonal to A must necessarily be zero and if all M_{ϕ} are weakly compact sets then the algebra A as well as its dual have the Dunford-Pettis property.

The idea of the proof is that A^* the dual of A can be decomposed into components for which the results of Chaumat [1] and Cnop-Delbaen [2] can be applied. The fact that an l_1 sum of Dunford-Pettis spaces is also a Dunford-Pettis space then gives the result. In paragraph two some conditions ensuring the weak compactness of M_{ϕ} are given. These conditions are related to those used in the definition of core and enveloping measures (see [6]).

1. Notation and preliminaries. X will be a compact space, $A \subset \mathscr{C}(X)$ a closed subalgebra of the space of continuous complexvalued functions on X. The algebra A is supposed to contain the constants and to separate the points of X. The spectrum M_A is the set of all nonzero multiplicative linear functionals on A. If $\phi \in M_A$ then M_{ϕ} is the set of all positive measures on X representing ϕ , i.e.

$$M_{\phi} = \left\{ \mu \in M(X) \mid \mu \geqq 0 ext{ and } orall f \in A ext{ we have } \phi(f) = \int f d\mu
ight\}$$
 .

As well known M_{ϕ} is a convex set, compact for the topology $\sigma(M(X), \mathscr{C}(X))$. We say that two multiplicative linear forms ϕ and ψ belong to the same Gleason part if $||\phi - \psi|| < 2$ in A^* , the dual of A. It is well known that being in the same Gleason part is an equivalence relation and hence $M_A = \bigcup_{x \in \Pi} \pi$ where Π is the set of all Gleason equivalence classes. For more details and any unexplained notion on uniform algebras we refer to [6].

If E is a Banach space then E has the Dunford-Pettis property if $e_n^*(e_n) \to 0$ whenever $e_n \to 0$ weakly and $e_n^* \to 0$ weakly (i.e. $\sigma(E^*, E^{**})$).

For more details and properties of such spaces see Grothendieck

[4] or [5], where it is also proved that L^1 spaces and $\mathscr{C}(X)$ spaces have the Dunford-Pettis property.

2. Weak compactness of M_{ϕ} . We investigate under what conditions M_{ϕ} is weakly compact. First we remark that if ψ and ϕ are in the same Gleason part then there is an affine isomorphism linking M_{ϕ} and M_{ψ} , see [6, p. 143]. It follows that M_{ϕ} is weakly compact (i.e. $\sigma(M(X), M(X)^*)$) if and only if M_{ψ} is weakly compact. Moreover if m_{ϕ} is dominant in M_{ϕ} and m_{ψ} is dominant in M_{ψ} then m_{ϕ} is absolutely continuous with respect to m_{ψ} . (The existence of a dominant measure in M_{ϕ} is given by [3, p. 307].)

LEMMA. If ϕ is an element of M_A then following are equivalent 1. M_{ϕ} is weakly compact.

2. If u_n is a sequence of continuous functions on X such that $1 \ge u_n \ge 0$ and $u_n \to 0$ pointwise then there is a subsequence n_k and functions $v_k \in A$ such that $\operatorname{Re} v_k \ge u_{n_k}$ and $\phi(v_k) \to 0$.

3. If u_n is a sequence of continuous functions on X such that $1 \ge u_n \ge 0$ and $u_n \to 0$ pointwise then there is a subsequence n_k and functions $g_k \in A$ such that $|g_k| \le e^{-u_{n_k}}$ and $\phi(g_k) \to 1$.

Proof. (1) \Rightarrow (2) If M_{ϕ} is weakly compact and u_n is a sequence as in (2) then $\sup_{\mu \in M_{\phi}} \int u_n d\mu \rightarrow 0$ (see [4]). Hence if ε_n is a sequence of strictly positive numbers tending to zero then $\exists v_n \in A$ such that Re $v_n \geq u_n$ and $\phi(v_n) \leq \sup_{\mu \in M_{\phi}} \int u_n d\mu + \varepsilon_n$ (see [6 p. 82]). Clearly $\phi(v_n) \rightarrow 0$.

(2) \Rightarrow (3) Write $g_k = e^{-v_k}$ and observe that $|g_k| = e^{-\operatorname{Re} v_k} \leq e^{-u_{n_k}}$ and $\phi(g_k) = e^{-\phi(v_k)} \rightarrow 1$.

 $(3) \Rightarrow (1)$ If M_{ϕ} is not weakly compact then following [4] there is a sequence of functions $u_n \in \mathscr{C}(X)$ and a sequence of measures $\mu_n \in M_{\phi}$ as well as $\varepsilon > 0$ such that

(i) $0 \leq u_n \leq 1$ and $u_n \rightarrow 0$ pointwise

(ii) $\int u_n d\mu_n > \varepsilon.$

Let now g_k be as in (3) then

$$|\phi(g_k)| \leq \int |g_k| \, d\mu_{n_k} \leq \int e^{-u_{n_k}} d\mu_{n_k} \leq 1 - rac{e-1}{e} \int u_{n_k} d\mu_{n_k} \leq 1 - rac{e-1}{e} arepsilon$$

and this contradicts $\phi(g_k) \rightarrow 1$.

REMARK. The conditions (2) and (3) are of course related to the conditions of being enveloped and being a core measure. The dif-

ference is that the sequence u_n is supposed to be uniformly bounded.

COROLLARY. If A satisfies one of the following conditions then for all $\phi \in M_A$, M_{ϕ} is weakly compact.

(1) If $1 \ge u_n \ge 0$; $u_n \in \mathscr{C}(X)$ and $u_n \to 0$ pointwise then there is a subsequence n_k and $v_k \in A$ such that v_k are uniformly bounded, Re $v_k \ge u_{n_k}$ and $v_k \to 0$ on X.

(2) If $1 \ge u_n \ge 0$; $u_n \in \mathscr{C}(X)$ and $u_n \to 0$ pointwise then there is a subsequence n_k and $g_k \in A$ such that $|g_k| \le e^{-u_{n_k}}$ and $g_k \to 1$ on X.

3. The D.P. property for some uniform algebras. In the following theorem we say that a measure ν is singular to A if for all ϕ and all $\mu \in M_{\phi}$, the measure ν is singular with respect to μ .

THEOREM. A has the Dunford-Pettis property if (1) for all $\phi \in M_A$, the set M_{ϕ} is weakly compact, (2) if λ is orthogonal to A and λ is singular to A then $\lambda = 0$.

Proof. Of course we only have to prove that A^* has the D.P. property, since it follows from the definition that a Banach space is a Dunford-Pettis space as soon as its dual is a Dunford-Pettis space. We first prove the following lemma.

LEMMA. If $(E_{\beta})_{\beta \in B}$ is a family of Banach spaces all having the D.P. property and if

$$\left(\sum\limits_eta \oplus E_eta
ight)_{l_1} = E = \left\{e = (e_eta)_{eta \, \epsilon \, B} \, | \, e_eta \in E_eta; \sum\limits_eta || \, e_eta || = || \, e \, || < \infty
ight\}$$

then E has the D.P. property.

Proof. $\forall \beta$ let $P_{\beta}: E \rightarrow E_{\beta}$ be the canonical projection.

Let $e_n \in E$ such that $e_n \to 0$ weakly and $||e_n|| \leq 1$; $e_n^* \in E^*$ such that $e_n^* \to 0$ weakly and $||e_n^*|| \leq 1$; $P_\beta e_n = e_{n,\beta}$; $P_\beta^* e_n^* = e_{n,\beta}^*$; $t_{n,\beta} = e_{n,\beta}^*(e_{n,\beta})$.

Only a denumerable part of the numbers $t_{n,\beta}$ can be different from zero so we can take B = N. We first prove that the sum $e_n^*(e_n) = \sum_{\beta} t_{n,\beta}$ converges uniformly in n, i.e.

(*) for all $\varepsilon > 0$ there is N such that $\forall n$ we have $\sum_{\beta > N} |t_{n,\beta}| < \varepsilon$. If this is not the case then we start a well-known procedure. Let $\varepsilon > 0$ be such that (*) does not hold for this ε , take $\delta_n > 0$ such that $\sum_{n=1}^{\infty} \delta_n \leq \varepsilon/4$. Let $n_1 = 1$, $N_0 = 0$, N_1 such that $\sum_{\beta > N_1} ||e_{n_1,\beta}|| \leq \delta_1$.

Since $e_{n,1}, \dots, e_{n,N_1} \to 0$ weakly we can find \bar{n}_2 such that for all $n \ge \bar{n}_2 \ge n_1$ we have $\sum_{\beta=1} |e_{n,j}^*(e_{n,j})| \le \delta_2$. Let now $n_2 \ge \bar{n}_2$ be such

F. DELBAEN

that $\sum_{\beta>N_1} |t_{n_2,\beta}| > \varepsilon$ and $N_2 > N_1$ such that $\sum_{\beta>N_2} ||e_{n_2,\beta}|| \leq \delta_2$. Continuing this procedure we find two strictly increasing sequences (n_k, N_k) such that

 $\begin{array}{ll} (1) & \sum_{\beta > N_k} || \, e_{n_k,\beta} \, || \leq \delta_k \\ (2) & \forall n \geq n_k \text{ the sum } \sum_{\beta=1}^{N_{k-1}} |e_{n,j}^*(e_{n_{k-1},\beta})| \leq \delta_k \\ (3) & \sum_{\beta > N_{k-1}} |t_{n_k,\beta}| > \varepsilon. \end{array}$

Let now

$$e^* = (\gamma_1 e^*_{1,1}; \cdots; \gamma_{N_1} e^*_{1,N_1}; \gamma_{N_1+1} e^*_{n_2,N_1+1}; \cdots; \gamma_{N_2} e^*_{N_2}; \gamma_{N_2+1} e^*_{n_3,N_2+1}; \cdots)$$

where γ_{β} is such that if $N_{k-1} + 1 \leq \beta \leq N_k$ then $\gamma_{\beta} e^*_{n_k,\beta}(e_{n_k,\beta}) = |t_{n_k,\beta}|$. Clearly $e^* \in E^*$ and $||e^*|| \leq 1$. For all $k \geq 2$

$$e^{st}(e_{n_k}) = \sum_{j=1}^{k-1} \sum_{eta = N_{j-1}+1}^{N_j} \gamma_eta e_{n_j,eta}^{st}(e_{n_j,eta}) \ + \sum_{eta = N_{k-1}+1}^{N_k} |t_{n_k,eta}| \ + \sum_{eta > N_k} \gamma_eta e_eta^{st}(e_{n_k,eta}) \ .$$

So

$$egin{aligned} e^*(e_{n_k}) &| \geq -\sum\limits_{j=1}^{k-1} \delta_j + \sum\limits_{eta = N_{k-1}+1}^{N_k} |t_{n_k,eta}| - \delta_k \ & \geq -\sum\limits_{j=1}^k \delta_j + \sum\limits_{eta > N_{k-1}} |t_{n_k,eta}| - 2\delta_k \ & \geq arepsilon - 2\sum\limits_{j=1}^\infty \delta_j \geq arepsilon/2 \;. \end{aligned}$$

But this contradicts $e_{n_k} \to 0$ weakly. This proves that (*) is verified and hence $\lim_{n\to\infty} \sum_{\beta} t_{n,\beta} = \sum_{\beta} \lim t_{n,\beta} = 0$, since each of the E_{β} has the D.P. property.

REMARK. If $E_n = l_2^n$ (i.e. the *n*-dimensional Hilbert space) then $E = (\Sigma \bigoplus E_n)_{l_1}$ has the D.P. property but E^* has not, because as easily seen, the space E^* has a complemented subspace isometric to l_2 , this contradicts D.P. (see [4]).

Proof of the theorem. For each $\pi \in \Pi$ we select $\phi_{\pi} \in \pi$ and $m_{\pi} \in M_{\phi}$ dominant. By [6 p. 144] all m_{π} are mutually singular. Select now probability measures $(m_{\beta})_{\beta \in B}$ such that $\{m_{\pi} \mid \pi \in \Pi\} \cup \{m_{\beta} \mid \beta \in B\}$ is a maximal farmily of mutually singular measures. (This can be done using Zorn's lemma.) An application of the Radon-Nikodym theorem yields:

$$M(X) = \mathscr{C}(X)^* = (\sum\limits_{lpha \in I / \cup B} \bigoplus L^{\operatorname{s}}(m_lpha))_{l_1}$$
 .

32

For each π define N_{π} as the set $\{\pi \in L^{1}(m_{\pi}) \mid \mu \perp A\}$. The abstract F. and M. Riesz theorem [6] and hypothesis 2 give that

$$A^{\scriptscriptstyle \perp} = \left(\sum_{\pi \, \in \, II} \bigoplus N_{\pi}
ight)_{l_1}$$

and hence

$$A^* = \left(\sum_{\pi \in II} \bigoplus L^1(m_\pi)/N_\pi
ight)_{l_1} \oplus \left(\sum_{eta \in B} \bigoplus L^1(m_eta)
ight)_{l_1}$$

In [2] and [1] it is proved that the spaces $L^1(m_{\pi})/N_{\pi}$ have the Dunford-Pettis property. By the preceding lemma and Grothendieck's result that an L^1 space is a Dunford-Pettis space we have that A^* has the D.P. property.

REMARK. (1) If $D = \{z \mid |z| < 1\}$ and A is the so-called discalgebra i.e. $A = \{f \mid f \text{ analytic on } D, \text{ continuous on } \overline{D}\}$ then A satisfies all requirements hence A and A^* have the D.P. property.

(2) If K is a compact set which is finitely connected then by Wilken's theorem R(K) satisfies hypothesis 2 and by [6, p. 145, paragraph 3], R(K) also satisfies hypothesis 1. Consequently R(K) as well as $R(K)^*$ have the Dunford-Pettis property.

REFERENCES

1. Chaumat, Une généralisation d'un théorème de Dunford-Pettis, (preprint) Université Paris XI, Orsay, n° 95, 1974.

2. Cnop-Delbaen, A Dunford-Pettis theorem for $L^1/H^{\infty_{\perp}}$. (to be published) preprint Department of Mathematics, Vrije Universiteit Brussel, Belgium 1975.

3. Dunford-Schwartz, Linear Operators, Part I, Interscience, New York, 1958.

4. Grothendieck, Sur les applications linéalires faiblement compactes sur les espaces du type $\mathscr{C}(K)$, Canad. J. of Math., (1953), 129-173.

5. ____, Espaces Vectoriels Topologique, São Paulo, 1964.

6. Gamelin, Uniform Algebras, Prentice-Hall, Englewood Cliffs, 1969.

Received August 4, 1975 and in revised form November 20, 1975.

VRIJE UNIVERSITEIT BRUSSEL