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EXCEPTIONAL VALUES OF DIFFERENTIAL

POLYNOMIALS

WlLLIBALD DOERINGER

Let / be a meromorphic non-rational function on C and
Qίf]9 Pίf] differential polynomials in /. Assuming that
neither of them vanishes identically, functions of the form
fnQ[f] + P{f]f n€ N, are shown not to have zero as a Picard
or Borel exceptional value for sufficiently large n. Examples
show that the estimates given for n are optimal.

1* Introduction and results* In the present paper we concern
ourselves with the value-distribution of differential polynomials. We
make use or results from value-distribution theory and we use the
common notations m(r, / ) , N(r, / ) , Γ(r, / ) , JV(r, / ) , S(r, /) and so on.
(cf., e.g., [3], [8]).

There has been quite a bit of investigation (cf. [2], [12]-[14]) of
Picard values of certain expressions in a meromorphic function / such
as fnf or fn + / ' . Our article extends some of the previous results,
especially those of W. K. Hay man [4] and L. R. Sons [9]. Let / be
a meromorphic function—in this paper always in the sense of mero-
morphic in the whole plane—and let nQ, nlf , nk be nonnegative
entire numbers. We call

( l ) M[f] = pKf'T1 - (Γk))nk

a monomial in / (cf. L. R. Sons [9]), ΊM' =n0 + nλ + + nk its
degree and ΓM: =n0 + 2nx H h (1 + k)nk its weight. Further, let

ΛΊL[/]» " " > M;[f] denote monomials in / and au , α, meromorphic
functions satisfying T(r, αy) = S(r, / ) , 1 <L j <>/, then

(2) P[f] = aίM1[f]+ . . . +a,M,[f]

is called a differential polynomial in / of degree yP : = maxf=1 yMj

and weight ΓP: — maxf=1 ΓM. with coefficients aά.
Using these definitions we can state the following results:

THEOREM 1. Let f be a nonrational meromorphic function and
let Q[f], P[f] be differential polynomials in f satisfying Q[f](z) =£ 0,
P[f](z) & 0. Then zero is neither a Picard nor a Borel exceptional
value of

Ψ = ΓQlf] + P[f]

for any neN with n ^ 3 + ΓP and in particular
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As an immediate consequence we get

COROLLARY 1. Let fbe a nonrational meromorphic function and

ψ = af
n° - - (/ ( f c ))n*

a differential polynomial in f, a φ. 0. Barring zero, Ψ has no finite
Picard or Borel exceptional values if only n0 >̂ 3 holds. And again

holds for ceC\{0}.

REMARK. L. R. Sons proved similar results in [9] for the case
a = 1 and n0 ^ 2, however under the additional assumptions nk ^ 1
and 2k(n0 + Σ?=o (1 + Ό^) < (2fc + w0 -

Theorem 1 can be sharpened by considering entire functions only.

THEOREM 2. Let f be a transcendental entire function and let
Q[f]> P[f] be differential polynomials in /, both not identically
vanishing. Then

v = f*Q[f] + P[f]

does not assume zero as a Picard or Borel exceptional value for any
neN, n ^ 2 + ΎP; and here also

Γ(r, F)

ftoids /or these n.

REMARK. Assuming / to be entire Corollary 1 holds already for
nQ ^ 2.

We conclude by giving two examples which show that the
estimates given for n are optimal in the sense that they cannot be
improved. First consider a nonconstant solution of the Riccati dif-
ferential equation wτ = —2{w — l)(w + 1) which is a transcendental
meromorphic function satisfying w4 -f- wf Φ 1 (cf., e.g., [10], [11]);
this settles Theorem 1.

Regarding Theorem 2 we choose an entire transcendental solution
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of the linear differential equation w{j) — —2ac(w — c), jeN, where
a and c are nonzero constants. Then we have w{3'] + aw2 Φ a& what
is all we wanted to show.

2 Some lemmas* We prove a few auxiliary results. The fol-
lowing notations help to simplify our presentation. By λ(/) and p(f)
we shall always denote the upper and lower order of growth of a
meromorphic function /; for a differential polynomial Q[f] in / we
write Q'[f] instead of (d/dz)Q[f]. (Note that for an arbitrary monomial
M[f] in /, Mr[f] can always be represented as a differential poly-
nomial in/, each of whose monomials have the same degree as M[f],
Those differential polynomials are often called homogeneous).

Finally we shall say, following W. K. Hayman [4], that a certain
property gP = ^ ( r ) , reDQR, holds "nearly everywhere" (n.e.) in
D, if there is a subset A £ D of finite linear measure such that &*(r)
holds for all reD\A.

LEMMA 1. Let f be a nonconstant meromorphic function. If
Q[f] is a differential polynomial in f with arbitrary meromorphic
coefficients qΰΊ 1 <̂  j <; n then

( i ) m(r, Q[f]) ^ 7Qm(r, f) + Σ?=i m(r, qό) + S(r, f)
and

(ii) N(r, Q[f]) £ ΓqN{r, f) + Σ?-i N(r, qs) + 0(1).

Proof. Starting with Q[f] = Σ?=i ffy^t/l ( c f (2)) we can repre-
sent Q[f] as Q[f] — Σ?=i Q?fmj with mά: = eyMj and with meromorphic
functions qf satisfying m{r, qf) ^ m(r, qό) + S(r, / ) , j — 1, , ^.
This settles (i). Further, in an arbitrary zQeC let Q[f], f, qά and
Mά[f] have poles of order μ, v, μ5 and vά respectively (as usual a
meromorphic function / has poles of order zero in points zeC with
f(z) Φ oo). It follows immediately, that μ <, m a x ^ + μl9 - , vn + μn}
and because of vβ ^ JΓ^. ^ ^ Γρ y, 1 <̂  j ^ w, we have

(3) μ£ΓQ » + ±μs.
3=1

Hence n(r, Q[f]) ^ ΓQn{r, f) + Σ?=i n(r> Qi) a n d therefore (ii) holds.

Now we use Lemma 1 to improve a result of Clunie (cf. [1],
Lemmas 1 and 2).

LEMMA 2. Let f be a nonconstant meromorphic function. And
let Q*[/] and Q[f] denote differential polynomials in f with arbitrary
meromorphic coefficients q?, , q* and qu , qό respectively; fur-
ther, let P be a nonconstant polynomial of degree p. Then from
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P(f)Q*[f] = Q[f]

we can infer the
( i ) ifΊQ^

(

m(r, Q

ϋ) ifΓQ£

N(r, Q*[f\

following:
p, then

*[/])̂ Σm(r,
3=1

\ p we have in

= = 3=1 ' 3

Qf) + Σ m(
3=1

addition

+ Σ N(r, q
3=1

r, q,) + S(r, f)

i) + 0(1) .

Proof. For a proof of the first proposition see Clunie [1]. (ii)
Let nf(r, Q*[f]) denote the number of those poles of Q*[/] in \z\ ^ r
that are also poles of / with the poles of Q*[/] being counted ac-
cording to their order. Set nf(r, Q*[f]) := n(r, Q*[/]) - nf(r, Q*[/])
and define Nf(r, Q*[/]), Nf(r, Q*[f]) correspondingly. We obtain
immediately

( 4) N'(r, Q*[f]) £ Σ N(r, Qf) + 0(1) .
3=1

Now we choose a point £0 e C where Q*[/] and / have poles of
order μ and v respectively; denoting by vly , vό the orders of the
poles of ql9 , ̂  in ^0 and considering (3) we get

P'V + μ ^ ΓQ j ; { }

and ΓQ <^ p yields

Adding (4) this proves (ii).

We conclude by proving a lemma that will enable us to compare
the orders of growth of a differential polynomial in / with those of /.

LEMMA 3. Let TΊ(r), T2(r) be real valued, nonnegative and non-
decreasing functions defined for r > r0 > 0 and satisfying Tt(r) =
0(T2(r)), r—>oo, n.e., then we have

+ +

( i ) lim supr_>0O log 7\(r)/log r <; lim sup,.^ log T2(r)/log r
and

+ +
(ii) lim inf r-oo log Γ^rJ/log r ^ lim inf,._«, log T2(r)/log r.

This implies in particular that for meromorphic functions f and f2

with T(r, f) = O(T(r,fo)), r-^co, n.e., the inequalities λ(/i) ^ λ(/2)
and p{f) ^ p(f2) hold.
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Proof. ( i ) Assume without loss of generality that

log T

For arbitrary ε > 0 there exist R > max {r0, 1}, K > 0 and D Q [R, oo)
such that T2(r) ^ rλ+ε for r ^ R, ϊ\(r) ^ i£Γ2(r) for r e [R, oo)\D and
m : = mes (D) < oo. Here m denotes the Lebesgue-measure of D.
Now for r > R + m and r e ΰ one can find rlf r 2 £ D , R^τx<τ<r2 and
n - n ^ m + 1 such that Tx(r) £ KT2(r2) ^ Z"r2

;+ε ^ Kirjrtf+'r1*' ^
Cr^+ε with C: =K(m + 2);+e, i.e., Γ^r) ̂  Cr;+δ for all r > R + m.
Hence we obtain

lim sup l o 5 Γ l ^ r ^ ^ λ + ε for arbitrary ε > 0
r-oo log r

We conclude that (i) holds.
(ii) Assume the contrary and carry on as above.

3* The proofs of Theorems 1 and 2* With the assumptions
of Theorem 1 let

v - PQif] + P[f] -

By means of Lemmas 1 and 2 we see that Ψ connot be constant
and setting v = Ψ'/Ψ we get

(5) Γ-Ή = vP[f] - P'[f]

where

( 6) H = nf'Q[f] + f<y\f] - vfQ[f] .

Now Lemmas 1 and 2 show that H φ 0. Otherwise Ψ'jΨ =
P'[/]/P[/], i.e. y - i^P[/] for a suitable ϋΓeC leading to fnQ[f] +
(1 — K)P[f] Ξ 0. However, since ΓP <. n — 3 by assumption this
implies Γ(r, Q[/]) = S(r, /) by use of Lemma 2 and therefore
T(r, fn) ^ Γ(r, P[/]) + S(r, /) since Q[f] Ξ£ 0, again by assumption.
Now Lemma 1 leads to nT(r, f) ^ ΓPT(r, f) + S(r, f) which is im-
possible.

Further we infer from S(r, Ψ) ̂  S(r, f)

( 7) vP[f] - P'[/] - Γ[/] with τΓ ̂  TP

where all coefficients t of the differential polynomial T[f] satisfy
m{r, t) = S(r, / ) .

Therefore we can invoke Lemma 2 and (5) leads to

(8) m(r, JT) = S(r,/) .
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It remains to be shown

(9) N(r, H) ^ N(T, -L) + S{r, f) .

First choose zoeC such that H(z0) = oo.
If f(z0) — oo with order v we get

μ ^ Γp v + m a x K - ,vn} + 1 - (n - l) v ^

where j ^ , , vn and μ denote the orders of the poles of the coeffi-
cients plf , pn of P[f] and i ί in z0 respectively (remember that
n ^ 3 + ΓP by assumption).

Using the notations of Lemma 2 we can write this as

(10) Nf(r, H)£± N(r, Pi) + S(r, f) - S(r, f) .
i=i

Further, let ql9 , ĝ  be the coefficients of Q. Then we can conclude

N'(r, H) ^ 2 Σ ΛΓ(r, gy) + ^ ( r , v) + S(r, /)

and because of

^ ( r , v) ^ Λr(r, i ) + Σ Mr, 9y) + Σ N(r, Pj) + S(r, f)

we finally arrive at

(11) N'(r, H) £ N(T, 1 )

Now (10) and (11) together prove that (9) is valid.
Noting that H & 0 one infers from (3), (8) and (9) using

Γ(r, /- 1 ) ^ Γ(r, v

and

( J ) S(r, f)

the inequality

Γ(rf p-1) £ ΓPT(rt f) + N(r, f) + 2Jv(r, -1) + S(r, /) .

Here use was made of Lemma l(i). Keeping in mind however that

ΓP <; n — 3 we get

(12) Γ(rf /) - θ(iv(r, i ) ) , r > - , n .e.

The rest is easy.
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First one clearly sees that the assumption N(r, 1JΨ) = S(r, f)
leads to a contradiction, hence zero cannot be a Picard exceptional
value of Ψ and we have

Applying Lemma 3 to equation (12) we get

log r

and observing λ ^ X(Ψ) <, λ(/) we see, that zero cannot be a Borel
exceptional value of Ψ either. This completes the proof of Theorem 1.

REMARK. Using (12) and Lemma 3 we obtain λ(/) = X(W) and
p(f) — pΦ) under the stated assumptions.

The proof of Theorem 2 is now easily accomplished. Assume
N(r, /) = S(r, f) then due to

Γ(r, P[f]) ̂ (n- 2)Γ(r, /) + S(r, /) and N(r, Q[f]) = S(r, /)

(cf. Lemmas 1 and 2, (5) and (6)) one gets just as in the proof of
Theorem 1

(13) Ψ^c, H^O, T(r, H) £ N(r, ±?) + S(rf f)

where analogous notation is used. And from

we infer that

(n - l)Γ(r, f)£(n- 2)Γ(r, /) + 2N(rf^j + S(r, f)

and therefore

T(r, f) = θ(N(r,ψj) , r > oo , n . e . ,

holds again.
The statements of Theorem 2 are now obvious.

REMARK. AS above, Ψ and / have again the same upper and
lower orders of growth.
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