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CHARACTERISTIC CLASSES FOR
SPHERICAL FIBRATIONS WITH
FIBRE-PRESERVING FREE GROUP ACTIONS

BENJAMIN M. MANN AND EDWARD Y. MILLER

Let G(H) be the monoid of H equivariant self maps of S(nV"), the
unit sphere of n copies of a finite dimension orthogonal representation
of a finite group H, stabilized over » in an appropriate way. Let SG(H)
be the submonid of G(H) consisting of all degree 1 maps. If H, is a
subgroup of H there is a natural forgetful map SG(H) — SG(H,) and if
Z is the center of H there is a natural action map BZ X SG(H) —
SG(H) induced by the natural action of Z on H. The main results of this
paper are the calculations of the Hopf algebra structures of
H . (SG(Z/p"),1/p) and H (BSG(Z/p"),Z/p) for all n and all primes
D, the calculations in homology of forgetful maps induced by the natural
inclusions Z/p"~' —> Z/p" and, for H = Z/2, the calculation of the
action map H (RP*,Z/2) ® H_(BSG(Z/2),1Z/2) -
H_(BSG(Z/2),1/2).

Introduction. In this paper we study oriented spherical fibrations
modeled on an orthogonal representation V of a finite group H, a theory
first studied by Segal [25], and Becker and Schultz [2]. More precisely we
consider fibrations with a fibre-preserving action of H on the total space
such that the fibre is H equivariantly homotopy equivalent to the unit
sphere S(V') of V. We stabilize these fibrations by forming the fibrewise
join with the trivial S(¥7') bundle. As we have specific geometric applica-
tions in mind, we concentrate on the case where S(V') is H-free.

Well known results of Barrett, Gugenheim, and Moore [1], May [15],
Stasheff [29], and Waner [35], reduce this question to the study of the
homotopy-type of the classifying space of the submonoid SG(H) of
degree 1 maps in the space

G(H) = lg)nMapH(S(nV), S(nV))
of stable equivariant self-maps of S(nV’). This is the model studied by
Becker and Schultz [2]. They showed for any compact Lie group H, that
G(H) is homotopy equivalent to Q( BH®), where Q( X) is the union over
n of Q"="X, and BH® is the Thom space of the vector bundle { over BH
associated to the adjoint representation of H on its Lie algebra. Notice
that if H is finite then { = 0, and BH® = BH™" , the disjoint union of BH

327



328 BENJAMIN M. MANN AND EDWARD Y. MILLER

with a distinguished base point. Becker and Schultz also show that
SG(H), the degree 1 component of G(H), is, in fact, an infinite loop
space under the composition product.

Of course when H is the trivial group one obtains the classically
important space G which has been the cornerstone for much important
work in the study of smooth, piecewise linear and topological manifolds.
Milgram [18], computed the Hopf algebra structure, under composition
product, of H,(SG,Z/p) for all primes p. The Hopf algebra structure of
H,(BSG,Z/p) was obtained by Madsen [11], for the prime 2 and
independently by May [6], and Tsuchiya [33], for odd primes. These
computations were all obtained by relating the composition product in SG
to the loop sum and composition product in Q(S°). Q(S°) was, in turn,
approximated by finite models where the loop sum and composition
product were interpreted directly in terms of homomorphisms of the
symmetric groups.

Additional structure is present in the equivariant case as the classify-
ing space, BC, of the center C of H acts naturally on both SG(H) and
BSG(H). In fact this action, when H = Z /2, provided the initial motiva-
tion for this paper as well as our joint work with Haynes Miller [12], and
[13]. More precisely we show that when H = Z /2 this action is geometri-
cally represented by the “tensoring of a real line bundle with a Z /2-equi-
variant spherical fibration.” This information is used in [14], to investigate
the question of which unoriented PL cobordism classes admit mapping
tori and projective bundle representatives.

Further additional structure comes from group inclusions H, C H,
which induce transfer maps t: SG(H,) - SG(H,) and Bt: BSG(H,) -
BSG(H,) which are infinite loop maps.

The main results of this paper, which are stated in Chapter I, sections
two through four, are the determination of the Hopf algebras, with re-
spect to the composition product, of H,(SG(Z/p"),Z/p) and
H, (BSG(Z/p"),Z/p) for all primes p, the determination of the action
maps H,(BZ/2,Z2/2) ® H(SG(Z/2),Z/2) - H,(SG(Z/2),Z/2) and
H.(BZ/2,Z/2)® H,(BSG(Z/2),Z/2) - H,(BSG(Z/2),Z/2) and the
determination of the transfer maps in homology associated to the inclu-
sions of 1 C Z/p"~' C Z/p". We remark that in a closely related paper
with Haynes Miller [13], we computed H,(SG(S'),Z/p) and
H,(BSG(S'"),Z/p) as well as the transfer maps associated to the inclu-
sions Z/p" C S', and obtained results quite similar in spirit to those
obtained here.
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Our study of G(H) began because we were interested in computing
characteristic classes for certain natural PL constructions. Hence before
explaining how we prove the results of this paper we briefly state, without
proof, some relevant geometric facts that led us to study G(H). The
construction of geometric representatives for generators for PL bordism
(see [14]) should (but does not at present) procede by means of projective
bundles as it does in the smooth category. Moreover, finite group actions
on PL manifolds should have the same computational characteristic class
underpinnings that smooth actions do. In the semi-free setting the rele-
vant bundle classifying spaces may be described as follows.

First there exist equivariant classifying spaces for stable piecewise
linear and topological block bundles which admit block preserving H
actions which are free off the zero section. Further there are natural
inclusions BSO — BSPL(H) - BSTOP(H) - BSG(H) with the evident
fibres G/PL(H), G/TOP(H) and so on. Secondly there are natural
action maps BC X BSPL(H) » BSPL(H) and BC X BSTOP(H) -
BSTOP(H) obtained by twisting by the center which are compatible with
the natural inclusions mentioned above. For example when H = C =
Z/2(S") the action map on the BSO(BU) level classifies tensor product
with a real (complex) line bundle. Thirdly there are unstable versions of
points one and two.

It is evident that the results of this paper play the same role in the
equivariant category as the results of [18], [11], [6] and [33] on H,(G) and
H (BG) played in the fundamental calculations of Brumfiel, Madsen, and
Milgram (5], of H,(BPL) and PL cobordism. In future papers we intend
to obtain calculational control of BSPL(H), BSTOP(H), their associated
action maps and investigate the geometric consequences of these calcula-
tions.

To prove our results we follow the same general procedure used in the
classical, nonequivariant, case. In Chapters II, III, and IV we prove the
theorems necessary to reduce all computations of homology groups,
Pontrjagin products, homology operations, action maps and transfer maps
for SG(H) and BSG(H) to computations in certain finite models. Before
explaining this reduction, we mention that in our companion paper with
Haynes Miller [12], we carry out the computations in the correct finite
models which yield the results stated in Chapter 1. The computations are
described in Chapter V.
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The methods we use apply the E_-ring space machinery of May [16],
and [17]. We take this opportunity to point out that current work of
Hauschild, May, and Waner [9], on equivariant infinite loop space theory
gives the general E_-ring space theory for based equivariant spaces. Their
machinery is in a setting of much greater generality than the free and
semi-free cases we consider here. We do give a complete description of the
machinery necessary to make all our required homological calculations.
This is done not only for the convenience of the reader but also in order
to identify the free model and to describe the action of the center which
has important geometrical consequences (see Chapter IV and [14]).

To explain the reduction of our problem to finite models, we begin by
considering a space studied by Segal [25], [27]. Segal examined

F(H) = lilr)lMapH(t(mVGB R"), t(mV ® R"))

m,n

the space of based equivariant self-maps of the one point compactification
t(mV © R") of mV @ R" stabilized by forming the limit over equivariant
inclusions of orthogonal representations. Inclusion and radical extension
gives a map from the Becker-Schultz space to the Segal space p: G(H) -
F(H). Unlike the classical case (H = id), in general G(H) does not fill
out a component of F(H). Nonetheless, p is an infinite loop map, with
respect to the composition product, and in Chapter III we express G(H)
as a factor of F(H).

Segal also considered the semi-free Burnside space of H, SA(H), a
group completion of the monoid structure induced by disjoint union on
the classifying space of a small category, S&(H), equivalent to the
category of finite H sets and their equivariant automorphisms. In fact
Segal constructed a natural configuration map ¢: BS®(H) — F(H) and
thereby obtained the decomposition F(H) =~ Q(S°) X Q(BH™) as spaces.

We next require a result of Hauschild, May and Waner [9], which
using another model for BS@(H), K”, considers the E,_ -ring compatibil-
ity of the Segal decomposition. More precisely, in Chapter II we consider
the E_ operad pair (¥ ”, £¥) discovered by Steiner [30], and show it acts
on K# and F(H) so as to make both space E_-ring spaces and ¢ an
E_-ring map. Independently Segal [27], and Hauschild [8], have shown ¢
is a group completion. The £ structure on F(H) and G(H) correspond
to the composition product.
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Thus to obtain the desired results concerning SG(H ), we need only
compute the £ product structure on the correct factor of K”. We isolate
this factor in Chapter III and the Appendix.

In Chapter IV we define the center action map for all finite groups H.
We then restrict our attention to Z/2 where we prove the homological
action map is the same as the geometric twist map of [14] and §4.3.

Finally we note that there are more general versions of based equi-
variant function spaces, where the H action is not assumed to be semi-free,
and that many of our results, especially 2.1, 2.2, and 4.1, hold for these
more general spaces with no essential change in the proofs. In particular,
the center action map is well-defined for all these spaces and homologi-
cally described in [12].

We would like to thank Jim Becker, Peter May, Jim Milgram,
Reinhard Schultz, Graeme Segal, Bob Thomason, and, most importantly,
our coworker Haynes Miller, for helpful correspondence, discussions, and
comments during the preparation of this paper.

CHAPTER |

1.1. In this section we define the Becker-Schultz and Segal equi-
variant function spaces, related transfer maps and the Z/2 and S' equi-
variant J homomorphisms which are our fundamental objects of interest.

Let H be a finite group and let V' be a fixed even dimensional real
representation of H such that H acts freely on V' — {0}. Further, suppose
V has an H invariant metric. Let R be the trivial 1-dimensional real
representation of H.

DeFINITION 1.1.1. G(H) = lii)nn Map,[S(nV), S(nV)], is the space of
H-equivariant self-maps of the unit sphere S(nV') of nV stabilized.

DErFINITION 1.1.2. F(H) = lil)nm’n[t(mVﬂ9 R"), t(mV ® R")] is the
space of H-equivariant pointed self-maps of the one point compactifica-
tion t(mV @ R") of (mV @ R") stabilized.

REMARKS.
1. S(nV) is H-free.
2. To form the limits above one uses the suspension maps

og(ny, ny): MaPH(S(”lV)a S(”IV)) - MaPH(S(”zV)» S(n,V))
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and
op(my, n,, my, n,): Mapg(t(m, ® R"), t(m,V ® R™))
— Map,(t(m,V ® R"), t(m,V & R"))
defined by the formula

og(ny, ny)f=f A id(nz—nl)V’
op(my, ny,my, ) f=f A id(mz—m,)VGB(n2~n,)R
where we use the H-equivariant homeomorphisms and identifications
S(nV)NAS((ny,—n,)V) =8(ny)
and
(mV® R At((my, — m)VOR>™) =t(m,V & R")

which follows as V has an H invariant metric.

G(H) and F(H) were studied by Becker and Schultz [2], and Segal
[25], respectively. Composition of maps gives each space an infinite loop
space structure and the natural map

(1.1.3) p: G(H) - F(H)

induced by the inclusion and radial extension from S(mV’) to t((mV @ R")
is an infinite loop space map with respect to the composition product (see
2.2.7 and 2.3.1).

Let H, = H, be an inclusion of a subgroup. Representations of H,
restrict to give representations of H, and any H, equivariant map f:
S(nVy,) = S(nVy) or f: t(mVy, ®R") - t(mVy, ®R") is trivially H,
equivalent. Thus we obtain the canonical “forgetful maps”

t: G(H,) - G(H,),

(1.14) - F(Hy) - F(H,)

which are also infinite loop space maps with respect to the composition
product.

We note that Segal and Becker and Schultz showed F(H) and G(H)
are homotopy equivalent to Q(S°) X Q(BH™") and Q(BH™") respectively
and furthermore, they identified the forgetful maps with the associated
transfer maps. The following commutative diagrams summarize the situa-
tion.
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G(H,) - Q(BH])
(1.1.5) | forget Lt
G(H) > Q(BH")
and
F(H,) > 0S°xQ(BH])
(1.16) L forget Lt
F(H) > 0S°XQ(BH;).

The precise relation between 1.1.5 and 1.1.6 is given in Chapter III.

We are primarily interested in the +1 component of G(H) which we
call SG(H) and are primarily interested in the case where H is a cyclic
group of prime power order. Of course, SG(id) is the classical space SG
studied by many people. In the classical case the J homomorphism J:
SO — SG played a pivotal role at the prime 2. Since a linear orthogonal
map commutes with the antipodal action x = —x on the unit sphere the J
homomorphism lifts to a map

. SG(Z,2)

Jz,2  forget

J
SO - SG

(1.1.7)

which is compatible with the forgetful map. We shall see that J, ,, can not
lift to a Z /4 equivariant J homomorphism for homological grounds in the
next section.

REMARK. In this paper we restrict our attention to finite groups
whereas Becker and Schultz have defined G(H) for all compact Lie
groups H. For H = S' there is a complex J homomorphism Jgi: U —
SG(S") compatible with the following diagrams:

Jst
U - SG(SY
\
Il SG(Z,/2")
(1.1.8) !
Jz,2
so % $G(zZ,2)
NS \:

SG
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and, for p odd
A
- SG(SY
J
(1.1.9) y SG(Z/p")
)
J
SO - SG

See [13] for an analysis of Jg and its compatibility with 1.1.8 and
1.1.9.

1.2. The next three sections state the main results of this paper. We
postpone all proofs of theorems in these sections to Chapter V. We begin
with the characteristic classes for spherical fibrations with fibre-preserving
free Z/p" actions. The reader familiar with the classical results of Mil-
gram [18], May [6], Tsuchiya [33], Madsen [11], and Brumfiel, Madsen,
and Milgram [5], will note the extreme similarity with our equivariant
results. We assume the reader is familiar with the definitions, structure,
and properties of the Dyer-Lashof algebra R (for details, see [6]). To fix
our notation, we recall:

(a) H(BZ/2,Z/2) = Ple,|r > 0];

(b) H(BZ/2",1/2) = Ele,,,,|r =0] ® P[e,,|r > 0] forn > 1;

(c) H(BZ/p",Z/p) = Ele,,.,|r=0]® P[e,,|r > 0] for p odd and
all n > 0; and

THEOREM 1.2.1 [7]. As a Hopf algebra under the loop product
H.(Qy(BZ/p"" ), Z/p) = A(x;,)

where A(x, ) is the free commutative algebra on X; , = Q'(e,) * (x( eo))l’m
where Q'(e,) is admissible of positive excess.

)

Here * is the loop sum and x: Q(BZ/p" ) —» Q(BZ/p"") is the
canonical anti-automorphism.

Recall, 1.1.5, that Becker and Schultz showed Q(BZ/p”"" ) and
G(Z/p™) are homotopy equivalent. In Chapter III we prove that SG(Z/p")
may be identified as an infinite loop space under composition product
with the factor [1] X QO(BZ/p"+) = 0,(S%) X QO(BZ/p"+) in the Segal
model for SF(Z/p").

DEFINITION 1.2.2. X; , = [1] * X, .
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Recall

THEOREM 1.2.3. As a Hopf algebra under the composition product
H,(S0,1/2) = E[e,|r > 0] where

(a) dime, = r;

(b) Y(e,) = 2,1 =, € ® e (Y is the coalgebra map).

Recall the Z/2 equivariant J homomorphism, Jz ,,, 1.1.7, maps SO
into SG(Z/2).

THEOREM 1.2.4.

(@) Jz,5+: H(SO,Z/2) - H(SG(Z/2),Z/2) is an injection of Hopf
algebras.

(b) As a Hopf algebra under the composition product

H,(SG(Z/2),2,2)
= H,(50,2/2) ® P[J, ,(e,) * Iy 5(e,) x [~ 1], X, ]

where (I, a) is an admissible sequence of positive length and positive excess.
The co-algebra structure on the polynomial subalgebra is induced by the
Dyer-Lashof algebra.

It is possible to explicitly determine J,, ,(e,) in H(SG(Z/2),Z/2).

THEOREM 12.5 [13]. J5(e,) = (e, (eg % [~ 1)) * ({1] * x(eo)) =
S14jmr x(€)) * QU(eo) * [11 % x(ep).

For later computations it is convenient to change to a basis of
H,(SG(Z/2),Z/2) that is more natural with respect to the Z /2 J-homo-
morphism. More precisely, letting

X, = 01Uz a(es)) * (x(eo)) * [11,

we have

THEOREM 1.2.6. As a Hopf algebra under the composition product
H,(SG(Z/2),2,2)

= H,(50,2/2) ® P[J, 5(e,) * Iy o(e,) « [ 11, X, ]
where (1, a) is an admissible sequence of positive length and positive excess.

We now consider SG(Z/2") for n > 1.
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Consider the composition
USSG(S) 5 SG(Z/2).
By results of [13), if @, € H,,, (U,Z/2) is the standard generator, then

(2,0 Js‘)*ar = Zezm * X€yr—s) * (1]

N

+ 2Q2t+1(62t) * (X(er—lt))*z * [1]

DEFINITION 1.2.7. For n > 1 let
J(e2,1) = (1,0 Js1)sa,
and
&5, = ey, * [1] * x(ep).

The following theorem shows there is no Z /2" equivariant J homo-
morphism for n > 1.

THEOREM 1.2.9. As a Hopf algebra under the composition product
H.(SG(Z/2"),Z2/2) = H,(U,Z/2) ® P(e,,)

®P[(Jn(ezr+|) * Jn(e2r+l) * [—1]), ‘X—Ila]

Here n>1 and (I, a) is an admissible sequence of positive length and
positive excess.

Again, the coalgebra structure is induced from the Dyer-Lashof
algebra.

THEOREM 1.2.10. Let p be an odd prime. As a Hopf algebra under the
composition product

H,(SG(Z/p"),Z/p) = H,(Qo(BZ/p""),Z/p).

That is, the composition and loop Hopf algebra structures are abstractly
isomorphic.

As in the classical case there does not exist a map inducing the
isomorphism in 1.2.10.
We now turn to the classifying space level. First let p = 2.
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DEerFINITION 1.2.11. B(Z/2") = P[s( )—(-_,, )] is the primitively generated
Hopf algebra on s( )?,va), where degree s( X, ,) = degree )-(-,‘a + 1, (1, a) is
an admissible sequence with e(/, a) =2 if /(1, &) = 2 and

(a)forn=1l,e(l,x) = 1if I(I,a) = 1;

(b) for n>1, e(l,2a+ 1) =1 if [([,2a+ 1)=1, e(l,2a) =2 if
(2a) = 1;

(c) for n > 1 the classes )—(—4,’2“ = e,, * x(ey) * 1 are in B(Z/2").

THEOREM 1.2.12. As a Hopf algebra
H,(BSG(Z/2),1Z/2) = H,(BSO,Z/2)

®E[S(JZ/2(er) * JZ/Z(er) * [“1])] ® B(Z/Z).

THEOREM 1.2.13. Let n > 1, then as a Hopf algebra
H,(BSG(Z/2"),7/2)
= H,(BU,2/2) ® E[s(Jy)(es,11) * Iz 2(€5,41) * [~ 1])]
®B(Z/2").
Now let p be odd.

THEOREM 1.2.14. For p odd and all n = 1
H,(BSG(Z/p"),Z/p) = H,(BSO,Z/p) ® S

as Hopf algebras where S is a primitively generated free commutative
algebra.

1.3. In this section we give the determinations of the forgetful maps
t: SG(H,) - SG(H,) for the spaces in the previous section. Segal and
Becker and Schultz have identified the forgetful map up to homotopy with
the transfer map ¢: Q(BHS ) —» Q(BH," ) which is an infinite loop map
with respect to the loop sum structure. As the forgetful map is naturally
an infinite loop space with respect to the composition product structure, it
behaves well in homology with respect to both products and their associ-
ated Dyer-Lashof operations. Thus it suffices to determine ¢: SG(H,) —
SG(H,) on the cells of BH, .

THEOREM 1.3.1. The transfers
1(2",2"Y): H,(SG(Z/2"),2/2) > H,(SG(Z/2""),Z/2)

are completely determined by the following formulae.
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(@) 12, e, = Q'[1]; |
(b) 1(4,2)ey; = Q'e;, 1(4,2) ey, = Tjg g1 * x5
(c) forn>2,

t(zna 2n-1)e4i = ineZi’

2i
-1 — 2i+1
1(2",2" _)e4i+1 = Q¥ e, + X €2 * €hi2j+1>
j=0
1(2",2" Neyy, =0,
2i
_I R
127,27 Negys = X € * €4i—2j+3-
j=0

COROLLARY 1.3.2. The transfers

1(2",2""): H,(SG(Z/2"),Z/2) - H,(SG(Z/2"""),2,2)
are not surjective for n > 1.

Corollary 1.3.2 gives another proof that the classical J homomor-
phism may not be lifted to SG(Z/2") for n > 1.

Theorem 1.3.1 is sufficient to explicitly calculate all transfers induced
by the inclusions Z /2™ — Z /2" for all m < n. We state one explicit result.

THEOREM 1.3.3. The transfers

1(2",1): H,(SG(Z/2"),Z/2) > H,(SG,Z/2)

are completely determined by the following formulae.
(a) 12, e, = Q¥(1); |
(b) 1(4, Dey, = Q') = (Q'()*, B
(4, 1)eyy = Q101 + 2 Q211 (1) » QX1

(c) forn>2,

12", 1) (epm1.0) = (@M(1)**",

12", 1)(e;n) =0 if 2"t N;

12", 1)(epys1) = E(Qj'(l))*z"‘I * (Qh(l))*z"~3 -k (Q4(1))*2

* [Q2k+l(1) * QZ!(I) + Qk+t+le+t(1)]
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where the sum runs over all j,,. . . j,, k, t so that
n—2
(1) 22 =2d,
r=1
n—2
(2) k,t=0; t=d— E 2" — k.

r=1

One obtains analogous results for odd primes.

THEOREM 1.3.4. The transfers
t(p", p"'): H(SG(Z/p"),Z/p) - H,(SG(Z/p"" "), Z/p)

for p an odd prime are completely determined by the following formulae.
(@) t(p, D(ey,—1)) = (—1D°Q(D),
1 p, D(eysp—n—1) = (—1)BO*(1),
t(p, 1)(e;) = 0 otherwise;
(b) forn > 1,

t(Pn» pn‘l)(ep(Zm)) = 0*(e,,,) = (€3,,)*7,

t(Pn, Pnﬁl)("p(2m+2¢1+n)

=Ya2m, +2d+ 1, mz,...,mp)eZ,anM+1 ¥y, ¥ T K ey
where
Ho=sd<(p—1/2.
(ii) The sum runs over all nonnegative m,...,m, such that 2f_ m; =
m.

(iit) The coefficient a( j,...,j,) is the number, taken mod p, of permu-

tations o of 1,2,....p such that (j, jrs---:J,) = (Jotys Jo@+ -+ Jo(p))-
And finally

t(p", p" ")(e,) =0 otherwise.

THEOREM 1.3.5. The transfers
t(p",1): HSG(Z/p"),Z/p) ~ H.(SG,Z/p)

for p an odd prime are completely determined by the following formulae.
(@) 1(p, Deyy -y = (—1)°Q°(1),
t(p’ 1)e2s(p—l)—l = (— I)SBQS(I)a

t(p, 1)e, = O otherwise;
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(b) 1P, Dlez5,-1),) = (= D'Q*Q(1) = (= D(Q*(1)*7,
H(p*, 1)ean) = 0if p(p — DM,
H(p*, Deyy—) =0ifp — 14N,

t(Pza 1)(e2d(p—l)—l)
= (_l)dza(" §y5-- "sp)BQSI(]') * Qsz(l) * oo ok Qs”(l)

where the sum runs over all nonnegative s,,...,s, such that Zf_,s, = d and
a(-, 8y,...,8,) IS defined as in 1.3.4;
(c) forn>12,

t(p”, l)ezs(p—np"—‘ = (—I)S(Qs(l))*p”_l,
1(p". ey =0 if(p— 1)p" "t M,
t(p", Deyyy =0 if (p— 1N,
t(p", l)eZd(p—I)—l
= (=1) 2 (coeff) BQ*r11(1) » Qo12(1) » -+ % @r2(1)
c(Qr(1) 5 - x Qraa()
Ce (1) 5 e @),

where the sum runs over s,_, , and all s, ,, 1 =a=n—1,2=<b=p such
that 2"Z1[p 'SP, s, .. ) =d—s, ., and the coefficient, coeff, is the
product 1" af -, Sp—c2se 2 Su—c,p)-

1.4. In this section we examine the homological implications of the
geometric fact that a real line bundle may be tensored with a Z/2
equivariant spherical fibration. Thus we let H = Z /2 and concentrate our
attention on G(Z/2) and BG(Z/2). In fact the original motivation for this
paper was to obtain Theorem 1.4.8 which is used in [14] to study mapping
tori and projective bundle constructions in unoriented PL cobordism.

We now consider G(Z/2) .., the =1 component of G(Z/2) consisting
of stable Z/2 equivariant V, , spherical homotopy equivalences. As
mentioned in the introduction, [1], [15], and [34] imply BG(Z/2).,
classifies stable virtue spherical fibrations with free fibre-preserving in-
volutions ( BSG(Z/2) classifies the oriented theory).

Now given a real line bundle L over M and a spherical fibration over
M with free involution, (¢, ¢), one naturally obtains a new spherical
fibration L ®, § over M which also has an involution induced by ¢.
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DEFINITION 1.4.1. L ®, § is the space M X z,/2& where M is the unique
double cover of M associated to L. Denote by 7 the involution ¢ induces
on L ®,E.

Hence by considering virtual bundles L ®,(§ — N) = L ®,§ — L®N
(here N = dim £), we obtain a map

(1.42) Yo: RP® X BG(Z/2)., » BG(Z/2).,.

Of course if £ is a vector bundle with the standard involution, we
recover the standard tensor product so iy covers the standard smooth
map; that is, the following diagram commutes.

Ys: RP® X BG(Z/2)., - BG(Z/2).,
(1.4.3) 11d X Bz, T Blz)
¥o: RP® X BO - BO

For ¢ of virtual dimension zero, y; and i, map RP> X base point to
the base point. Thus we may loop the map in 1.4.3 to obtain

RP* X Q(RP™™") - Q(RP*")
J J
Qy.: RP* X QBG(Z/2)., - QBG(Z/2).,
(1.4.4) 1id X Jz 5 (A
Qy,: RP™® X QBO > QBO
J J
RP*® X SO - SO

Let us fix the following notation.

(1) H,(S0,Z/2) = E[x,|r > 0] where x, is represented by the image
of RP" =» SO given by sending a line / in R” to reflection perpendicular to
[ times a fixed rotation.

(2) H(BO,1/2) = Pz |s > 0] where z_ is represented by the image
of RP’® = RP* = BO where the inclusion RP* = BO classifies the vir-
tual non-trivial line bundle over RP*,

(3) Let y, € H,(BO,Z/2) be the class represented by the image of
S' ARP% —» S'" A O, - BO where the first inclusion is given by S' A x,
and the second map is the adjoint to 0 ~ QBO.

(4) Let e, represent the generator of H(RP*,Z/2).
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Of course, ¢, is approximated by the maps RP*® X BO(N) - BO
which classify L ® (Ey — N). The following theorems are proved in
Chapter V.

THEOREM 1.4.5.

(@) ¢, (e, ®2) =2, ()20, X(2,);

(b) Yo, (e, ® ) = (") Vsiss

©y, = Zu—qi,..iyNW)z, -2, - - -+ -z, where N(w) is the coefficient in
the expansion S,(0) = N(w)ws._,  + decomposables in H,(BO);

(d) (R)ule,, x,) = ()X,

THEOREM 1.4.6. The map Q4 is a homology pairing for both loop sum
and composition product structures. More precisely, we have the following
formulae.

(a) Q‘PG*(‘—’,, x*y)=2Zyyp=, g, (€4 x) = Qg _(ep, ¥);

(b) Qg (e, Q(x)) = 2,20 Q"7 (Qg, ((Sqi)e,, x));

(© kaa*(e,a XY)= Zipy 9‘1’6*(3(» Xx) 'QIPG*(eh’ »);

A

(d) Qg (e, Q(x)) = 220 07 (i, ((Sg9)e,, X))-

Theorems 1.4.5, 1.4.6 and the fact that J; , is an infinite loop map
determine {2y . In Chapter V we recall a weight valuation first used by
May [6], and Tsuchiya [33], on H,(Q(S°),Z/p) and extend it to give a
filtration on H,(Q(BZ/p""), Z/p). We then have

THEOREM 1.4.7. Modulo higher weight
Q‘PG*(ej’ QI(JZ/Z(er))) * ([1] * (X(eo)zm)))
= EC(T)QI+T(JZ/2(er+j—s)) * ([1] * (X(eo))zlm)

where
(1) the sum runs over all T = (t,,...,t,) with each t, = 0.
R I+T=(i,+t,i,+ ty,...,i + 1)
(3)s =3, ¢,
(4) c(T) is the following product of binomial coefficients:
(=2, ) —t, =205, 85) - (=t — 1, — -+ =24, t,)(r, j = 5).

Here we use the notation (a, b) = (“").

REMARK. 1.4.7 may be restated by replacing the statement “modulo
higher weight” by the statement “modulo loop decomposables.”
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Recalling that o, is the homology suspension, we conclude this
section with

THEOREM 1.4.8. Modulo higher weight
¢G*(ej’ c*(Q’(JZ/Z(e,)) * ([1] * (x(eo))2’”))))
= EC(T)O*(Q1+T(JZ/2(er+}__S)) * ([1] N (x(eo))zl(l)))

where T, I + T, s, and ¢(T) are as defined in 1.4.7.

CHAPTER 11

In this chapter we use the E_ ring space machinery of May and his
school [16], [17], and [9] to construct a good E, ring model for F(H). The
preliminary version of this chapter was revised after receiving a helpful
letter from J. P. May whom we would like to thank for his advice and
comments.

We begin by recalling a specific £, operad pair. The additive operad
H(j) was recently discovered by Richard Steiner [30].

Let j be the finite right H-set {1,2,...,j} and let W be any H
invariant finite dimensional subspace of (V@ R), = U (mV ®R").
Give j X W the diagonal H action.

DEFINITION 2.1.1. [30] H(/, W) is the space of homotopies f;: j X W
- W,0 <t <1, such that

@ flxw: ¥y X W—-> W is a homeomorphism of y X W onto its
image, which is open, for each y € jand forall0 <7 < 1,

(®) folyxw:y X W— Wmaps (y, x) tox forall x € W,

() f; is an embedding of j X W into W.

Let W C Z be H invariant finite dimensional subspaces of (V' © R),,.
We define a map

(2.1.2) K7W, 2Z):K(j,W)->K(j,Z)

by the composition

£@id
YyXZ=yXx (WO (W-NZ) > we (W-nz)=2

for all y € Y. This allows us to pass to the limit of the H(j, W)’s.
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DEFINITION 2.1.3 [30]. K(/) = lim , K(j, W) where W ranges over
—

all H invariant finite dimensional subspaces of (V' © R),.

As j X W has the diagonal H action H acts on K(j, W) and thus on
H(j) via conjugation.

THEOREM 2.1.4 [30). K( ) is an E_, operad.

See [30] for full details. We merely note that the £ operad structure
is given by letting =, permute the £'’s and by the mapping yy: H(j) X
H(iy) X -« XH(i;) = KH(i, + - -+ +i)) given by

Vol (F e of?)s (8o (8 80))
(8 (A8 (1787 (107)

The multiplicative operad we consider was first used by Boardman
and Vogt [4], and May [16].

THEOREM 2.1.5 [4], [16]. £(j) = Iso((V ® R){, (V & R)},), the space of
isometries of (V © R){, into (V @ R)y is an E_ operad.

Again note that H acts on £( ) via conjugation.

See [4] or [16] for full details. Again, we merely recall that =, acts
freely on £(j) by permuting the factors of (V' @ R)/, and the structure
map Y, that makes £(j) an E_ operad ve: £(j) X £(4)) X --- X£(i;) -
B(i| +-- +ij) is given by ve( f; gl,""gj) =fo(g X--- ng)'

Notice now that £ acts on K as follows. We define a map
(2.1.6) AL XK X XKH() = Ky ---i))
by

M7 (gl ogl)n s (87 -80))

= {fo (g,l“‘ X gtzaz NEEE th/""j) o f_]}lsu,si,;lSrSj
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where we have lexicographically ordered the g®’s. By fo (g'

X -+ Xg/%) o f~! we mean the composition of maps given by

(VoR), =f(roRr)) o[f(very)|

T verye[f(ver))]

(gl.alx N Xg.l‘aj)eid
-

verye[f(ver)y)|

ZHrery) e[f(very) = (VeRr),.

This map is well defined as f is an isometry and hence a linear
isomorphism onto its image. The resulting map is thus a homeomorphism

onto an open set in (V ® R), foreach0 <¢=<1 and «a,,... S0 Further-
more, it is the identity for # = 0 and all factors have disjoint images for
t = 1. Hence we obtain an element in K (i, - - - i)).

A long but direct check of the conditions in [16] or [17] shows
THEOREM 2.1.7. (K, £, X) is an E_, operad pair.

Proof: [30].

2.2. In this section we summarize results we require from [9] to
obtain an E_ ring version of the Segal configuration map. Let K be the
realization of the K operad acting on the trivial H space in the standard
monad construction. That is,

(2.2.1) K= H%(j‘)/zj

J
where we note K has the obvious H action.
Let W be any H invariant finite dimensional subspace of (V @ R),,
and consider F(tW, tW'), the space of pointed self maps of the one point

compactification of W. Note that F(:tW, W) has a natural H action
induced by conjugation.

We now define the configuration map

(2.2.2) Y K(J, W) > Faw, tw)
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as follows: Given f, € H (7, W)
00 if x = o0,
bw(£)(F) =10 if ¥ & £(7x W),
(w-f7N)x ifXxEf(FXW),

where 7: j X W — W is the natural projection. A trivial check shows ¢, is
compatible with taking limits as W ranges over all finite dimensional H
invariant subspaces of (¥ © R),, (see Remark 2 following 1.1.2 and 2.1.2)
and thus we obtain the configuration map first considered by Segal

(2.2.3) ¥: K —>liix)1F(tW, tW)=F.

w

Next we have the following result, due to Hauschild, May, and Waner.

THEOREM 2.2.4 [9]. { is an E_ ring map of E_ ring spaces where the E_
ring structure is given by the operad (K, ).

Proof. [9].

We further specialize 2.2.4 by considering the H-fixed point sets of
2.2.3 to obtain the configuration map we are interested in
(2.2.5) o =y". K" > F? = F(H).

COROLLARY 2.2.6 [9]. ¢: K" » F(H) is an E_, ring map of E_, ring
structure is given by the operad (K, £F).

Proof of 2.2.4. We describe how K and £ act on both K and F. The
rest of the proof is straightforward and left to the reader.
(a) The action £(k) X K* —» K is induced by the maps

jl,f(2< W))

where given f € Iso((V ® R)%,(V ® R)),; and g € H(j,, W,) we obtain a
map

B(k) X g’C(jl’ Wl) Xoeee Xg{(jk’ Wk) - %(
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which is easily verified to be an element of H (X%, j,, f(X*_, W,)). This is
compatible with the H action and with passage to the limit.

(b) The action £(k) X F¥ - F is similarly induced as follows. Let
fE€Iso((VOR),, (VOR),) and g, € F(tW, tW,) for 1 =i <k. Then
define the self map #f (X%, W,) by the composition

k f—l k
tf(XVVi)—M( I/I/i)thI/\th/\---/\th
i=1 i=1
k
>< gi k 7 k
=1
- tW,/\tVVZ/\---/\th‘—‘t( X W,.) —>tf( X VK).
i=1 i=1
Here A is the smash product. This is compatible with the H action and

with passage to the limit.
(c) The action K (k) X K* - K is induced from the natural maps

%(k’ W) X %(j],W) Xoes X%(jk’W) - gF{:( § ji’W)

given by taking f, € H(k, W), g/ € H(j,, W) and constructing a homo-
topy S¢_,j. X W > W defined on the subspace j, X W by j, X

L X W
wEw" " w. This is compatible with the H action and with passage to

the limit.
(d) The (k) X F¥ - F action is induced by maps
k copies
K(k,W) X FQW,tW) X --- XF(tW,tW) - F(W, tW)

given by taking f, € H(k, W) and g, € F(tW, tW) and defining a self
map of tWW by sending

o0 if}:OO,

k
X >4 00 if)?%U((fl"-XW)"gi)(W)’

[(filixw)o g,.]sl(?c) otherwise.

This is well-defined as the f,|i X W’s are homeomorphisms onto their
images which are disjoint for different values of i. Thus the images of
(fili X W) o g(W) are disjoint for different values of i. This construc-
tion is also clearly compatible with the H action and with passage to the
limit.
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Furthermore it is clear that all four actions defined above commute
with the configuration map 4.

We close this section by noting that the action defined in part (b)
above is easily modified to show £ also acts naturally on the H space
G = lim,, G(SW, SW), the space of free self maps of the unit sphere of
W where W runs over all finite dimensional subspace of V,, and PH thus
acts naturally on G = G(H). This implies

THEOREM 2.2.7. The radial extension map
o: G(H) » F(H)
is an 2" map.
23. We now identify the £ action on F(H) and G(H) with the
composition product. We say an £ space structure on a space X refines a

given H-space structure p on X if for each point p € £7(k) the following
diagram commutes up to homotopy:

Xk k fold pri:luct by p X
/1d ]'yQu
p X X* - LH(k) x x*

The spaces SG(H) and SF(H) of degree 1 maps are endowed under
£ with an infinite loop space structure. Recall the standard smash
product gives the composition product infinite loop space structure.

THEOREM 2.3.1. The R structure on G(H) and F(H) refines the
composition product structure. Hence p: SG(H) — SF(H) is an infinite loop
map with respect to the composition product.

Proof. The first statement for F( H) is immediate from the proof 2.2.4
part b. Minor modification gives the first statement for G( H). The second
statement follows immediately from the commutative diagram:

PH(k) X G(H)* - G(H)

lid X p* Lo
RH(k) X F(H)X - F(H)
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CHAPTER 111

In this chapter we relate the configuration map ¢: K - F(H) to the
radial extension map p: G(H) - F(H).

Using equivariant transversality Segal [27], and Hauschild [8], inde-
pendently proved the following theorem.

THEOREM 3.1.1. The configuration map ¢: K* — F(H) is a group
completion.

COROLLARY 3.1.2. The map ®,: H (K") > H (F(H)) becomes an
isomorphism after inverting Hy(K") and for field coefficients ®, is a Hopf
algebra isomorphism under both the loop sum (K™ structure) and the
composition product (2 structure) Pontrjagin product. Furthermore, the
following diagrams commute ( again with field coefficients):

HJ(K") 2 Hy(KY)
J'/¢>l< J’Q*
Ql

H,(F(H)) - H.(F(H))

and

H,(K") H,(K")
Lo Lo

* *

H*(F(H)) - H*(F(H))

So far we have discussed mainly F(H), the space of semi-free or
based H-equivariant maps for the simple reason that it is, as we have seen,
well approximated by K. However, for geometric reasons, we are really
interested in G(H ), the space of free H-equivariant maps. In this section
we explain how G(H) sits in F( H) under p.



350 BENJAMIN M. MANN AND EDWARD Y. MILLER

THEOREM 3.1.3. The Becker-Schultz and Segal homotopy equivalences
of 1.1.5 and 1.1.6 are related by the commutative diagram

YBs

G(H) - Q(BH")
(3.14) s Li [1] X Q(BH™")

F(H) = Q(S°) X Q(BH")

where ygs and g are the Becker-Schultz and Segal equivalences, j the
inclusion on the second factor, k the standard inclusion, and i = k o j. Recall

[1] € 0,(S°) is the limit of H(R") > 1(R").

Although 3.1.3 describes p quite well, the theorem is not sufficient for
our purposes. More precisely, although a group completion of K# is
well-known to be homotopy equivalent, as an infinite loop space under
loop sum, to Q(S°) X Q(BH"*) we must check that this equivalence is
compatible with the Segal equivariant transversality map ys. The follow-
ing diagram summarizes the situation.

¢
G(H) 5>  F(H) < KH
(3 1 .5) L vps s l group complete

It

O(BH') > Q(S°) X Q(BH*) 5 Q(s°)x Q(BH")

THEOREM 3.1.6. The diagram 3.1.5 commutes up to homotopy.

In the appendix we prove 3.1.3 and 3.1.6.

CHAPTER [V
4.1. We begin this chapter by describing the action map on K and
thus on a group completion Q(S°) X Q(BH™"). Recall from [12], there is
an action map
(4.1.1) A:B(C) X K" - K

induced by the homomorphism a: C X H — H defined on the group level
by a(8, h) = 6-h (here C is center of H).
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THEOREM 4.1.2. A is described by the composition

BC X 0(S8°) X Q(BH" )™ 0(5°) X BC x Q(BH")

Y2 o(s0) x o((Be x BH)T) 8" 0(s°) x 0(BH).

Proof. A is a map of K" spaces. Furthermore, A is the infinite loop
extension of the two maps

BC X 8% X pt = 8° X pt = Q(5°) X Q(BH")
and
shuffle idX Ba
BCXptXBH - ptXBCX BH — ptX BH= Q(S°) X Q(BH").

The first composition reflects the fact that, by definition, the action of
C on the trivial H-set {1} is trivial, while the second composition reflects
the fact that « gives the action of C on the free H-set { H}.

4.2. In this section we identify the maps Qv and X. Recall SG(V)
= lim, Map,(S(nV'), S(nV)) gegrec 1> the degree + 1 component of G(V').
We wish to describe the geometric twist map

(4.2.1) Ys: BC X BSG(H) - BSG(H)
which classifies L ®,§ — L @ dim §. y,; loops down to
(4.2.2) Qy;: BC X SG(H) - SG(H)

and SG(H) ~ Q(BH") [2].

THEOREM 4.2.3. The following diagram commutes up to homotopy:

Y

BCX SG(H) = SG(H)= Qy(BH")
L= 70(Ba)
BCX Q(BH') 5 Q((BC x BH)Y)
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THEOREM 4.2.4. Qy; extends to Qyp: BC X F(H) - F(H) which
commutes with the K" loop space structure on F(H). Furthermore, the
following diagram commutes:

e
BC X SG(H) - SG(H)

(425) lid X p lp

2
BCX F(H) - F(H)

Given the identifications of Chapter I11, we may rewrite 4.2.5 as

BCx (11 X Q(BH)) 5 [1] x 0u(BH*)
(4.2.6) l !
BC X Q(S°) X Q(BHY) & 0(S°) x Q(BH")

Theorem 4.2.3 follows from 4.2.4 and the following lemma.

LEMMA 4.2.7. The following diagram commutes up to homotopy:

BCX Q(s°) X Q(BH™) % Q(s°) x Q(BH")

 shuffle 1id X Q(Ba)

0(s%) x BCx @(BH) 5" 0(s°) x 0((BC x BH)")

In turn, to prove 4.2.7 we need only show

LEMMA 4.2.8.
(a) Q. restricted to BC X S° X pt is given by the composition

BC X S X pt' 5 SO X pt = Q(S°) X Q(BH").

(b) Qy restricted to BC X pt X BH is given by the composition
shuffle idX Ba
BCX BH - ptX BCXBH - ptXBH= Q(5° X Q(BH").

We begin the proofs of 4.2.4 and 4.2.8 by giving an explicit model for
Q¥,. Let (EC),=C#*C=* --- xC be the k+ 1 fold join of C and
(BC), = (EC),/C. Since C is finite, the H buglcdle £§=V X,(EC), over
(BC), has finite order, say M,; that is, M, ¢ =M (V X (BC),) as a H
bundle. This gives a C equivariant map ¢: (EC), — Isom (M, V, M, V)



CHARACTERISTIC CLASSES FOR SPHERICAL FIBRATIONS 353

with H([x, A]) = (¢(y)x,[y]) for (x, y) in V X (EC),. Here C acts by
premultiplication on Isom(—, —).

Given N we get, by direct sum, a map N¢: (EC), -
Isom (M, (NV), M,(NV)) which induces a C-equivariant map

Ng: (EC), — Isom(S(M(NV)), S(M(NV))).

Given f € Map,(S(NV), S(NV)) and a € (EC), we consider the com-
position
S(M(NV)) "5V S(M(NV)) = S(NV) « S(M, — 1)(NV)

f*—de(NV) * S((M, — 1)(NV)) = S(M(NV))

[Ne(a)]™!
- S(Mk(NV))

which is well-defined as J\/’q\b( a) is an isometry. Furthermore, as C is the
center of H, this composition is independent of the coset of a € (EC),
under the C action. Thus we have

DEFINITION 4.2.9. We define the map

N,y (BC), X Mapy(S(NV), S(NV))
- MapH(S(Mk(NV))’ S(Mk(NV)))

by the formula
Nev(lal, 1) =[Ng(a)] "o (£ id) o [N(a)].

Passing to the limit over N gives

DEFINITION 4.2.10.
A‘k = li_1>n)\‘kN: (BC), X G(H) - G(H).
N

Thus by making choices we may pass to the limit over k to obtain

DEFINITION 4.2.11.

N = limN,: BC X G(H) > G(H)
k
which induces SA': BC X SG(H) — SG(H).
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In §4.3 we prove
THEOREM 4.2.12. SN' = Q.

Assuming 4.2.12 we procede with the proofs of 4.2.4 and 4.2.8. We
define N¢': (EC), — Isom,(M,(NR @ V)), M,(N(R & V))) by the as-
signment a = (N¢)(a) on M,(NV) and a — id on M,(NR). Note that
N¢' is C equivariant. Thus in a manner similar to 4.2.9 and 4.2.10, we
obtain

DEFINITION 4.2.13. The map
AN (BC), X F(H) » F(H)
is induced by the maps
Ni(lal, ) =[1(Ng!(@)] " o (£ Aid) o [1(Ng'())]

on the finite levels.

Notice, by 4.2.11, 4.2.12 and 4.2.13, that 4.2.5 commutes. Also note
that for g € Map,(#(NR), t( NR)) = Map(¢( NR), ¢t(NR)) that the sus-
pension g,

g Nid € Map,(t(N(R ® V)), t(N(R & V))),
has the property A}y ([a], g A id) = (g A id) A id since “C does not twist
g /\id at all.” This uses the fact that the H action on NR is trivial. Thus,
under the identification F(H) =~ Q(S°) X Q(BH™") the following dia-
gram commutes:

(BC), X Q(S°) X pt = (BC),x Q(S°) X Q(BH")
(4.2.14) Ipry 2

Q(8°) X pt = QO(S°) X Q(BH")
Along with 4.2.12 this proves 4.2.8a.

PROPOSITION 4.2.15. The following diagram commutes up to homotopy

(BC), X K"(j) x F(H)? "3 (BC), x F(H)
{(shuffle) o (A7 X id X id)
G4(j) X [(BC), X F(H)]Y o
Lid x (W)
R F(H)

KA(j) x F(H)? Yo
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Proof. [12.2.6].

Of course, we may stabilize 4.2.15 over k£ and obtain a similar
commutative diagram for A''. This finishes the proof of 4.2.4. We conclude
this section by proving 4.2.8b. We must check the commutivity of the
diagram up to homotopy:

idXi
BCXptXBH 5  BCX F(H)

I shuffle Al
pt X BC X BH

lid X Ba !
pt X BH 5 F(H)

The map

i: BH = li_n;MapH({H}, NRO®V)— NROV)")/H - F(H)

is given by the configuration map which sends
f € Map,({H), NR® V) - NR® V)"

to the %ef-ball map associated to f(H) C N(R® V) where ¢, is the
minimum distance between elements of f( H). It is easy to check, as A},
maps the image of iy to the image of i), y, that we have a commutative
diagram

(4.2.16)

Xll
(BC)« X Map,({H}, N(R® V) —NR® V)") =" Map,((H}), M,NR® V) — M,NR & V)")
lid X & ball map | & ball map

(BC), X Map, (1(N(R ® V)), t(N(R & V))) N Map,, (t( M, N(R ® V)), t( M,N(R & V)))

which is compatible with limits. This implies

11
k

(BC), X BH - BH
(4.2.17) Lid X i Vi
(BC), X F(H) = F(H)
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also commutes. Thus it suffices to note:

PROPOSITION 4.2.18. On the level of fundamental groups )A\'kl is precisely
the map a: C X H — H given by a(0, h) = 0-h.

Proof. This is a simple consequence of lifting the map A} to the
universal cover (EC), X EH —» EH and looking over a point to see the
action C X H — H.

This completes the proof of 4.2.8b and therefore 4.2.3.

4.3. We conclude this chapter by proving 4.2.12. That is, we must
deloop y;: BC X BSG(H) —» BSG(H). We first require a model for v
itself. Let ny —» BSG(NV') be the universal SG(NV') bundle. We may
choose an open cover {U,} trivializing 1, and thus obtain cocycles g, g:
{U, N Us > SG(NV)} for ny. Now form the bundles £, over BC X U,
where §, = SG(NU) X-EC X U,. As C is the center of H we may glue
§.1U, N U to §| U, N U by the self-map [x, y, z] = [g,4(2), x, y, z] on
SG(NV) XC(EC)k X (U, N Up). This defines a twisted bundle ijy, > BC
X BSG(NV) and so defines a map >\ : BC X BSG(NV) - BSG(NYV).

In order to stabilize we take the tr1v1z,1_l\/ SG(NV) bundle [NV] =
SG(NV) X BSG(NV') and twist it to give [NV], over BC X BSG(NV).
Now if we classify the difference 7, — [W ]~, we may stabilize to yield
the geometric twist map y;: BC X BSG(H) —» BSG(H). Now as y; sends
BC X pt to pt we may deloop ;. Consider the composition

Ay
BC X (S' ASG(NV)™) = BC X BSG(NV) > BSG(NV).

S' A SG(NV)* is the union of an upper cone C, SG(NV') and a lower
cone C_SG(NV) andi g s6(n1)+ mMay be descrlbed by the clutching
function C, SG(NV) N C_SG(NV) = SG(NV) —>SG(NV) Hence we
may describe 7j, | BC X S' X SG(NV) by clutching §, = S(NV) X EC
X C, SG(NV) over BC X C_SG(NV) to §_ = S(NV) X-ECX
C_(NV) over BC X C_SG(NV) via [x, y, z] = [z°x, y, z] over BC X
SG(NV).

But over (BC), we have a trivialization

(NV® (M, — 1)NV X .(EC),} ={NV & (M, — )NV X (BC),}
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of H bundles where M, is sufficiently large. Hence over (BC), X
BSG(NV') we have
[NV]y ®[(M, — )NV], ~ SG(NV ® (M, — 1)NV)

(4.3.1)
X BC, X BSG(NV)

where ® means fibre-wise joint and ~ means homeomorphism. Thus a
model for

iy — [NV |(BC), X BSG(nV)
ﬁNl(BC)k ®[(Mk - I)NV]N'

Thus we have proved

THEOREM 4.32. fiy — [NV] restricted to (BC), X [S' A SG(NV')]
may be obtained by identifying
SG(M,NV) X (EC), X C, SG(NV)
v
(EC), X C, SG(NV)

and
SG(M,NV) X (EC), X C_SG(NV)
l
(EC), X C_SG(NV)

along (EC), X SG(NYV) via the identification

(x, Vs W) ~ ((W * 1d !S(Mk-l)NV) °Xx, ), W)

and then dividing out by the free action of C given by o-(x, y,w) =
(0-x,0 'y, w) on each piece.

Here the action of C on SG(M, NV') is given by precomposition. To
prove 4.2.12 we merely reinterpret 4.3.2.

THEOREM 4.3.3. iy — [NV 1y restricted to (BC), X [S' A SG(NV)]
may be obtained by identifying
SG(M,NV) X (BC), X C, SG(NV)
\:
(BC), X C, SG(NV)
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and

SG(M,NV) X (BC), X C_SG(NV)
l
(BC), X C_SG(NV)

along (BC), X SG(NV) via the identification

(x, [)’],W) ~ ([N‘P()’)]_l ° (W X idlS(Mk—l)NV) °xo [@()’)], [J’],W)-

Proof. Mi(NV) X ~(EC), is a trivial H bundle.
As a self-map on SG(M, NV') X (BC), X C,SG(NV) given by

(x, [y, w) > ([Ng(»)] © x o [No(»)] ™", [5], w)

is an identification over (BC), X C, SG(NV), we may modify 4.3.3 by
replacing the last identification by

(x,[y],w) ~ ([A/"\P()’)]_l ° (W xid |S(M,(-—1)NV) ° [@()’)] ° X, [Y]’W)-

That is, 7y — [NV], restricted to (BC), X (S' A SG(NV)*) pulls back
from S' A [(BC), X SG(NV)]* and is obtained from the clutching map
Nen: (BC) X SG(NV) - SG(M,NV) of 42.9. Thus A is the desired
adjoint of

7
(BC), AS'ASG(NV)" - (BC), A BSG(H) = BSG(H).

This establishes 4.2.12.

CHAPTER V

5.1. Let H=Z/p" for some prime p and integer n. It remains to
prove the results of Chapter I. SG(H) and SF(H), the spaces of degree 1
maps in G(H) and F( H) respectively, are infinite loop spaces with respect
to the composition product. To compute

H,(SG(H),Z/p), H.BSG(H),Z/p)

and all related transfer maps it suffices, by the results of Chapter III to
compute

H.(SG(H),Z/p), H.(BSG (H),Z/p),
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and all the related transfer maps where SG(H) is the factor identified
with [1] X Q,(BH") C K*. The specific calculations on [1] X Q,(BH")
we require were carried out in [12]. Summarizing the facts we need from
[6], [22], and [12] to compute we recall:

1. The composition product and composition Dyer-Lashof operations,
o and Q', as well as the loop sum and loop Dyer-Lashof operations, *
and @', are related by the usual Cartan and Adem formulae.

2. The loop and composition products are related by the mixed
Cartan formula and the distributivity formula (x * y) oz =2 %=
(xoz)x(yoz”)whereAz =3z ®z".

3. We have the following May formula, which we state, for conve-
nience, when p = 2:

Q'(y)ez= 30" (yoSqz).

See [6] for the odd prime analog.

4. The composition product o on K =~ Q(S§°) X Q(BH") extends
the diagonal transfer map #: Q(B(H X H)") -» Q(BH") induced by
the diagonal inclusion A: H - H X H. A result of Schultz, [22] (see also
[13]), allows the computation of # on the cells of BH* as follows:

THEOREM 5.1.1 [22].
#(e,,e,) = ze Nt pe(xe, ®e,)),

where x is the canonical antiautomorphism, . is the group multiplication map
M: HX H — H, and t is the transfer induced by the inclusion 1 = H.

We remark that 5.1.1 is true for all abelian compact Lie groups ([13]).

5. The loop sum, loop Dyer-Lashof, and transfer calculations of [12]
apply.

We note that the results of §1.3 follow immediately from Chapter III
and [12]. Now the results of [12] on the transfers, 5.1.1, and the remarks 1
through 5 above make the remaining computations in this section purely
formal. To make these calculations we require a weight filtration a la May
[6], and Tsuchiya [33]. Let n = 1.

DEFINITION 5.1.2. [13]. The weight valuation
w: H,(Q(BZ/p""),Z/p) - N
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where N is the set of nonnegative integers is the smallest function with the
stated domain and range satisfying

w(x * y) = w(x) +w(y),
w(x +y) = min{w(x), w(y)},
w(Q'(e,)) = p"P*' fore(I)>r=0,I(I)>0,
w(e,) = p forr >0,
w(eg) =0
where I is an admissible sequence.

Let )_f,’a = Q'(e,) where we allow /(I) = 0 in which case )?,,a = e,.
We now state our main technical result (compare with [18], [6], and [33]).

LEMMA 5.1.3. Inany (H (K %/?"),Z/p),n = 1,
Xra©o Xp= Xpu* Xy p

modulo elements of higher weight where:
(a) Either I(I) or I(J) is greater than zero if p = 2.
(b) If p > 2 there is no restriction on I(I) or I(J).

We require the following two computational lemmas. We may simul-
taneously consider Z/p" for all p and n = 1.

LEMMA 5.1.4. w(Q'(e,) © Q”(ey)) = p"H1(I+2,

Proof. First assume «, § > 0. By May’s formula
Q'el) 2 Q'(e)) = 2 0707 (e, o ep)
rJ,e B

where (1) = I(I'), (J) = I(J') and «’, B’ > 0. But 5.1.1, 1.3.3 and 1.3.5
clearly show w(e, © ez) = p®. Thus the lemma follows for a. 8> 0. The
other cases are similar and left to the reader.

LeMMA 5.1.5. w(Q'(e,) © x(e£™)) = p/(DF1H+m+1,
Proof. Q'(e,) © x(ef") = Q'(e, o x(ef") = xQ'(e, o ef’) =

xQ'(e o (p™ey)) = x(Q" (e, © €y))*”” by the Cartan formula and distrib-
utivity. As x preserves weight the lemma follows.
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Proof of 5.1.3. Expanding
(Q7(en) = (1] x(e8"))) = (@”(ep) = ([1] = x(e8™)))

we obtain

S (0"(en) 207 (ep)) * (@ (ew) o ([1] * x(e£"")))

rJ.e B
(7 (ep) o (11 xeg™)) = ([1] w x(er™™ "))
where I(I') = I(I") = I(I), (J) = I(J")=l(J)and &’ > 0if « >0, B’ >
0 if 8 > 0. But the two middle terms may be rewritten as
0" (eg) (" (e) o x(ef))

and

0 (ey) + (07 (eg) = x{et™)

where 5.1.4 and 5.1.5 imply each nontrivial o product term has weight
= p/(D+1)+2 The lemma follows immediately from the observation that
plitht2 = ph+l 4 pbtl and equality holds only forp = 2,1, =1, = 0.

5.1.3 immediately implies 1.2.10. Now consider p = 2. First let n = 1.
1.2.5 is precisely Corollary 5.3.a of [13]. We note, in passing, that it is easy
to check that J5 ,,( e,)°? = 0 by direct computation:

JZ/2(er)02 = E(er—i ° (eo * ["‘1]) ce,._;° (eo * [—1]))
* ((ei ° (eo * [_1])) o ([1] * X(eo)))
* (([1] * X(eo)) ° (ej ° (eo * [“1]))) * [1]

by repeated distributivity. As in [18] we note that i = j in the above sum
by symmetry as we are working mod2. But 5.1.3 and 1.3.1.a imply the
sum reduces to Q" (e, * xe; * xe; * [11 = 2x(e,—;) * )** * [1] =
0.

Proof of 1.2.4 and 1.2.6. Part (a) of 1.2.4 is trivial. We note in passing
that the computation above showing J, ,(e,)°? = 0 and the fact that the
algebra map commutes with both products would be sufficient, even
without 5.3a of [13], to formally show E[Jy ,(e,)|r > 0] is a sub-Hopf
algebra of H,(SG(Z/2),Z/2). Now consider the exact sequence

0> H,(50,2/2) 5 H.(5G(Z,2).2,2)

- H,(SG(Z/2),2,/2)//H,(50,Z/2) - 0.
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As we have identified the image of J5 ,(e,) with e, * [— 1] modulo higher
weight (5.1.3), it follows that H.(SG(Z/2),Z/2)//H.(SO,Z/2) is a
polynomial subalgebra on the stated generators of 1.2.4.b. The weight
filtration, 5.1.3, and 1.2.4.b then imply 1.2.6.

Now let n > 1. While it is not true that e,, o e,, is equal to e,, * &,,
modulo higher weight, we do have the following:

LEMMA 5.16. €,, 0 €,, = €5, % ¢;, + 2,05, 0% (¢,) * ([1] © x(ep)*) in
H,(SG(Z/2"),2/2).

Proof.
(le * [1] = X(%))oz = E(le—i °ey, ;) * (ei ° ([1] * X(eo)))*2

« ([1] * xeo * xeq * €3)
by mod 2 symmetry. This simplifies to
2lesioey, ) (&) 7 * (x(e; 0 e0))* = ([1] * xeq * xeo * 7).
Thus there are three terms of possible lowest weight, namely
(ez,0e5,) * ([1]* x(e3)), ea, % ey, » ([1] x x(ef)) and
(x(ea, 0 €9))*? * (5 = [—1]).
5.1.1 and 1.3.3 clearly show, however, that the only terms of weight
<2*=8ine,, oe,, and e,, o e, are of the form Q* ~(e,) for i < 2r.

5.1.6 and a slight generalization of 5.1.3 yield

COROLLARY 5.1.7. e,, is a polynomial generator in H, (SG(Z/2"),Z/2)
for n > 1.

The proof of 1.2.9 now follows from 4.4.c and 5.1.c of [13], and from
5.1.3 and 5.1.7.

We now turn to the Hopf algebra structure of the classifying spaces
BSG(Z/p") by studying the Eilenberg-Moore classifying space spectral
sequence as in [6], [5] and [13].

(5.1.8) Tor/[(S0®/P"2/0(Z/p, 7,/p) = H,(BSG(Z/p"). Z/p).
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This is a first quadrant homology spectral sequence of Hopf algebras.
Consider the following cases:

Case l.p = 2,n = 1. Then H,(SO,Z/2) in H,(SG(Z/2),Z/2) yields
generators in E2, namely the divided powers of the suspension 6(Jy ,(e,))
of Jy,y(e,). As Jz,, maps SO onto these elements and the spectral
sequence

Torsi,{t*(SO,Z/2)(Z/2, Z/2) = H,(BSO,Z/2)

collapses at E2, we conclude that these generators are permanent cycles.
As there are no further generators with s > 1, 5.1.8 also collapses at E2.

Case 2. p=2 and n=2 or p odd. Then ¢,: Jo: U - SG(S') -»
SG(Z/p") includes H,(U,Z/p) in H,(SG(Z/p"),Z/p) and yields gener-
ators in E? of 5.1.8, namely the divided powers of the suspensions
0((1, © J51)ud,) Of (1, © Jg1)ud, (recall (1, © Jg1)4d, = J(€5,,) when p =
2). As t, o Jo maps U onto these elements and the spectral sequence

TorH=U2/p)(Z,/p,7,/p) = H,(BU,Z/p)

collapses at E? we again conclude that these generators are permanent
cycles. Again, when p = 2, there are no further generators with s > 1, so
the spectral sequence 5.1.8 collapses at E2. For p odd, each odd generator
in H,(SG(Z/p™),Z/p) yields a divided power algebra in E2. Just as in
the non-equivariant case, [6], they are connected by a universal differen-
tial, [6],

dp-—lyp+j(ox) == (OBQIX)‘YJ.(O'X).

(Recall thait if 25 =|x| +1, then le = wQ°x for some unit w € Z/p.) To
compute Q, we have

LEMMA 5.1.9. For p odd

0,(Q(e,) * [1] * (xeo)”") = 0,07(e,) * [1] * (xe,)”

modulo higher weight in H,(SG(Z/p"),Z/p) provided that I is admissible
with e(1) > r and I(1) > 0.

(I+1

Assuming the lemma, which we prove later, the E” term has the form
Er = F[o((tn o an)*ﬁr): r= O]
®E[o((1, J).BQG,): s> r > o] ®D
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where D is a free commutative algebra truncated at height p. As no further
differentials are possible, E? = E*.

5.1.9 and the equivariant J homomorphism solve the extension prob-
lems when p is odd and thus yields 1.2.14.

For p =2 we require several lemmas to take the place of 5.1.9.
However, 5.1.10 through 5.1.15 do, along with the equivariant J homo-
morphism, solve the extension problems at 2 and thus yield 1.2.12 and
1.2.13.

LemmaA 5.1.10. In H(SG(Z/2),Z/2)
07" (Q"(eq) * [1] * xe3) = 07'0"(eq) * [1] * x(ep)
modulo higher weight.

Proof. By May’s formula, Q'(e,) = Q'[1] © e,,. Thus
r+1

0 (0e) = 07 Q) o) = 3 07(1) » Q'(ey)

but evidently the only non-zero terms in the sum are 0"10"(1) o QY%
and 0'Q’(1) o Q'e,. As Q%, = e, * e, and Q"'Q"(1) is odd dimensional,
the first term is zero by distributivity. As 0’Q’(1) o Q'(e,) =
Q'(1)  Q'(1) © Q'(e,) and as Q'(1) ° Q'(1) = Q'(1) = Q'(1), [18], distribu-
tivity again implies the second is zero. Now apply the mixed Cartan
formula to 0"*'(Q"(e,) * [1] * (xe?))-

LEMMA 5.1.11. In H, (SG(Z/2),Z/2) withr > «
07" 1(Q"(e,) * [1]  xeg) = Q710" (e,)  [1] * x5
modulo higher weight.

Proof. Using May’s formula, [6], Q'(e,) may be written as a sum
2c,(Q"(1) o e, _,) where ¢, is some binomial coefficient. But

0 Q) e, ) = 07O 0 6 e, )
HOrQIH(1) 0 07 e, ).

Asn=1, 0%,  =e,  *e, ,; thusasin5.1.10 the above sum is zero.

Applying the mixed Cartan formula to Q" " *'(Q’, * [1] * xe2) gives the
result.
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LEMMA 5.1.12. Let n > 1, then in H (SG(Z/2"),Z/2) withr > a,

0" Q" (e,) * [1] * xed)
= QT e*1Q (e, ) * [1] * xeg + 2 050%(ep) * [1] * xe3

modulo higher weight where the sum runs over certain (S,, S,, B) # (r + «
+ 1, r, a).

Proof. As Q'(e,) = 2,0"(1) o e, _, for certain s we have

0 r(Q(e,))
— 2 (Qr+s+lQr+s(1) ° Q”a—s(ea_s)) + Qr+sQr+s(1) ° Q"a—s+1(ea_s)

— 2 Qr+s+lQr+s(l) ° Qa—s(ea_s)

as before. Again, Q" 10" *5(1) = Q% *2*1(1) modulo higher weight and
thus the terms of lowest weight in the sum are 3, Q"2 71(1) o 0% %(e,_,).
Unfortunately, 0 *(e,_,) is not a loop sum square (as n > 1) but 5.1.3
and 1.3.3 imply the elements of lowest weight in the sum above are
S Q¥rtstitqgamstith=atwie . _.)) where the sum runs over cer-
tain s, ¢, t, k, and w. But the partial sum of the terms where s =t = k =
w = 0 is equal to Q*""!(1) o (e, * e,) which is zero as before. Once again
the mixed Cartan formula gives the desired result.

LeMMA 5.1.13. In H(SG(Z/p"),Z/p) for all p and all n if I(I) =2,
(1) W(1H)+1
)

and e(I) > a then Q\(Q(e,) * [1] * xeZ"") = 0,0'(e,) * [1] * x(ef
modulo higher weight.

Proof. A slight generalization of [5, 8.3.i] or [6, 1.7] shows Q/(e,) =
Q1) o -+ o Q1) o ez, where 8 > 0if and only if « > 0 and /(1) = k.
The rest of the proof follows exactly as in [5, 8.3.iii] or [6, 5.7].

Proof of 5.1.9. 5.1.13 proves 5.1.9 if /(1) = 2. Minor modification of
the arguments of 5.1.10 and 5.1.11 for p odd as in [6] handle /(1) = 1. We
leave the details to the reader.

LemMMA 5.1.14. Letn = 1,p = 2. Then
QI(JZ/2(er) * JZ/2(er) * [_1]) =0.
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Proof. Apply the mixed Cartan formula to obtain

2 QsO(JZ/Z(ei)) * JZ/2(ei) * Qs,([_l])

i+j=0
Sots+s5,=1

*Q,(Jz,2(e)) * Jz(e;) o [—1])
by symmetry. But J; ,(e;) *x Jz ,(e;) o [—1] = 0.
LEMMA 5.1.15. Let n > 1, p = 2. Then
0\((ez,11) * J(ez, ) * [—1]) = 0.
Proof. [13, 7.10].

5.2. We conclude this chapter by considering the geometric twist
action map defined in Chapter IV. From Chapter IV we know the
following diagram commutes:

CX K" A K"
lid X @ l @
(5.2.1) CxFH) S FH)
Tid X p Te
N=Qy;

CXSG(H) -  SG(H)

Classifying this diagram we obtain

BC X BKH® - BKY
lid X B® | B®
(52.2) BC X BF(H) - BF(H)
Tid X p Tid X p

Yo

BC X BSG(H) = BSG(H)

Now let H=17Z/2. As 2.3.1 identifies the £¥ structure with the
composition product structure, diagram 5.2.2 for H = Z /2 is compatible
with diagram 1.4.3. Thus we may loop 5.2.2 for H =7Z/2 to obtain a
diagram compatible with 1.4.4. Thus [12.2.6] implies 1.4.6. 1.4.7 follows
from the properties of the Z/2 equivariant J homomorphism once we
prove 1.4.5. Finally, results of Thomason and Wilson [32], implies the
homology suspension commutes with the action map which in turn yields
1.4.8.
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Proof of 1.4.5. This result is standard. It follows from the following
well-known lemma which may be found in [31].

LEmMMA 5.2.3.

(a) H¥(BO,Z/2) = P[w,|i = 1] wnere w, are the Stiefel-Whitney
classes.

(b) H*(BO,Z/2) has an additive basis consisting of s,(c6) as w runs
over partitions w = (iy,...,i,) with coproduct Y(s,(06)) = Z,,—,, 1w, S,,(0) ®
5, (0).

(c) s;,(0) is dual to z, defined in §1.4.

(d) The Pontrjagin product z; o --- oz, in H(BO,Z/2) is dual to
Sa....i)0) in the {s,(0)} basis.

LEMMA 5.2.4. The map
S'Ai
S'X RP*® - S'A(RPY) = S'AN0, = BO

classifies the virtual bundle (L — 1) ® L over S' X RP® = RP' X RP™.
Here L - RP', L - RP® are the canonical nontrivial line bundles.

Proof. The virtual bundle E” — 7 over S' A O(n), induced by the
inclusl_idon S' A O(n), = BO is defined by using the clutching function
O(n) - O(n) to define the bundle E” - S' A O(n), . Now i,: RP" ! =
O(n) is given by sending a line / in R” to the map determined by

{)‘C’—) x forx €1 }
X—- —x forxelt.

Hence the bundle E” |5 , g 11 is defined by the clutching map i,,.

Thus the pull-back of E” to S' X RP" ! is described as follows. First
clutch the complementary bundle Q, {/{ € RP""' > [-C R"}, by the
identity map and clutch the subplane bundle L, {{ € RP""! - [ C R"},
by the antipodal map. Then the pull-back of E" to S' X RP""! is
1 ® Q ® L ® L where L is the “Mobius band” bundle over S'. Hence the
pull-back of the universal bundle ¢ over BO of the composition S' X
RP" ' > S'ARP"'>S8'ANOQ, - BO, >BOis1®Q+L®L-
1 ® i1. But over RP"! we have the equation 7 = Q ® L. Thus

18Q0+L®L-1®7=1®(Q—a)+L®L
=L®L-1®L=(L-1)®L.
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We may now prove 1.4.5.c.

LEMMA 5.2.5.

Proof. Recall for w = (i|,...,i,) we may write s,(0) € H"(BO,Z/2)
as s,(6) = N(w)w,, +decomposables. Using 4.1.6 we calculate as follows

(j*eS"Aif)w(§) =w(LO®L—1®L)

1+ w(L)+ w,(L)
B 1 +w(L)

1

1 w(l)®—
wi(L) 1+ w,(L)

where w, is the total Stiefel-Whitney class. That is, for i = 1, w,(§) —
wi(L) @ w(L)~" but j*o (S' ANi)* sends decomposables to zero. A
calculation shows j* o (S' Ai )*s, (o) = N(w). The result follows from

5.2.3.

LEMMA 5.2.6. The following diagram commutes.

[®¢

RP% NBO - BO
Tid A (S'Ai)

RPT A(S'A(RPY))

I Ti(s' ~i)
S'AN(RP?) A (RPY)

I

S'A(L®L) )

S'AN(RP* X RP®), - S'ARP%?

Proof. Obvious.
COROLLARY 5.2.7.

Yo, (e, (7o (ST A0S Aey)) = (o (STAD)S A(p.g)e,.,).

L®L
Proof. Follows from 5.2.6 as RP* X RP* — RP* sendse, ® e, to
(psq)e,, 527 implies 1.4.5(b).
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The commutative diagram
(5.2.8)

LeL

RP® X RP*

id X inc V \

RP® X RP® ——~ 5 (RP® X RP®) X (RP® X RP%) _ 2 Rp X RP®

yields 1.4.5a since in homology
e,®z, — ‘Po*(ep ®z,)

1 AN

e, ®e,> 3 (e,®e)8(c,®e,)~ 3 (p.n)e,, ®e,

pP=pi1tp r=n+n
r=r+r,

as the right-hand vertical map is zero unless p, = 0.
Before we prove 1.4.5d we note that the equation L ® (§, © §,) =
(L®§) ®(L®E,) implies

LEMMA 5.2.9.
(a ‘I’o*(ena xoy)= 2i+j=n 1[/0*(6,-, x) o 1[/0*(ej, »)-
() Ry, (e, x 0 y) = Z,1;=, Qi (e;, x) © Qiy_(e;, )

Proof. The commutative diagram.

idX(®)
RP* A[BOX BO], - RP* ABO,

s N

X @
(RP* ABO, )X (RP® N BO, ) 5" BOXBO = BO
represents L ® (¢, D &,) = (L ®§) D (L®E,)). This diagram loops
down to give

id X product

RP*® X0 X0 - RP*® X 0
VA N QY

Qi X Q) od
RP® X OXRPOX0 = 0ox0 "5 0

The lemma follows.
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Finally 1.4.5.d follows from the next lemma.

LemMa 5.2.10. The following diagram commutes up to homotopy.
LOL
RP* X RP* - RP”
Jid X i Vi
RP* X0 - 0

Proof. The diagram in 5.2.6 yields the following commutative dia-
grams

®
RPY ARP?Y -  RPZ
id X iy Lid A Vi Ni
®
RP% N0, RP? AQ(S'ARP?Y) -  Q(S'ARPY) 0,
l LQ(S' N i)
N~ RPZ ANQ(S'NO,) Q(s'no0,) S~
l 19,
Q¢
RPY AQBO -  QBO
1 TR
Qg
RP AO - 0
and hence
®
RP? ARP? - RP?
id X i N
RPT N0, 0,
N~ v ~

Qyq
RP* A0, » 0,

which gives the lemma up to homotopy.

APPENDIX

We will prove Theorems 3.1.3 and 3.1.6. Actually we prove these
theorems using a map v G(H) - Q(BH ") which is a variant of the
Becker-Schultz equivalence ygzg. v5s Was used in [13]. It is a homotopy
equivalence that respects composition product and is natural with respect
to transfers. For details of the comparison between yg¢ and vz we refer
the reader to [13].
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We begin by recalling Segal’s equivalence vq.

Given a map M 5 Map,,(¢(nV ® mR)) of a smooth compact, closed

manifold M, Segal produces a map M — Q(S°) X Q(BH™). Given o this
is done by first deforming ¢ so that the induced H equivariant map
H X t(nV ® mR) it(nV@ mR) is transverse to 0 € (nV ® mR) C
t(nV © mR). Then ¢~ '(0) C M X (nV ® mR) is an H-equivariant sub-
manifold of the H-equivariant manifold M X (nV ® mR) with an H-
equivariant trivialization of its normal bundle with (nV © mR) X M. As
such the isotopy groups of ¢ '(0) are constant and ¢ '(0) may be
canonically expressed as the union of disjoint closed H-equivariant sub-
manifolds 4 = ¢~ !(0) N (0 X mR) in the fixed part and B = ¢~ '(0) N
((nV — {0}) X mR) in the free part of nV © mR since the isotopy groups
of nV @ mR are id and H as H acts freely in S(V).

(A1) ¢~ '(0) = 4]]B.

Furthermore, the equivariant trivialization of the normal bundle of
¢ '(0) in nV ® mR, yield trivializations

(A2) »(A4=(0X mR) X M)~R" X A,
v(B/H = ((mV — {0})/H X mR) X M) £ gmendimv 5 p

of the normal bundle of 4 (respectively B) in the fixed point set (respec-
tively the quotient of the free H action).

The pair (4 = (0 X mR) X M, a) describes a stable map S¥ A M —
S"; that is, a map M — Q(S°); the pair (B = ((nV — {0})/H X mR) X
M, B) describe a stable map S” A M - SV A\ (nV — {0} /H) X mR)™";
that is, a map M - Q(BH") where we use the classifying map
(nV — (0)/H) X mR - BH of the free action on (nV & mR —
(0 X mR)). Together these give the desired map M - Q(S°) X Q(BH™).

We remark that when m =0 yg clearly maps F(H) into [1] X
Q(BH™). We next describe yj.
Given a map M — Map,(S(nV')) of a smooth compact closed mani-

fold M, we associate a map M - Q(BH™) as follows:
Deform ¢ so that the induced H-equivariant map y: M X S(nV) —
M X S(nV) has

(§,pr,): M X S(NV) - S(NV) X S(NV)
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transverse to the diagonal A: S(NV') - S(NV) X S(NV'). Then the H-
equivariant submanifold P = (4, pr,) '(im A) C M X S(NV) C M X
NV has normal bundle H-equivariantly trivialized by the bundle maps
covering

W(P>MXNV)=p(P>MXS(NV)) ®R
l
V(S(NV) iS(NV) X S(NV)| ® R
Jvia(pr, X id)
NV =T,S(NV))®R

(since the normal bundle of S(NV) = S(NV') = S(NV') is isomorphic to
the tangent bundle T, S(NV') of S(NV)).

This H-equivariant trivialization yields a trivialization of the normal
bundle »(P/H => M X (NV — {0} /H)) and thus a stable map S¥ A M
- SV A(NV — {0}/H)™ . This describes a map M — Q(BH™" ) where we
use the classifying map NV — {0} /H — BH of the free action of H on
NV — {0}.

If W is an even-finite dimensional subspace of n}” we define a map
(A3) &: Map, (S(W)) - Map, (1(W))
by the formulae:

5(g)(00) = 0
and
| TAX if0=A=1/2,
(g)At) = {—1/2;& + (A= 1/2)g(%) ifA=1/2.

REMARKS.

(a) g: S(W) —» S(W) and ||x|| = 1.

(b) §(g) restricted to the disk of radius 1/2 is just the antipodal map.

(¢) S(g) extends continuously to W as ||S(g)(AX) — Ag(R)| =
| —3(x+ g =1

Thus we may define a homotopy
(A4) o,(g)(A%) = (1 — 1)Ag(%) + t5(g)(A%)
between ,(g) = pg and &,(g) = S(g).
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An easy computation shows

(A5) 5(g)”'(0) = {0} [ (#15(2) = 2}

Then given v, P and the trivialization above (recall the description of
Yis) ¢(S(¥)): M — Map,(1(W)) is given by the adjoint of (m, AX) —»
(m, S(Y(m))(AR)). By (AS) we conclude

(A6) ¢(543)“(M>< 6) =M X 0]]P.

The framings are compatible and thus induce the following commuta-
tive diagram

Map(S(W)) 5 Map((W))

(A7) \: YBs \: Ys

Q(BH*) — [11xQ(BH*) - S°x Q(BH")

As W is even dimensional (A7) is compatible with limits (see [13]).
This proves 3.1.3.

To prove 3.1.6 we first recall from [9] the identification of K. As
pointed out by May

(A8) (K)/2)" = UK/,

where

(a) @ runs through conjugacy classes of homomorphisms ¢: H — Z .

(b) H(j)? is the subset of K(j) consisting of all points k such that
hk = ko(h) for all hin H.

(c) 2, is the subgroup of 2, consisting of all elements o such that
op(h) = @(h)o for every hin H.

(d) As H(j) = lim,, H(j, W) is the limit of semi-free H actions on
finite dimensional subspaces of (V @ R),, H(j)? is empty unless ¢
corresponds to a semi-free action. If ¢ does correspond to a semi-free
action then }(/)? is contractible and K(j)*/2 is a K(7, 1).

Hence we obtain the decomposition

K= I(%()"/2,) = 182, x HB(E,,,_[H)

J 9



374 BENJAMIN M. MANN AND EDWARD Y. MILLER

where the (K, £7) operad action on K is described on I, BS, X
I, B(Z,,[H) and hence on a group completion Q(S°) X Q(BH™") by
the maps of 2.2.4 restricted to the K(7, 1) level.

As K”iF(H) 1S>Q(S°) X Q(BH™") is clearly a %* map to prove
3.1.6 it suffices to check
(a) The composite

SOABH* = K" S F(H) 3 0(S°) X O(BH*)

is homotopic to the standard inclusion.
(b) More generally, the composites

BS, X B(z,ng) - K" L F(H) S 0(8%) x o(BH™)

are homotopic to the standard inclusion.
(a) is proved by starting with an approximation to BH, say a compact
smooth manifold M and a map M — BH which is N-connected. This map

may be replaced by a smooth map
ML (v — (0))/H x mR

for n large. (Note that the right-hand side is a smooth manifold.) We may
regard f as a map M — {configurations of one free H-orbit in (nV — {0})
X mR}. That is, for x € M, we have f(x) = (x, X5,... » Xy where
Xy5- -, X is a free H-orbit of nV ® mR. The map ¢ o f: M — Map,(«(nV
@ mR)) is then defined by

z—y_——)ii——z if y € (e-ball about x, for some i),
f)(y) =4 & —y—xi
00 otherwise,
where f(x) = orbit(x,, x,,...,Xg), and ¢ = 1/2 (minimum distance be-

tween the x,’s). (We have chosen an H-invariant metric on nV ® mR.)

Now the composite ygo ¢ o f: M — Q(S°) X Q(BH) is easy to de-
scribe since ¢ o f(x) is already transverse to 0 € nV ® mR. By our
prescription above, ¢ o finduces a map

V: M X t(nV® mR) - t(nV ® mR),
(x, y) = (9o f)(x)(y)
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with

vY0) = {(x, z) |z is in the free H-set f(x) = (xl, x2,...,x|,,|)}
= w"(graph ofML(nV-— {0}/H) X mR)

where 7: (M X (nV — {0}) X mR) > M X (nV — {0}/H) X mR is the
projection pr, which induces the isomorphism

»(¥71(0) = M X (nV — {0}) X mR) > (nV & mR) X ¥~'(0).

Hence, yg o ¢ © f is described by M — [0] € Q(S°) and M - Q(BH™).
The latter 1s given by M, = {graph of M-{>(nV —{0}/H) X mR} with
the isomorphism
»(M = M X (nV — {0} /H) X mR)
= (pr,)*(Tu((nV = (0} /H) X mR))

coming from the projection pr, which defines a map

M - Q((nV — {0}/H) X mR) > Q(BH™)
by classifying the free H-action on (nV — (0)/H) X mR. That is, this
second map M — Q(BH™) is merely M LBH A Q(BH™) where i is the
standard inclusion. This proves (a).

The proof of (b) is similar. Briefly, given g: M - BZ X B(Z; [ H)
which is N-connected, we replace g by a smooth map

M configurations of configurations of free H-orbits
M- e
points in 0 X mR in (nV — {0}) X mR

and then proceed as before to get property (b).

This concludes the proof of Theorem 3.1.6.
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