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LOCALLY ,4-PROJECTIVE ABELIAN GROUPS
AND GENERALIZATIONS

ULRICH ALBRECHT

Let A be an abelian group. An abelian group G is locally A-
projective if every finite subset of G is contained in a direct summand
P of G which is isomorphic to a direct summand of ΘiA for some
index-set /. Locally Λ-projective groups are discussed without the
usual assumption that the endomorphism ring of A is hereditary, a
setting in which virtually nothing is known about these groups. The
results of this paper generalize structure theorems for homogeneous
separable torsion-free groups and locally free modules over principal
ideal domains. Furthermore, it is shown that the conditions on A
imposed in this paper cannot be relaxed, in general.

1. Introduction and discussion of results. In 1967, Osofsky investi-
gated the projective dimension of torsion-free modules over a valua-
tion domain R. One of her main results in [Ol] is that a torsion-free
i?-module M which is generated by #n many elements has projective
dimension at most n + 1. [F2, Proposition 3.2] emphasizes that it is
necessary to assume in this result that R is a valuation domain. How-
ever, one of the initial results of this paper shows that these conditions
on R are by far too strong (Proposition 2.2).

For this, it is necessary to extend the concept of torsion-freeness of
modules over integral domains to modules over arbitrary rings. The
obvious way to do this is to call an i?-module M torsion-free if me φθ
for all non-zero m e M and non-zero-divisors c of R. However, the
following approach used in [G] proved more successful: An i?-module
is non-singular if ml Φ 0 for all 0 Φ m e M and all essential right
ideals / of R. The ring R itself is right non-singular if it is non-singular
as a right i?-module.

A right non-singular ring R is strongly non-singular, if the finitely
generated non-singular /{-modules are exactly the finitely generated
submodules of free modules. For instance, every semi-prime ring of
finite left and right Goldie-dimension is strongly non-singular [G, The-
orems 3.10 and 5.17]. Furthermore, these finite dimensional rings
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are exactly those for which the concepts of torsion-freeness and non-
singularity coincide for right and left modules. Moreover, every valu-
ation domain is strongly non-singular and semi-hereditary.

We extend Osofsky's result in Proposition 2.2 in a surprisingly
simple and natural way to non-singular modules over strongly non-
singular, right semi-hereditary rings.

This natural extension of Osofsky's result indicates that similar re-
sults may be available for other classes of modules. It is the main goal
of Section 2 to give estimates for the projective dimension of modules
M over an arbitrary ring R such that every finite subset of M is con-
tained in a projective direct summand of M (Theorem 2.3). Chase
called such a module locally projective in [C], where he discussed lo-
cally projective modules in the case that R is a principal ideal domain.
The author was able to extend Chase's work in [A3] to modules over
semi-prime, two-sided Noetherian, hereditary rings. However, virtu-
ally nothing is known about this class of modules in the case that R is
not hereditary.

In the remaining part of this paper, we apply the previously ob-
tained module-theoretic results to the discussion of abelian groups.
Before we can start, we have to introduce some further notation: Let
A and G be abelian groups. The A-socle of G, denoted by SA(G), is
the fully invariant subgroup of G which is generated by {φ(A)\φ e
Hom(A,G)}. Clearly, SA(G) is the image of the natural evaluation
map θc: Hom(A, G) ®E(A) A -> G. The group G is A-solvable if ΘQ is
an isomorphism. It is A-projective if it is isomorphic to a direct sum-
mand of 0 7 A for some index-set /. The smallest cardinality possible
for / is the A-mnk of G. Finally, Arnold and Murley called an abelian
group A self-small, if the functor Hom(Λ, -) preserves direct sums of
copies of A, and showed that ^-projective groups are ^4-solvable in this
case. In particular, A is self-small if there is a finite subset X of A such
that φ{X) φ 0 for all 0 φ φ e E(A), i.e. E(A) is discrete in the finite
topology. [A7, Theorem 2.8] shows that, for every cotorsion-free ring
i?, there exists a proper class of abelian groups A which are discrete
in the finite topology and flat as E{A)-modules such that E(A) = R.

It is easy to see that an abelian group G is an epimorphic image
of an ^4-projective iff SA(G) = G. Although every abelian group G
with SA(G) = G admits an exact sequence 0 —• U —> 0/^4 -> G —> 0
with respect to which A is projective, any two ^-projective resolutions
of such a G can be quite different (Example 3.3). This is primarily
due to the fact that there is no general version of ShanueΓs Lemma
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for ^4-projective resolutions. In particular, there exist abelian groups
A and G with SA(G) = G which admit an v4-projective resolution
0->U->®IA-^G-+0in which U is not an epimorphic image
of an ^-projective group. It is the goal of Section 3 to characterize
the abelian groups which are well-behaved with respect to ^t-projective
resolution in the sense that SA(U) = U in every exact sequence 0 —•
U —> φ 7 A —• G -* 0. In view of [A7, Theorem 2.8], we address this
problem in the case that A is self-small and flat as an E(A)-module,
and show that an abelian group G has the previously stated property
exactly if it is ^4-solvable (Proposition 3.2). This result allows us to
extend the definition of projective dimension to yί-solvable groups G.

Ulmer first introduced the class ^ of ^-solvable groups in [U] as a
tool to investigate abelian groups which are flat as modules over their
endomorphism ring. Another application of ^4-solvable groups was
obtained in [A5] and [A7] where the consideration of SΓA yielded partial
answers to [F, Problem 84a and c]. The same papers also showed
that the restriction that A is flat as an i?(^)-module is essential in the
discussion of ^-solvable abelian groups [A7, Theorem 2.2]. Moreover,
Hausen used methods similar to the ones used in [A5] and [A7] and
some of the results of [A3] to give a partial answer to [F, Problem 9]
in [H].

In Section 4, we turn our attention to a class of abelian groups
which was first introduced by Arnold and Murley in [AM]: An abelian
group G is locally A-projective if every finite subset of G is contained
in an ^-projective direct summand of G. [AM, Theorem III] yields
that the categories of locally ^-projective abelian groups and locally
projective right 2s(v4)-modules are equivalent if E{A) is discrete in the
finite topology. Since we frequently use the same category equivalence,
we assume that A is discrete in the finite topology.

The module-theoretic results of this paper enable us to investigate
the structure of locally ^4-projective groups in the case that E{A) is not
hereditary. Our first result shows that a locally ^4-projective group G
has ^4-projective dimension at most n if there exists an exact sequence
ΦN,, A -> G -• 0 (Theorem 4.1).

Although the class of locally ^-projective groups is not closed with
respect to subgroups U which satisfy SA(U) = t/, there is a special
type of subgroups for which this is true: (Theorem 4.3) A subgroup
H of an abelian group G with SA(G) = G is A-pure if SA(H) = H
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and (H,φo(A),...,φn(A))/H is isomorphic to a subgroup of an A-
projective group of finite Λί-rank for all φ^...,φn e Hom(^4,G). A-
purity naturally extends the concepts of {̂ 4}* -purity which have been
introduced in [W] and [A3].

We adopt the notations of [F] and [G]. All mappings are written on
the left.

2 Locally projective modules. The initial results of this section ex-
tend Osofsky's Theorem to strongly non-singular, right semi-heredi-
tary rings. Our discussion is based on the following result by Aus-
lander. Denote the projective dimension of a right i?-module M by
p.d. M.

LEMMA 2.1 [Au]. Let M be an R-module which is the union of a
smooth ascending chain of submodules {Ma}a<κ whose projective di-
mension is at most n. Then, p.d. M < n + 1.

PROPOSITION 2.2. The following conditions are equivalent for a
strongly non-singular ring R:

(a) A non-singular R-module Mt which is generated by strictly less
than \<n many elements for some n < ω, has projective dimension at
most n.

(b) R is right semi-hereditary.

Proof, (a) => (b) is obvious.
(b) =^ (a): Without loss of generality, we may assume that n > 1.

Suppose that M is countably generated. Since R is a strongly non-
singular, semi-hereditary ring, M = {Jn<ω pn where 0 = Po C P{ C
••' is a chain of finitely generated projective submodules of M. By
Lemma 2.1, p.d. M < 1.

We proceed by induction and assume that M is generated by el-
ements {xv\v < ωn}. Define MQ = {0}, ΛfQ+1 = (M a ,x a ), and
Mλ = Uv^Mv if λ is a limit ordinal. The projective dimension of
Ma is at most n for all a < ωn since Ma is generated by at most ωn-\
many elements. By Lemma 2.1, p.d. M <n + \.

We now turn to locally projective modules over arbitrary rings.

THEOREM 2.3. A locally projective module M over a ring R has pro-
jective dimension at most n if it is generated by at most Kn many
elements.
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Proof. If n = 0, choose a countable generating set {xn\n < ω} for
M with XQ = 0. For every projective direct summand P of M, there
is a free i?-module (?(P) such that /> Θ Q(P) is free. We set

M = M © | φ { 2(^)1^ is a projective summand of Af} | .

To see that every finite subset {w\,...9wn} of Af is contained in a
finitely generated free direct summand of Af, write Wi = α, + ft, for
/ = \9...9n9 where αz G Af and ft/ G 0 { β ( ^ ) l ^ a projective direct
summand of Af}. There are projective direct summands Po,...,Pm

of Af such that a0,..., an G Po and bu..., bn G Q(Λ) © © β ( P w ) .
If Po £ {Λ,...,/^}, then we may assume Po = Px. The module
Po®Q(P\)®'' ®Q{Pm) is a free direct summand of Af which contains
{w\,...9wn}. In the other case, consider the direct summand P$ @
Q{Po) © Q{P\)©•••© Q{Pm) of M. In either case, there exists a finitely
generated free direct summand V of Af which contains {w\9...9wn}.

Set C/Q = {0}, and suppose that we have constructed an ascending
chain UQ C c Un of finitely generated free direct summands of
Af such that {xo,...,Xi} C C// for / = 0,...,«. By the results of
the previous paragraph, there exists a finitely generated free direct
summand C/Λ+i of Af which contains Un andx Λ + i . If we write C/Λ+1 =
Un®Vn, then Af C |J«<ω ^« — Φ«<ω Λ̂ Since Af is a direct summand
of Af, it also is one of the projective module \Jn<ω Un. This completes
the proof in the case n = 0.

Assume that the result fails for a minimal positive integer n. Let
{xv\v < ^ } be a generating set of Af, and suppose that we have
constructed a smooth ascending chain {Mι/}1/<a of submodules of Af
for some a < ωn which are generated by less than ttn many elements
and have the following two properties: Every finite subset of Mv is
contained in a projective direct summand N of M which satisfies N c
Mv\ and xv G Mv+\ for all v < a.

We set Af0 = {0} and Ma = [jp<a Mv if a is a limit ordinal. In the
case α = i/+l,we choose a generating set Z α of M® = (MVyxv) whose
cardinality is less than NΛ. For every finite subset 7 of Z α , there is a
projective direct summand iVy of Af which contains Y. Since Λ̂ y is a
direct sum of countably generated i?-modules by Kaplansky's Theorem
[K, Proposition 1.1], we may assume that Nγ itself is countably gen-
erated. Consequently, the submodule M\ = (Nγ\Y c Z α , |Γ | < oc)
of Af is generated by less than Nw many elements. Inductively, we
construct an ascending chain M® C Af̂ J c C M™ (m < ω) such
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that Ma = Um<ω M™ *s generated by less than NΛ many elements and
has the properties required for the A/i/s. Therefore, p.d. Ma < n - 1.
Since the chain {Mv)v<Wn is smooth, Lemma 2.1 yields p.d. M <n.

Following [G], we call a submodule U of an i?-module M S?-closed
if Af/E/ is non-singular. Let M be a non-singular i?-module. The ^ -
closure of a submodule U of Af is the smallest submodule W of M
which contains ί/ and has the property that M/W is non-singular.

PROPOSITION 2.4. Lei i? 6e a strongly non-singular, right semi-heredi-
tary ring.

(a) The class of locally projective R-modules is closed under S?-
closed submodules.

(b) A non-singular R-module M is locally projective if and only if the
<9*-closure of a finitely generated submodule ofM is a direct summand
ofM.

Proof, (a) Suppose that U is an ^-closed submodule of the locally
projective module M. For every finite subset X of £/, there exists a
projective direct summand V of M which contains X. Since R is right
semi-hereditary, V is a direct sum of finitely generated modules by
[Ab]. Consequently, we may assume that V itself is finitely generated.

The module V/(V n £/) = (V, U)/U is finitely generated and non-
singular. Because R is strongly non-singular and right semi-hereditary,
Vπ U is a projective direct summand of V which contains X. Finally,
if we observe that V is a direct summand of M, then V Π U is a direct
summand of U. Therefore, U is locally projective.

(b) It remains to show that a locally projective module M has the
splitting property for ^-closures of finitely generated submodules. If
U is a finitely generated submodule of M, then there exists a finitely
generated projective direct summand V of M which contains U by
(a). As in the proof of that result, the ^-closure of U is a direct
summand of V.

Furthermore, this characterization of locally projective modules
may fail if R is not right semi-hereditary:

COROLLARY 2.5. Let R be a semi-prime\ right and left finite dimen-
sional ring. The following conditions are equivalent:

(a) R is right semi-hereditary.
(b) IfM is locally projective, then the S*'-closure of a finitely gener-

ated submodule is a direct summand ofM.
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Proof. By [G, Theorem 3.10], a semi-prime right and left finite di-
mensional ring is strongly non-singular. Therefore, it suffices to show
(b) => (a): Let / be a finitely generated right ideal of R. There exists
an exact sequence 0 —> U -> 0 W R —> / —• 0 for some n < ω. Since
( Θ Λ R)/U is non-singular, £/ is a direct summand of ( 0 Λ i?) by (b).
Consequently, / is projective.

COROLLARY 2.6. Lei R be a strongly non-singular, right semi-
hereditary ring. A ,9*-closed countably generated submodule U of a
locally projective module is projective.

3. ^4-Projective resolutions. Let A and G be abelian groups, M a
right £'(^)-module. The functors HA and TA between the categories of
abelian groups and right £'(^)-modules, which are defined by HA{G) =
Hom(^4,G) and TA(M) = M ®E(A) A, are an adjoint pair where the
£r(y4)-module structure of HA{G) is induced by composition of maps.
Associated with them are the natural maps ΘQ'. TAHA(G) —• G and
ΦM ' M —• HATA(M) which are given by the rules ΘQ{Φ®CI) = Φ(a) and
[(/>Λ/(m)](α) = m Θ<z for all a e A, φ e HA(G) and me M. Finally, an
exact sequence 0 -+ B —>C—•(?—>0of abelian groups is A-balanced
if the induced sequence 0 -+ 7^(5) ~> HA(C) -+ /^(G1) -^ 0 is exact.

The full subcategory of the category of abelian groups whose ele-
ments G have the property that ΘQ is an isomorphism is denoted by
^A. Similarly, JfA indicates the category of all right E(A)-modules M
for which ΦM is an isomorphism. The functors HA and TA define a
category-equivalence between ^ and JίA [A5],

LEMMA 3.1 [A7, LEMMA 2.1]. Let A be an abelian group. An exact
n

sequence O^B-^C-^G^O of abelian groups such that C is
A-solvable induces an exact sequence

Ίoτι

E(A)(M9A) 4 TAHA(B) ΘΛB^ TA(M) θ^G->0

where M = imHA(β) and [θ(β)](m (8) a) = m(a) for all m e M and
aeA.

In particular, the last result shows that a subgroup B of an A-
solvable group which satisfies SA(B) = B is ^-solvable if A is flat
over E(A). Under the same conditions on A, every ^4-balanced exact
sequence 0—>2?—>C—•(?—•() such that C is ^4-solvable satisfies
M = HA(G) and θ(β) = ΘQ. Therefore, we obtain an exact sequence

0 -> TAHA(B) hβ^ TAHA(G) H G -> 0.
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PROPOSITION 3.2. Let A be a self-small abelian group which is flat
as an E(A)-module. The following conditions are equivalent for an
abelian group G with SA(G) = G:

(a) G is A-solvable.
n

(b) IfO-+U^>P-!->G->Oisan exact sequence such that P is
A-projective, then SA(U) = U.

(c) Every epimorphism ΦQ: PQ-^> G where PQ is A-projective extends
to a long exact sequence

Φn+l p Φn Φ\ p Φθ ̂  rχ
• • Γ n • * * * • ΓQ — • LΓ — • U

in which Pn is A-projective for all n < ω.

(d) There exists an exact sequence -^ Pn h Λ Po H G -• 0
such that, for all n <ω, Pn is A-projective and the induced sequence

is A-balanced.

a

Proof, (a) => (b): The exact sequence 0 - > C / A P ^ G - ^ 0 induces
a projective resolution

0 -> HA(U) * H α ) HA(P) HAXβ) M -> 0

of the right £'(y4)-module M = imHA(β). By Lemma 3.1, there is
a map 0(/?): TA(M) —• G which fits into the following commutative
diagram whose rows are exact:

0-+TA{M) - TAHA{G)

I
TA(M) Θ(Λ] G-+0

Thus, θ(β) is an isomorphism, and SA(U) = U by Lemma 3.1.
(b) => (c): The map φo induces an exact sequence

where SA(U) = C/ because of (b). Lemma 3.1 yields that U is A-
solvable. The long exact sequence is now constructed inductively.

(c) => (d): There exists an ^-balanced exact sequence

0 - u^Po^G-*O(l)
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where PQ is ^4-projective, and U c Po satisfies SA(U) = U because of
(c). Since U is ^4-solvable by Lemma 3.1, and we have already verified
the implication (a) => (c), we obtain an ^4-balanced exact sequence

with Pi ^4-projective. Because of the validity of the implication (a) =>*
(b), SA(V) = V. Consequently, an inductive argument completes the
proof.

(d) =» (a): The sequence in (d) induces an exact sequence

0 - TAHA(U) Θ^U^ TAHA{G) ΘΛ G -> 0

by Lemma 3.1 where U = imφ\. Because of SA(U) = U9 the map θjj
is onto; and ΘQ is an isomorphism.

EXAMPLE 3.3. Let A be a countable abelian group of infinite rank
with E(A) = Z. Every free subgroup F of A which has infinite rank
contains a subgroup Fx such that F/Fx = TA(Q) = 0 ω Q . Thus,
F/F\ is a direct summand of A/F\9 and there exists a non-zero proper
subgroup U of A with A/U = 0 ω Q.

We now show that SA(U) = 0. If this is not the case, then HA(U) Φ
0; and HA(A)/HA(U) is a bounded abelian group. However, since the
latter is isomorphic to a subgroup of the torsion-free group HA(®ω Q),
this is only possible if HA{A) = HA(U). Because this contradicts the
condition A Φ U9 we obtain SA(U) = 0. On the other hand, every free
resolution 0 —• 0 ω Z -• 0 ω Z -• Q -• 0 yields an exact sequence

ω

Finally, we construct an 4-balanced exact sequence 0 -> V —•
φ 7 4 -• 0 ω Q -^ 0 such that SA{V) φ V: For this, we observe
HA(Q) — Θ2No Q Hence, there exists an 4-balanced exact sequence
0 -> F ^ 0 2 κ o 4 -^ 0 ω Q -• 0. By Proposition 3.2, ^ ( F ) ^ F.

In the next part of this section, we introduce the concept of an A-
projective dimension for 4-solvable groups. In view of Proposition
3.2, we assume, that A is self-small and flat as an 2s(4)-module, and
consider two 4-balanced 4-projective resolutions 0 —• I// —• PiG —> 0
(/ = 1,2) of an ^4-solvable group G. They induce exact sequences
0 -• HA(Ui) -+ HΛ(Pi) -> HA{G) -+ 0 of right E{A)-moάxx\es for
/ = 1,2. By ShanueΓs Lemma [R, Theorem 3.62], HA(P{) ®HA(U2) =
HA(PI)®HA(U\). Since both, the C//'s and the P/'s, are ^-solvable, we
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obtain

Uι Θ P2 = TA{HA{UX) Θ HA(P2)) = TA(HA(P{) Θ HA(U2)) = Λ θ U2.

As in the case of modules this suffices to show that the following is
well-defined:

An ^-solvable group G has A-projective dimension at most n if there

exists an exact sequence O ^ P n ^ ' - ^ P o ^ G - + O such that

PQ, . . . , Pn are ^4-projective, and the induced sequences

0 —• imφi+ι —> Pi -4 im φt —• 0

are ^-balanced for / = 0,..., n - 1. We write ^4-p.d. G < n in this
case. Otherwise, we say that G has infinite A-projective dimension and
write ^4-p.d. G = oo.

Our next result relates the ^-projective dimension of an ^4-solvable
group G to the projective dimension of the £'(^)-module HA(G).

PROPOSITION 3.4. Let A be a self small abelian group which is flat
as an E(A)-module. IfG is an A-solvable abelian group, then

Λ-p.d. (? = p.d. HA(G).

Proof. Since an ^-solvable group G is ^4-ρrojective iff HA(G) is pro-
jective, it suffices to consider the case ^4-ρ.d. G > 0. Suppose that
there exists an exact sequence

υ — > rn —> - - —+ ΓQ -^ & —> u

such that Po> > Pn are ^ί-projective, and the induced sequences

0 -> imφi+x -+ Pi Λ im<^ -^ 0

are ^-balanced exact for every i = 0,..., n - 1. Therefore the induced
sequences of right is (^)-modules,

0 -> HA(imφM) -+ HA(Pi) H A Ψ HA(imφi) -+ 0,

are also exact for i = 0,..., n-1 and we obtain imHA{φi) = HA{\m φϊ).
Consequently, there is a projective resolution

0 - HA(Pn) HA^"] • • • HΛ^] HA(Po) - HA{G) - 0

of HA(G), and p.d. HA{G) < n.
Conversely, suppose that the right E{A)-moaxne HA(G) has projec-

tive dimension at most n for some positive integer n. There exists
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n

an exact sequence 0 —> U A P —> HA(G) —> 0 of right 2s(^4)-modules,
where P is projective, and p.d. ί/ < « - 1. It induces the commutative
diagram

0 > HATA(U) ^ Ά HATA(P)

with exact rows. The maps φp and ΦHA{G)
 a r e isomorphisms since HA

and TA are a category equivalence between ZrA and JfA. Therefore, the
map HATA(β) is onto. This shows that the sequence

0 -> TA(U) - 7^(P) - , 7^/^(G) - 0

is ^-balanced exact, and U = HATA(U). Consequently, A -p.d. TA(U)
< n - 1. Hence, G has ^4-projective dimension at most n.

As a first application of the last result, we give an upper estimate
for the y4-projective dimension of an yl-torsion-free group provided
that A is self-small and flat as an E{A)-module and has a strongly non-
singular right semi-hereditary endomorphism ring: Following [A8], we
call an abelian group G with SA(G) = G A-torsion-free if (φo(A),...,
φn{A)) is isomorphic to a subgroup of an ^4-projective group of finite
^4-rank for all φo,...,φn e HA(G). If A is flat as £r(^4)-module, and
if E{A) is strongly non-singular, then G is ^-torsion-free, iff G is A-
solvable, and HA(G) is non-singular.

In [A5, Satz 5.9], we showed that every exact sequence @jA -•
G -• 0 such that G is ^-solvable is ^-balanced if A is faithfully flat
as an £'(^4)-module; i.e. A is a flat E(A)-module, and IAφ A for all
proper right ideals / of E(A). [A7, Theorem 2.8] shows that for every
cotorsion-free ring R there is a proper class of abelian groups A with
E(A) = i?, which are faithfully flat as an is (^4)-module, and whose
endomorphism ring is discrete in the finite topology. On the other
hand, the group Z Θ ϊp is not faithful although it is self-small and flat
as an 2s(.4)-module, [Ar2, Example 5.10].

COROLLARY 3.5. Let Abe a self-small abelian group which is faith-
fully flat as an E(A)-module and has a strongly non-singular endomor-
phism ring. The following conditions are equivalent:

(a) E(A) is right semi-hereditary.
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(b) If G is an A-torsion-free abelian group which admits an exact
sequence 0 7 A —> G —• 0 where \I\ < Nπ for some n < ω, then A-p.d.
G<n.

Proof, (a) => (b): Since A is faithfully flat, the sequence 0 7 ^4 —>
G —• 0 is /4-balanced exact. Hence, HA(G) is generated by less than
Nrt-many elements. Because of Proposition 2.2, HA(G) has projective
dimension at most π. By Proposition 3.4, ̂ 4-p.d. G < n.

(b) => (a): Let / be a finitely generated right ideal of £(^4). There
exists an exact sequence 0 —• U —• 0ΛJE(^4) —> / —> 0 for some
n < ω. It induces the exact sequence 0 -+ TA(U) -> TA(φn E(A)) ->
T^(^) —»• 0 which is ,4-balanced exact since A is faithfully flat as an
£(yl)-module. Thus, Λ-p.d. TA(I) < 0 by (b). In particular, TA{I) is
^-projective. Consider the induced diagram

> 0

E(A) • / > 0

It yields that φi is onto. Furthermore, the natural isomorphism δf.
TA{I) —> IA which is defined by δj(i ® α) = /(α) for all / G / and
ύ ί G ^ yields [//^(^/)0/(/)](Λ) = i{a) for all / e / and a e A. Thus,
0/(/) = 0 implies / = 0. Thus, φi is an isomorphism, and / = HATA{I)
is projective.

We conclude this section with another application of Proposition
3.4. Denote the right global dimension of a ring R by gl. dimi?.

COROLLARY 3.6. Let A be a self-small abelian group which is faith-
fully flat as an E(A)-module.

(a) If E(A) has right global dimension n < oo, then there exist
a subgroup U of an A-projective group with SA(U) — U and A-p.d.
U = n-l.

(b) If E(A) has infinite global dimension, then there exists a sub-
group U of an A-projective group with SA(U) = U and A-p.d. U = oo.

Proof. The global dimension of E(A) is the supremum of the pro-
jective dimensions of modules of the form E(A)/I where / is a right
ideal of E(A). Hence, there exists a family {In}n<ω of right ideals
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of / such that p.d. ((&n<ωIn) = gl. dimi? - 1 where oo - 1 is de-
fined to be oo. The inclusion map /: ®n<ωIn —• ®ωE(A) yields the
commutative diagram

0 . HλTλ ( © / „ ) J&®. HΛT

Hence φ®n<ωin is a monomorphism.
Choose a free right £l(^4)-module F which admits an epimorphism

π:F -> ®n<ωIn. Since TA(φn<ωIn) c TA(φωE(A)) yields that
the sequence TA(F) -> TA(φn<ωIn) -• 0 is ^-balanced, because ^ is
faithfully flat, the top-row of the commutative diagram

HATA{F) ^ Ά HATA(Qn<Jn) • 0

U Φ F Φ@n<ωln

is exact. Hence 0 w < ω In = HATA(@n<ω In) and has projective dimen-
sion equal to (gl.dimi?) - 1. By Proposition 3.4,

Λ-p.d.
,n<ω

4. Locally ^4-projective groups. The combination of the results of
Sections 2 and 3 allows to give a more precise estimate of the A-
projective dimension of locally ^4-projective groups than we can obtain
from Corollary 3.5:

THEOREM 4.1. Let A be an abelian group which is flat as an E(A)-
module and has an endomorphism ring which is discrete in the finite
topology. A locally A-projective group G has A-projective dimension at
most n if it is an epimorphic image ofφωn A.

Proof. Since G is an epimorphic image of 0 ω ^ A, there exists a
family {φv}v<ωn Q HA{G) such that G = (φv(A)\v "< ωn). Moreover,
we can find a finite subset X of A such that {a e E(A)\a(X) = 0} =
0. We show that G is an ^-balanced epimorphic image of a group
isomorphic to a direct summand of 0 ω ^ A.
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For any indices v^...,vm <ωn, choose an ,4-projective direct sum-
mand V of G which contains (φjyo(X),...,φι/m(X)) and write G =
V@W\. Since HA(V) is projective, Kaplansky's Theorem, [K, Proposi-
tion 1.1], yields a decomposition HA(V) = φ y e y Pj where Pj is count-
ably generated for all j e J. Hence, we can choose V in such a way
that it is isomorphic to a direct summand of ®ωA.

We show that HA{V) contains ψ{A) for every map ψ G HA{G) which
satisfies ψ(X) C V. Denote the projection of G onto V with kernel
W\ by π. If there is an element a of A such that (1 - π) ψ(a) ± 0, then
we can find a map δ e Hom((j,^4) such that δ{\ - π)ψ(a) Φ 0 because
(1 - π)ψ(a) is contained in an ^4-projective direct summand of G.
The map δ(l -π)ψ is a non-zero element of E(A) with 5(1 -π)ψ(X) =
0 whose existence contradicts the choice of X. Consequently,
ψeHA(V).

For every finite subset Y of {φv\v < ωw}, we choose a direct sum-
mand Vγ of G, which contains φ(X) for all maps φeY and is isomor-
phic to a direct summand of 0 ω 4̂. Let SDΐ be the collection of all these
Fy's. The inclusion maps Vy c G induce an epimorphism u: W —• G
where W/ = 0{C/| t/e9Jt} . For every map μ e HA(G)9 there exist
indices v^...,vm < ω such that μ(X) c ( ^ ( ^ l ) , . . . , ^ ^ ) ) . If we
denote the set {0^,..., φVm) by 7, then the result in the previous para-
graph yields that VY contains {φVQ{A),...,φVm{A)) and μ(A). Thus,
μ G HA(Vγ). This shows that the sequence 0 —> kerz/ -+ W ^> G -+ 0
is ^-balanced. Furthermore, W7 is isomorphic to a direct sum of at
most NΛ abelian groups which are direct summands of φ ω A. There-
fore, the ,4-rank of W is at most NΛ.

Consequently, HA{G) is a locally projective right £'(^4)-module
which is generated by at most Nrt elements. Since the induced
sequence HA(W) —• HA(G) -> 0 is exact, we have ^4-p.d. G =
p.d. HA{G) <nby Proposition 3.4 and Theorem 2.3.

The subgroup C/ = 2 Z ω + [ 0 ω Z] of the locally Z-projective group
Z ω is not locally Z-projective, although Sz{U) = U. On the other
hand, the next result yields that the class of locally ^-projective groups
is closed under ^4-pure subgroups if E(A) is strongly non-singular and
right semi-hereditary.

It also allows to recapture the following property of homogeneous
separable abelian groups G [Fl, Proposition 87.2]: Any pure finite rank
subgroup of such a group G is a direct summand of G. To facilitate
this, we consider ^-purifications which were introduced in [A8]: If H
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is a subgroup of an ̂ -torsion-free group G with SA{H) = //, then the
A-purificatίon ofH in G is defined to be H* = ΘG(TA(W)) where W is
the ^-closure of HA(H) in HA(G). In [A8], we showed that H* is the
smallest ^4-pure subgroup of G which contains H.

THEOREM 4.3. Let A be an abelian group which is flat as an E(A)-
module and has a strongly non-singular, right semi-hereditary endo-
morphism ring which is discrete in the finite topology:

(a) The class of locally A-projective groups is closed under A-pure
subgroups.

(b) An abelian group G is locally A-projective, if and only ifG =
SA(G), and the A-purification £/* is an A-projective direct summand of
G for all subgroups U of G which admit an exact sequence 0 r t A —•
U —• 0 for some n < ω.

(c) An A-pure subgroup U of a locally A-projective group is A-
projective if it is an epimorphic image of®ωA.

Proof, (a) Let U be an ̂ 4-pure subgroup of the locally ^4-projective
group G. Then, SA(U) = U yields that U is yl-solvable by Lemma
3.1. Moreover, HA(G) is locally protective, and HA(U) is ^-closed in
HA{G). By Proposition 2.4, HA(U) is locally projective. Consequently,
U = TAHA(U) is a locally ^4-projective group.

(b) and (c) are deduced in a similar way from the corresponding
results of Section 2.

Furthermore, the condition that E(A) is right semi-hereditary may
not be omitted from the last result as is shown in Corollaries 2.5 and
3.5.

Let TL(A) = {G\SA(G) = G and G c A1 for some index-set /}

be the class of A-torsion-less groups. Similarly, TL(E(A)) denotes the
class of torsion-less right E(A)-modules.

PROPOSITION 4.4. Let Abe a self-small abelian group which is faith-
fully flat as an E(A)-module and has the property that SA{A!) is A-
solvable for all index-sets I. The functors HA and TA define an equiva-
lence between the categories TL(^4) and ΎL(E(A)).

Proof. Let M be a submodule of E(A)1 for some index-set /. Be-
cause of HA(A!) = H^S^A1)) and the remarks preceding Lemma
3.1, the map ΦHA{AI) is a n isomorphism. In order to show that ΦM

is an isomorphism, we consider the following commutative diagram
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whose rows are exact:

0 > HATA{M) v HATAHA(AJ)

(I)

0 > M

Furthermore, an exact sequence 0 -> U -^ φE(A) A Af —> 0 (1)

induces the exact sequence

( \
0 ^ μ ) I TA-^] TA(M) -+ 0 (2)

j J

in which the group TA(M) is ^-solvable as a subgroup of TA(E(AY) =

Therefore, (2) is ^4-balanced because A is faithfully flat as an E(A)-
module; and we obtain the following commutative diagram with exact
rows:

0 > HATA(U) ^^U HATA(φjE(A)) ^ ^ 4 HATA(M)
t t t

(Π) Uί/ >ΓΦf(/4) U M

Combining diagrams (I) and (II) yields that ΦM is an isomorphism.
On the other hand, if G c A1 with 5^(0) = G, then ΘG is an

isomorphism by Lemma 3.1. This shows that HA and TA define a
category equivalence between TL(^4) and TL(E(A)).

Furthermore, we obtain a converse of the last result under some
slight restrictions on A.

THEOREM 4.5. Let A be a self-small abelian group, which is flat as
an E{A)-module, and whose endomorphism ring has no infinite set of
orthogonal idempotents. The following conditions are equivalent

(a) The functors HA and TA are a category equivalence between
TΓL(Λ) and TL(E(A)).

(b) (i) A is a faithful left E(Aymodule.
(ii) SA{A!) is A-solv able for all index-sets L

Proof, (a) => (b): Let / be a right ideal of E(A) with IA = A.
Consider the evaluation map jj\ I -> HA(IA) which is defined by
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L//(01(Λ) = Ka) f°Γ a ^ i e I a n ( * a e A. Since A is flat as an E{A)-
module, there is an isomorphism δ: TA(I) —• IA with <5(/ ® α) = /(α).

Furthermore, the map 0/ is an isomorphism since / e TL(2s(Λ)).
Therefore, / = HATA(I) = HA{IA) = E(A), and / = φE{A) for some

φ e I. This yields an exact sequence 0^U-+A-^A^0. Since
the group U is ^4-solvable by Lemma 3.1 there exists a non-zero map
a e HA(U) if UφO.

On the other hand, we have a decomposition E(A) = J\ φ /2 where
/! = {σ e £(4) |0σ = 0} ^ 0 and J2 = £(Λ) because of / = E(A)
and 0α = 0. Then, E{A) contains an infinite family of orthogonal
idempotents which is not possible by the hypotheses on A. Hence, φ
is an isomorphism, and / = E(A).

Finally, S{AI) e TL(Λ) yields that ΘSA(AI) is an isomorphism because
of (a).

(b) =»• (a) immediately follows from Proposition 4.4.
[G, Problem 5.B3] immediately yields that the map ΘSA(AI) is an iso-

morphism if the inclusion map i: B —• A factors through a finitely
presented module for all finitely generated £'(^)-submodules B of A.
This condition is, for instance, satisfied if A is No-PΓQJective, i.e. every
finite subset of A is contained in a finitely generated projective sub-
module of A. In particular, all groups constructed by [DG, Theorem
3.3] belong to this latter class of groups. Another important class of
examples is given by

COROLLARY 4.6. Let A be a self-small abelian group with a left
Noetherian endomorphism ring which is flat as an E(A)-module. The
functors HA and TA define a category equivalence between TL(^4) and
ΎL(E(A)) if and only if A is faithful as an E{A)-module,

5. Examples. We give an example of a strongly non-singular, semi-
hereditary ring which is neither a valuation domain, finite dimen-
sional, nor hereditary:

PROPOSITION 5.1. Let R = Y[n<ωRn where addition and multipli-
cation are defined coordinatewise, and each i?/ is a principal ideal do-
main. The ring R is semi-hereditary and strongly non-singular. An
ideal I ofR is essential in R if and only //π/(/) Φ Ofor all i < ω where
%i\ R-+ R[ is the projection onto the ith-coordinate.

Proof. Denote the ring Y[n<ω Qn by S°R where Qn is the field of
quotients of Rn for all n < ω. It is self-injective and regular; and R is
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an essential ϋ-submodule of S°R. Thus, S°R is the maximal ring of
quotients of R by [G, Theorem 2.10]. Suppose x = (r~ιsn)n<ω e S°R
where rn = 1 if sn = 0 and (rn,sn) = 1 otherwise. If r = (mn)n<ω G R
with rx G R, then rn\mn for all n < ω. Thus, {r G i?|rx E ί } =
{^n)n<ωR is a finitely generated ideal of R. By [G, Theorem 3.10], R
is a strongly non-singular ring.

Moreover, let X\,..., xm be in i?, say JC, = (Xi9n)n<ω for / = 1,..., ra.
We set //i = ( Xi,/i; ;*m,«)> which is an ideal of i?«. Then,

= {X\9...9Xm) =

n < ω

If r C ω is the set of all n < ω with In φ 0, then In = Rn for
n G Y yields that / = Y[n<ωIn = ΠneY1" - Π^ey^^ i s a projective
i?-module. Thus, R is semi-hereditary.

Suppose, that E is an essential ideal of R. We denote the embedding
into the ith coordinate of R by <JZ. If nn(E) = 0 for some n < ω, then
£ Π δn(Rn) = 0 yields a contradiction.

On the other hand, assume π/(/) ^ 0 for all / < ω where / is an
ideal of R. Let r = {rn)n<ω be a non-zero element of R. If rm / 0,
then there is e G / such that sm = nm{e) Φ 0. Then,

0 φ rδ(sm) = δm{rmsm) = eδm{rm) erRnL

Hence, / is essential in R.

COROLLARY 5.2. The ring R = lω is strongly non-singular and semi-
hereditary, but not hereditary.

Proof. Let / be the ideal (2,...) R + [ 0 ω Z] of R. If / were projec-
tive, then it would be finitely generated by Sandomierski's Theorem,
[CH, Proposition 8.24] since it contains the cyclic essential submodule
(2,.. . )R. Hence, we can find an index n$ < ω such that mn is even
for all elements (w/)/<ω € / and all indices no < n < ω. However, be-
cause of 0 ω Z C / , this is not possible. Therefore, / is not projective;
and R is not hereditary.

By [DG, Theorem 3.3] in conjunction with [A7, Theorem 2.8], there
exists a proper class of abelian groups A with E(A) = lω which are
faithfully flat and have the additional property that E(A) is discrete
in the finite topology.
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However, the groups considered in this paper need not be torsion-
free:

EXAMPLE 5.3. Let A = Y[{l/pl is prime}. Then, E(A) is strongly
non-singular, semi-hereditary and discrete in the finite topology; and
A is flat as an E(A)-module. However, E(A) is not hereditary.

Proof. As a product of fields, E{A) is self-injective. By [O2], a
hereditary, self-injective ring is semi-simple Artinian. But this is not
the case for E(A).

REFERENCES

[Ab] F. Albrecht, On projective modules over a semi-hereditary ring, Proc. Amer.
Math. Soc, 12 (1961), 638-639.

[Al] U. Albrecht, Chain conditions in endomorphism rings, Rocky Mountain J.
Math., 15(1985), 91-106.

[A2] , Endomorphism rings and A-projective torsion-free abelian groups,
Abelian Groups, Proceedings Honolulu 1982/83; Springer Lecture Notes in
Mathematics 1006; Springer Verlag; Berlin, Heidelberg, New York (1983),
209-227.

[A3] , A note on locally A-projective groups, Pacific J. Math., 120 (1985), 1-17.
[A4] , Baer's lemma and Fuchs' Problem 84a, Trans. Amer. Math. Soc, 293

(1986), 565-582.
[A5] , Abelsche Gruppen mit A-projektiven A-balanzierten Auflόsungen, Habil-

itationsschrift, Universitat Duisburg (1987).
[A6] , Abelian groups, A, such that the category of A-solvable groups is pre-

abelian, Abelain Group Theory, Perth 1987; Contemporary Mathematics 87,
AMS(1989), 117-131.

[A7] , Endomorphism rings of faithfully flat abelian groups, to appear in Re-
sultate der Mathematik.

[A8] , Strongly non-singular abelian groups, Comm. in Alg. 17 (5) (1989),
1101-1135.

[Arl] D. Arnold, Abelian groups flat over their endomorphism ring, preprint.
[Ar2] , Finite Rank Torsion-Free Abelian Groups and Rings, Springer Lecture

Notes in Mathematics 931, Springer Verlag, Berlin, Heidelberg, New York
(1982).

[AL] D. Arnold and L. Lady, Endomorphism rings and direct sums of torsion-free
abelian groups, Trans. Amer. Math. Soc, 211 (1975), 225-237.

[AM] D. Arnold and C. Murley, Abelian groups, A, such that Hom(A, —) preserves
direct sums of copies of A, Pacific J. Math., 56 (1975), 7-20.

[Au] L. Auslander, On the dimension of modules and algebras III, Nagoya Math. J.,
9(1955), 67-77.

[C] S. Chase, Locally free modules and a problem by Whitehead, Illinois J. Math.,
6(1982).

[CH] A. Chatters and C. Hajavnavis, Rings with Chain Conditions, Research Notes
in Mathematics 44, Pitman Advanced Publishing Program; Boston, Melbourne,
London (1980).



228 ULRICH ALBRECHT

[DG] M. Dugas and R. Gobel, Every cotorsion-free ring is an endomorphism ring,
Proc. London Math. Soc, 45 (5) (1982), 319-336.

[Fl] L. Fuchs, Infinite Abelian Groups, Vol. I/II, Academic Press, London, New
York (1970/73).

[F2] L. Fuchs and L. Salce, Modules over Valuation Domains, Lecture Notes in Pure
and Applied Mathematics, #97, Marcel Dekker, New York, Basel (1985).

[G] K. Goodearl, Ring Theory, Marcel Dekker, Basel, New York (1976).
[H] J. Hausen, Modules with the summand intersection property, to appear in

Comm. Algebra.
[Ol] B. Osofsky, Rings all of whose finitely generated modules are injective, Pacific

J. Math., 14(1964), 645-650.
[O2] , Global dimension of valuation rings, Trans. Amer. Math. Soc, 127

(1967), 136-149.
[R] J. Rotman, An Introduction to Homological Algebra, Academic Press, New

York, London (1979).
[U] F. Ulmer, Localizations of endomorphism rings and fixpoints, J. Algebra, 43

(1976), 529-551.
[W] C. Walher, Relative homological algebra and abelian groups, Illinois J. Math.,

10(1966), 186-209.

Received November 13, 1987.

AUBURN UNIVERSITY
AUBURN, AL 36849-3501




