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LOCALLY A-PROJECTIVE ABELIAN GROUPS
AND GENERALIZATIONS

ULRICH ALBRECHT

Let A be an abelian group. An abelian group G is locally A4-
projective if every finite subset of G is contained in a direct summand
P of G which is isomorphic to a direct summand of ®;4 for some
index-set /. Locally A-projective groups are discussed without the
usual assumption that the endomorphism ring of A is hereditary, a
setting in which virtually nothing is known about these groups. The
results of this paper generalize structure theorems for homogeneous
separable torsion-free groups and locally free modules over principal
ideal domains. Furthermore, it is shown that the conditions on A4
imposed in this paper cannot be relaxed, in general.

1. Introduction and discussion of results. In 1967, Osofsky investi-
gated the projective dimension of torsion-free modules over a valua-
tion domain R. One of her main results in [O1] is that a torsion-free
R-module M which is generated by X, many elements has projective
dimension at most n + 1. [F2, Proposition 3.2] emphasizes that it is
necessary to assume in this result that R is a valuation domain. How-
ever, one of the initial results of this paper shows that these conditions
on R are by far too strong (Proposition 2.2).

For this, it is necessary to extend the concept of torsion-freeness of
modules over integral domains to modules over arbitrary rings. The
obvious way to do this is to call an R-module M torsion-free if mc # 0
for all non-zero m € M and non-zero-divisors ¢ of R. However, the
following approach used in [G] proved more successful: An R-module
is non-singular if mI # 0 for all 0 # m € M and all essential right
ideals I of R. The ring R itself is right non-singular if it is non-singular
as a right R-module.

A right non-singular ring R is strongly non-singular, if the finitely
generated non-singular R-modules are exactly the finitely generated
submodules of free modules. For instance, every semi-prime ring of
finite left and right Goldie-dimension is strongly non-singular [G, The-
orems 3.10 and 5.17]. Furthermore, these finite dimensional rings
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are exactly those for which the concepts of torsion-freeness and non-
singularity coincide for right and left modules. Moreover, every valu-
ation domain is strongly non-singular and semi-hereditary.

We extend Osofsky’s result in Proposition 2.2 in a surprisingly
simple and natural way to non-singular modules over strongly non-
singular, right semi-hereditary rings.

This natural extension of Osofsky’s result indicates that similar re-
sults may be available for other classes of modules. It is the main goal
of Section 2 to give estimates for the projective dimension of modules
M over an arbitrary ring R such that every finite subset of A is con-
tained in a projective direct summand of M (Theorem 2.3). Chase
called such a module locally projective in [C], where he discussed lo-
cally projective modules in the case that R is a principal ideal domain.
The author was able to extend Chase’s work in [A3] to modules over
semi-prime, two-sided Noetherian, hereditary rings. However, virtu-
ally nothing is known about this class of modules in the case that R is
not hereditary.

In the remaining part of this paper, we apply the previously ob-
tained module-theoretic results to the discussion of abelian groups.
Before we can start, we have to introduce some further notation: Let
A and G be abelian groups. The A-socle of G, denoted by S4(G), is
the fully invariant subgroup of G which is generated by {¢(4)|¢ €
Hom(4,G)}. Clearly, S4(G) is the image of the natural evaluation
map 6c: Hom(4, G) ®g4) A — G. The group G is A-solvable if 0 is
an isomorphism. It is A-projective if it is isomorphic to a direct sum-
mand of @, 4 for some index-set /. The smallest cardinality possible
for I is the A-rank of G. Finally, Arnold and Murley called an abelian
group A self-small, if the functor Hom(4, —) preserves direct sums of
copies of A4, and showed that A-projective groups are A-solvable in this
case. In particular, A is self-small if there is a finite subset X of 4 such
that ¢(X) # 0 for all 0 # ¢ € E(A), i.e. E(A) is discrete in the finite
topology. [A7, Theorem 2.8] shows that, for every cotorsion-free ring
R, there exists a proper class of abelian groups 4 which are discrete
in the finite topology and flat as E(A)-modules such that E(A4) = R.

It is easy to see that an abelian group G is an epimorphic image
of an A-projective iff S4(G) = G. Although every abelian group G
with §4(G) = G admits an exact sequence 0 - U - ;4 - G—0
with respect to which A is projective, any two A-projective resolutions
of such a G can be quite different (Example 3.3). This is primarily
due to the fact that there is no general version of Shanuel’s Lemma
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for A-projective resolutions. In particular, there exist abelian groups
A and G with S4(G) = G which admit an A-projective resolution
0—-U—->@;4 — G — 0in which U is not an epimorphic image
of an A-projective group. It is the goal of Section 3 to characterize
the abelian groups which are well-behaved with respect to 4-projective
resolution in the sense that S,(U) = U in every exact sequence 0 —
U—@;4— G— 0. In view of [A7, Theorem 2.8], we address this
problem in the case that A is self-small and flat as an E(A)-module,
and show that an abelian group G has the previously stated property
exactly if it is A4-solvable (Proposition 3.2). This result allows us to
extend the definition of projective dimension to 4-solvable groups G.

Ulmer first introduced the class 7 of A4-solvable groups in [U] as a
tool to investigate abelian groups which are flat as modules over their
endomorphism ring. Another application of A-solvable groups was
obtained in [AS5] and [A7] where the consideration of .7 yielded partial
answers to [F, Problem 84a and c]. The same papers also showed
that the restriction that A is flat as an E(4)-module is essential in the
discussion of A-solvable abelian groups [A7, Theorem 2.2]. Moreover,
Hausen used methods similar to the ones used in [AS] and [A7] and
some of the results of [A3] to give a partial answer to [F, Problem 9]
in [H].

In Section 4, we turn our attention to a class of abelian groups
which was first introduced by Arnold and Murley in [AM]: An abelian
group G is locally A-projective if every finite subset of G is contained
in an A-projective direct summand of G. [AM, Theorem III] yields
that the categories of locally A-projective abelian groups and locally
projective right E£(A4)-modules are equivalent if E(A) is discrete in the
finite topology. Since we frequently use the same category equivalence,
we assume that A is discrete in the finite topology.

The module-theoretic results of this paper enable us to investigate
the structure of locally A-projective groups in the case that E(A) is not
hereditary. Our first result shows that a locally A-projective group G
has A-projective dimension at most # if there exists an exact sequence
Dy, 4 — G — 0 (Theorem 4.1).

Although the class of locally A-projective groups is not closed with
respect to subgroups U which satisfy S,(U) = U, there is a special
type of subgroups for which this is true: (Theorem 4.3) A subgroup
H of an abelian group G with S4(G) = G is A-pure if Sy(H) = H
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and (H, ¢o(A),...,¢n(A))/H is isomorphic to a subgroup of an A-
projective group of finite A-rank for all ¢,...,¢, € Hom(4, G). 4-
purity naturally extends the concepts of {A4}.-purity which have been
introduced in [W] and [A3].

We adopt the notations of [F] and [G]. All mappings are written on
the left.

2. Locally projective modules. The initial results of this section ex-
tend Osofsky’s Theorem to strongly non-singular, right semi-heredi-
tary rings. Our discussion is based on the following result by Aus-
lander. Denote the projective dimension of a right R-module M by
p.d. M.

LEMMA 2.1 [Au]. Let M be an R-module which is the union of a
smooth ascending chain of submodules { M}, whose projective di-
mension is at most n. Then, p.d. M < n + 1.

ProrosITION 2.2. The following conditions are equivalent for a
strongly non-singular ring R:

(a) A non-singular R-module M, which is generated by strictly less
than R, many elements for some n < w, has projective dimension at
most n.

(b) R is right semi-hereditary.

Proof. (a) = (b) is obvious.

(b) = (a): Without loss of generality, we may assume that n > 1.
Suppose that M is countably generated. Since R is a strongly non-
singular, semi-hereditary ring, M = (J,.,, P» where 0 = Py C P, C

- is a chain of finitely generated projective submodules of M. By
Lemma 2.1, p.d. M < 1.

We proceed by induction and assume that A/ is generated by el-
ements {x,|v < w,}. Define My = {0}, M,,, = (M,,x,), and
M, = ,.; M, if 4 is a limit ordinal. The projective dimension of
M, is at most n for all a < w, since M, is generated by at most w,_;
many elements. By Lemma 2.1, p.d. M <n+1.

We now turn to locally projective modules over arbitrary rings.

THEOREM 2.3. A locally projective module M over a ring R has pro-
Jjective dimension at most n if it is generated by at most N, many
elements.
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Proof. If n = 0, choose a countable generating set {x,|n < w} for
M with xo = 0. For every projective direct summand P of M, there
is a free R-module Q(P) such that P & Q(P) is free. We set

M=Mo [EB{Q(P)[P is a projective summand of M}] )

To see that every finite subset {wy,...,w,} of M is contained in a
finitely generated free direct summand of M , write w; = a; + b; for
i=1,...,n, where a; € M and b, € @{Q(P)|P a projective direct
summand of M}. There are projective direct summands P,..., Py
of M such that ag,...,a, € Py and by,...,b, € Q(P) ® --- ® Q(Pn).
If Py € {P,,...,P,}, then we may assume Py, = P,. The module
PyoQ(P)®---®Q(Py) is a free direct summand of M which contains
{wy,...,w,}. In the other case, consider the direct summand P, &
Q(P)oQ(P)®---®Q(Py) of M. In either case, there exists a finitely
generated free direct summand V of M which contains {wy,...,wp}.

Set Uy = {0}, and suppose that we have constructed an ascending
chain Uy C --- C U, of finitely generated free direct summands of
M such that {x0,...,xi} C U; for i = 0,...,n. By the results of
the previous paragraph, there exists a finitely generated free direct
summand U, ,; of M which contains U, and Xpy1. If we write Uy, =
Uy®Vy, then M CU, ., Un = D, ., Vn- Since M is a direct summand
of M , it also is one of the projective module |J U,. This completes
the proof in the case n = 0.

Assume that the result fails for a minimal positive integer n. Let
{x,|lv < w,} be a generating set of M, and suppose that we have
constructed a smooth ascending chain {M, },., of submodules of M
for some a < w, which are generated by less than X,, many elements
and have the following two properties: Every finite subset of M, is
contained in a projective direct summand N of M which satisfies N C
M,;and x, e M, forall v < a.

We set My = {0} and M, =, ., M, if a is a limit ordinal. In the
case a = v + 1, we choose a generating set Z, of M? = (M,,, x,) whose
cardinality is less than X,. For every finite subset Y of Z,, there is a
projective direct summand Ny of M which contains Y. Since Ny is a
direct sum of countably generated R-modules by Kaplansky’s Theorem
[K, Proposition 1.1], we may assume that Ny itself is countably gen-
erated. Consequently, the submodule M! = (Ny|Y C Z,, |Y| < o)
of M is generated by less than R, many elements. Inductively, we
construct an ascending chain M0 C M! C ... C M (m < w) such

n<w
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that M, = U,, ., M is generated by less than X, many elements and
has the properties required for the M,’s. Therefore, p.d. M, <n—1.
Since the chain {M, }, <, is smooth, Lemma 2.1 yields p.d. M < n.
Following [G], we call a submodule U of an R-module M .¥-closed
if M/U is non-singular. Let M be a non-singular R-module. The .%-
closure of a submodule U of M is the smallest submodule W of M
which contains U and has the property that A//W is non-singular.

PROPOSITION 2.4. Let R be a strongly non-singular, right semi-heredi-
tary ring.
(a) The class of locally projective R-modules is closed under -
closed submodules.
(b) A non-singular R-module M is locally projective if and only if the
F-closure of a finitely generated submodule of M is a direct summand
of M.

Proof. (a) Suppose that U is an .#-closed submodule of the locally
projective module M. For every finite subset X of U, there exists a
projective direct summand V' of M which contains X. Since R is right
semi-hereditary, V" is a direct sum of finitely generated modules by
[Ab]. Consequently, we may assume that V itself is finitely generated.

The module V/(V NnU) = (V,U)/U is finitely generated and non-
singular. Because R is strongly non-singular and right semi-hereditary,
V'NU is a projective direct summand of ¥ which contains X. Finally,
if we observe that V is a direct summand of M, then V' NU is a direct
summand of U. Therefore, U is locally projective.

(b) It remains to show that a locally projective module M has the
splitting property for .#-closures of finitely generated submodules. If
U is a finitely generated submodule of M, then there exists a finitely
generated projective direct summand V' of M which contains U by
(a). As in the proof of that result, the .#-closure of U is a direct
summand of V.

Furthermore, this characterization of locally projective modules
may fail if R is not right semi-hereditary:

COROLLARY 2.5. Let R be a semi-prime, right and left finite dimen-
sional ring. The following conditions are equivalent:

(a) R is right semi-hereditary.

(b) If M is locally projective, then the #-closure of a finitely gener-
ated submodule is a direct summand of M.
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Proof. By [G, Theorem 3.10], a semi-prime right and left finite di-
mensional ring is strongly non-singular. Therefore, it suffices to show
(b) = (a): Let I be a finitely generated right ideal of R. There exists
an exact sequence 0 - U — @, R — I — 0 for some n < w. Since
(@, R)/U is non-singular, U is a direct summand of (), R) by (b).
Consequently, I is projective.

COROLLARY 2.6. Let R be a strongly non-singular, right semi-
hereditary ring. A #-closed countably generated submodule U of a
locally projective module is projective.

3. A-Projective resolutions. Let 4 and G be abelian groups, M a
right E(A4)-module. The functors H, and 74 between the categories of
abelian groups and right E(A4)-modules, which are defined by H,(G) =
Hom(4, G) and T4(M) = M ®g4) A, are an adjoint pair where the
E(A)-module structure of H4(G) is induced by composition of maps.
Associated with them are the natural maps 6;: T,H4(G) — G and
éym: M — H,T,(M) which are given by the rules 65(¢®a) = ¢(a) and
[¢prpr(m)]l(a) = m®a foralla e A, ¢ € Hy(G) and m € M. Finally, an
exact sequence 0 — B — C — G — 0 of abelian groups is 4A-balanced
if the induced sequence 0 — H4(B) — H4(C) — H4(G) — 0 is exact.

The full subcategory of the category of abelian groups whose ele-
ments G have the property that 6; is an isomorphism is denoted by
. Similarly, .#, indicates the category of all right £(A4)-modules M
for which ¢, is an isomorphism. The functors H, and 74 define a
category-equivalence between .7 and .Z, [AS].

LEMMA 3.1 [A7, LEMMA 2.1]. Let A be an abelian group. An exact

sequence 0 - B 5 C LANCIN) of abelian groups such that C is
A-solvable induces an exact sequence

Tork (M, 4) % T,H,(B) % B % T,(M) D 6 - 0

where M = im H4(B) and [6(8)](m ® a) = m(a) for all m € M and
ac A

In particular, the last result shows that a subgroup B of an A4-
solvable group which satisfies S4(B) = B is A-solvable if A is flat
over E(A). Under the same conditions on A4, every A-balanced exact
sequence 0 — B — C — G — 0 such that C is A-solvable satisfies
M = H4(G) and 6(B) = 6. Therefore, we obtain an exact sequence

0— T,H,B) %2 B2 T,H(G) % G —o.
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ProrosITION 3.2. Let A be a self-small abelian group which is flat
as an E(A)-module. The following conditions are equivalent for an
abelian group G with S4(G) = G:

(a) G is A-solvable.

b)) If0O-USP 2, G = 0 is an exact sequence such that P is
A-projective, then S4(U) = U.

(c) Every epimorphism ¢o: Py — G where P, is A-projective extends
to a long exact sequence

Ltsp B AP R G0

in which P, is A-projective for all n < w.

(d) There exists an exact sequence - - - iy P, . Py L] G—-0
such that, for all n < w, P, is A-projective and the induced sequence

0— imepy —"Pnﬁim‘{bn“’o

is A-balanced.

Proof. (a) = (b): The exact sequence 0 — U = P %, ¢ - 0 induces
a projective resolution
0— Hy(U) ™ H,P) ™ M- 0

of the right E(4)-module M = im H,(f). By Lemma 3.1, there is
a map 0(B): T4(M) — G which fits into the following commutative
diagram whose rows are exact:

0—Ty(M) — T4H4(G)
|
M) "8 6o
Thus, 6(f) is an isomorphism, and S4(U) = U by Lemma 3.1.
(b) = (c): The map ¢q induces an exact sequence
0-U—>PBG-0,

where S4(U) = U because of (b). Lemma 3.1 yields that U is 4-
solvable. The long exact sequence is now constructed inductively.
(c) = (d): There exists an A-balanced exact sequence

0—-U—-PBG-0(1)
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where P, is A-projective, and U C P, satisfies S4(U) = U because of
(c). Since U is A-solvable by Lemma 3.1, and we have already verified
the implication (a) = (c), we obtain an A4-balanced exact sequence

0-V-PAU-0

with P; A-projective. Because of the validity of the implication (a) =
(b), S4(V) = V. Consequently, an inductive argument completes the
proof.

(d) = (a): The sequence in (d) induces an exact sequence

0 TWHO)BUSTHG BG-0

by Lemma 3.1 where U = im ¢,. Because of S4(U) = U, the map 6y
is onto; and 6 is an isomorphism.

ExXAMPLE 3.3. Let 4 be a countable abelian group of infinite rank
with E(A) = Z. Every free subgroup F of 4 which has infinite rank
contains a subgroup F; such that F/F, = T4(Q) = 6@,Q. Thus,
F /F, is a direct summand of A/Fj, and there exists a non-zero proper
subgroup U of 4 with 4/U =, Q.

We now show that S4(U) = 0. If this is not the case, then H,(U) #
0; and H4(A)/H4(U) is a bounded abelian group. However, since the
latter is isomorphic to a subgroup of the torsion-free group H (P, Q),
this is only possible if H,(4) = H4(U). Because this contradicts the
condition 4 # U, we obtain S4(U) = 0. On the other hand, every free
resolution 0 — @, Z — @, Z — Q — 0 yields an exact sequence

0-Pa-P4a-Pa—o.

Finally, we construct an A-balanced exact sequence 0 — V —
D;4 — &,Q — 0 such that S4(V) # V: For this, we observe
H4(Q) = @y, Q. Hence, there exists an A-balanced exact sequence
0—-V -y 4—H,Q— 0. By Proposition 3.2, Sy(V) # V.

In the next part of this section, we introduce the concept of an A4-
projective dimension for A4-solvable groups. In view of Proposition
3.2, we assume, that A is self-small and flat as an E(A)-module, and
consider two A-balanced A-projective resolutions 0 — U; — P,G — 0
(i = 1,2) of an A-solvable group G. They induce exact sequences
0 - Hy(U;) —» Hy(P;) — Hy(G) — 0 of right E(A)-modules for
i = 1,2. By Shanuel’s Lemma [R, Theorem 3.62], H (P;) ® Hy(U;) =
H,(P,)® H,4(U,). Since both, the U;’s and the P;’s, are A-solvable, we
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obtain
U eP, =T (Hy(Uy)® Hy(Pr)) = T4(H (Py) ® Hy(Up)) = Py @ Uy

As in the case of modules this suffices to show that the following is
well-defined:
An A-solvable group G has A-projective dimension at most n if there

exists an exact sequence 0 — P, .8 P LY G — 0 such that
P,,..., P, are A-projective, and the induced sequences

0—imgi — P &ime; — 0

are A-balanced for i = 0,...,n — 1. We write A-p.d. G < n in this
case. Otherwise, we say that G has infinite A-projective dimension and
write 4-p.d. G = oo.

Our next result relates the A-projective dimension of an A-solvable
group G to the projective dimension of the E(4)-module H,(G).

PrOPOSITION 3.4. Let A be a self-small abelian group which is flat
as an E(A)-module. If G is an A-solvable abelian group, then

A-p.d. G =p.d. Hy(G).

Proof. Since an A-solvable group G is A-projective iff H,(G) is pro-
jective, it suffices to consider the case 4-p.d. G > 0. Suppose that
there exists an exact sequence

OﬁPnﬁ---ﬂPoﬁG—»()
such that Py,..., P, are A-projective, and the induced sequences
0—imgiy — P & img; — 0
are A-balanced exact for every i = 0,...,n — 1. Therefore the induced

sequences of right £(A4)-modules,

. H(¢; .
0 — Hy(im ¢i11) — Ha(P) ™8 Hy(im ¢;) — 0,
are also exact fori = 0,...,n—1; and we obtain im H,(¢$;) = H,(im ¢;).
Consequently, there is a projective resolution

HA 'n HA 1
0 — Hy(Py) ™Y .. H19) b () — H((G) — 0

of Hy(G), and p.d. Hy(G) < n.
Conversely, suppose that the right E(A)-module H,(G) has projec-
tive dimension at most n for some positive integer n. There exists
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an exact sequence 0 - U = P LA H4(G) — 0 of right E(A4)-modules,
where P is projective, and p.d. U < n—1. It induces the commutative
diagram

0 — H,T,U) 229 g,1,p) 229, g, 1,H,(G)

T¢u ZT@’ Td’n,,(c)

o—s U 25 P £, HOG —0

with exact rows. The maps ¢p and ¢y, () are isomorphisms since Hy
and T4 are a category equivalence between 7, and .#,4. Therefore, the
map H,4T,(B) is onto. This shows that the sequence

0— Ty(U) = Ty(P) = TH4(G) — 0

is A-balanced exact, and U = H,T4(U). Consequently, A-p.d. T4(U)
< n— 1. Hence, G has A-projective dimension at most #.

As a first application of the last result, we give an upper estimate
for the A-projective dimension of an A-torsion-free group provided
that A is self-small and flat as an £(A4)-module and has a strongly non-
singular right semi-hereditary endomorphism ring: Following [A8], we
call an abelian group G with S,(G) = G A-torsion-free if (¢o(A),...,
¢n(A4)) is isomorphic to a subgroup of an A-projective group of finite
A-rank for all ¢g,...,0, € Hy(G). If A4 is flat as E(A4)-module, and
if E(A) is strongly non-singular, then G is A-torsion-free, iff G is A-
solvable, and H,4(G) is non-singular.

In [AS, Satz 5.9], we showed that every exact sequence ;A —
G — 0 such that G is A-solvable is A-balanced if A is faithfully flat
as an E(A)-module; i.e. A is a flat E(A4)-module, and 14 # A for all
proper right ideals I of E(A4). [A7, Theorem 2.8] shows that for every
cotorsion-free ring R there is a proper class of abelian groups A with
E(A) = R, which are faithfully flat as an E(A)-module, and whose
endomorphism ring is discrete in the finite topology. On the other
hand, the group Z @ Z, is not faithful although it is self-small and flat
as an E(A4)-module, [Ar2, Example 5.10].

COROLLARY 3.5. Let A be a self-small abelian group which is faith-
fully flat as an E(A)-module and has a strongly non-singular endomor-
phism ring. The following conditions are equivalent:

(a) E(A) is right semi-hereditary.
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(b) If G is an A-torsion-free abelian group which admits an exact
sequence @; A — G — 0 where |I| < R, for some n < w, then A-p.d.
G<n

Proof. (a) = (b): Since A4 is faithfully flat, the sequence ;4 —
G — 0 is A-balanced exact. Hence, H4(G) is generated by less than
R,-many elements. Because of Proposition 2.2, H,(G) has projective
dimension at most n. By Proposition 3.4, A-p.d. G < n.

(b) = (a): Let I be a finitely generated right ideal of E(A4). There
exists an exact sequence 0 — U — &, E(4) — I — 0 for some
n < w. It induces the exact sequence 0 — T4(U) — T4(P, E(A)) —
T,(I) — 0 which is 4-balanced exact since A is faithfully flat as an
E(A)-module. Thus, 4-p.d. T4(I) < 0 by (b). In particular, T4(I) is
A-projective. Consider the induced diagram

H,T, (@nE(A)) — s H Ty(I) —— 0

ZT%;,,E(A) T¢l

b4 — I —0

It yields that ¢; is onto. Furthermore, the natural isomorphism J;:
T4(I) — IA which is defined by J;(i ® a) = i(a) for all i € I and
a € A yields [Hy(61)¢r(i)(a) = i(a) for all i € I and a € A. Thus,
¢;(i) = 0 implies i = 0. Thus, ¢; is an isomorphism, and I = H,T4(I)
1S projective.

We conclude this section with another application of Proposition
3.4. Denote the right global dimension of a ring R by gl. dim R.

COROLLARY 3.6. Let A be a self-small abelian group which is faith-
Sfully flat as an E(A)-module.

(a) If E(A) has right global dimension n < oo, then there exist
a subgroup U of an A-projective group with Sy(U) = U and A-p.d.
U=n-1.

(b) If E(A) has infinite global dimension, then there exists a sub-
group U of an A-projective group with S4(U) = U and A-p.d. U = 0.

Proof. The global dimension of E(A) is the supremum of the pro-
jective dimensions of modules of the form E(A)/I where [ is a right
ideal of E(A4). Hence, there exists a family {/,},<., of right ideals
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of I such that p.d. (@,.,1») = gl.dimR — 1 where oo — 1 is de-
fined to be co. The inclusion map i: @, ., In — D, E(A4) yields the
commutative diagram

0 e T (B, ) 2 1, (D, 70)

Ttﬁen«ulﬂ 2T¢®wE(A)
o B B

Hence ¢g,_,1, is @ monomorphism.

Choose a free right E(A)-module F which admits an epimorphism
n: F — @,.,In. Since T4(D,,In) S T4(P,E(A)) yields that
the sequence T4(F) — T4(D,.,, In) — 0 is A-balanced, because 4 is
faithfully flat, the top-row of the commutative diagram

H,TyF) 225, g, (@le,,) — 0

ZT oF I¢®n<w'n

F LN @le,, — 0

is exact. Hence @,,, In = H4T4(D, ., In) and has projective dimen-
sion equal to (gl. dim R) — 1. By Proposition 3.4,

A-p.d. (TA (,162, 1,,)) = p.d. (,,62) I,,) :

4. Locally A-projective groups. The combination of the results of
Sections 2 and 3 allows to give a more precise estimate of the A4-
projective dimension of locally A-projective groups than we can obtain
from Corollary 3.5:

THEOREM 4.1. Let A be an abelian group which is flat as an E(A)-
module and has an endomorphism ring which is discrete in the finite
topology. A locally A-projective group G has A-projective dimension at
most n if it is an epimorphic image of @, A.

Proof. Since G is an epimorphic image of @, A4, there exists a
family {¢,}r<w, € Hy(G) such that G = (¢,(A4)|v < w,). Moreover,
we can find a finite subset X of A4 such that {a € E(4)|a(X) = 0} =
0. We show that G is an A-balanced epimorphic image of a group
isomorphic to a direct summand of @, A.
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For any indices vy, ..., v, < w,, choose an 4-projective direct sum-
mand V of G which contains (¢,,(X),...,d,, (X)) and write G =
Ve W;. Since Hy (V) is projective, Kaplansky’s Theorem, [K, Proposi-
tion 1.1], yields a decomposition Hy(V') = €D ;c; P; where P; is count-
ably generated for all j € J. Hence, we can choose V in such a way
that it is isomorphic to a direct summand of P, 4.

We show that H, (V') contains y/(A) for every map v € H4(G) which
satisfies y(X) C V. Denote the projection of G onto V' with kernel
W, by =n. If there is an element a of 4 such that (1 —n)y(a) # 0, then
we can find a map 6 € Hom(G, A) such that (1 — n)y(a) # 0 because
(1 — m)y(a) is contained in an A-projective direct summand of G.
The map d(1—n)y is a non-zero element of E(A) withd(1-nm)y(X) =
0 whose existence contradicts the choice of X. Consequently,
yveH A(V)

For every finite subset Y of {¢,|v < w,}, we choose a direct sum-
mand Vy of G, which contains ¢(X) for all maps ¢ € Y and is isomor-
phic to a direct summand of @, 4. Let M be the collection of all these
Vy’s. The inclusion maps Vy C G induce an epimorphism v: W — G
where W = @{U|U € M}. For every map u € Hy(G), there exist
indices vp,...,Vn < o such that u(X) C (¢,,(4),..., ¢y, (4)). If we
denote the set {¢,,,...,d,,} by Y, then the result in the previous para-
graph yields that Vy contains (¢,,(A),...,¢,,(A)) and u(A4). Thus,
u € Hy(Vy). This shows that the sequence 0 — kerv — W = G — 0
is A-balanced. Furthermore, W is isomorphic to a direct sum of at
most X, abelian groups which are direct summands of @, 4. There-
fore, the A-rank of W is at most R,,.

Consequently, H,(G) is a locally projective right E(A)-module
which is generated by at most R, elements. Since the induced
sequence Hy(W) — H4(G) — 0 is exact, we have 4-p.d. G =
p.d. H4(G) < n by Proposition 3.4 and Theorem 2.3.

The subgroup U =2 -7 +[@,, Z] of the locally Z-projective group
Z% is not locally Z-projective, although Sz(U) = U. On the other
hand, the next result yields that the class of locally A-projective groups
is closed under A-pure subgroups if E(A) is strongly non-singular and
right semi-hereditary.

It also allows to recapture the following property of homogeneous
separable abelian groups G [F1, Proposition 87.2]: Any pure finite rank
subgroup of such a group G is a direct summand of G. To facilitate
this, we consider A-purifications which were introduced in [A8]: If H
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is a subgroup of an A-torsion-free group G with S, (H) = H, then the
A-purification of H in G is defined to be H, = 0(T4(W)) where W is
the .#-closure of H,(H) in Hy(G). In [A8], we showed that H, is the
smallest A-pure subgroup of G which contains H.

THEOREM 4.3. Let A be an abelian group which is flat as an E(A)-
module and has a strongly non-singular, right semi-hereditary endo-
morphism ring which is discrete in the finite topology:

(a) The class of locally A-projective groups is closed under A-pure
subgroups.

(b) An abelian group G is locally A-projective, if and only if G =
S 4(G), and the A-purification U, is an A-projective direct summand of
G for all subgroups U of G which admit an exact sequence @, A —
U — 0 for some n < w.

(c) An A-pure subgroup U of a locally A-projective group is A-
projective if it is an epimorphic image of @, A.

Proof. (a) Let U be an A-pure subgroup of the locally A-projective
group G. Then, S,(U) = U yields that U is A-solvable by Lemma
3.1. Moreover, H4(G) is locally projective, and H,4(U) is .¥-closed in
H ,(G). By Proposition 2.4, H,(U) is locally projective. Consequently,
U=T,H,4U) is a locally A-projective group.

(b) and (c) are deduced in a similar way from the corresponding
results of Section 2.

Furthermore, the condition that E(A) is right semi-hereditary may
not be omitted from the last result as is shown in Corollaries 2.5 and
3.5.

Let TL(4) = {G|S4(G) = G and G C A! for some index-set I}
be the class of A-torsion-less groups. Similarly, TL(E(A4)) denotes the
class of torsion-less right E(A4)-modules.

ProPoOSITION 4.4. Let A be a self-small abelian group which is faith-
fully flat as an E(A)-module and has the property that S4(AY) is A-
solvable for all index-sets I. The functors Hy and T, define an equiva-
lence between the categories TL(A) and TL(E(A)).

Proof. Let M be a submodule of E(A4)! for some index-set I. Be-
cause of H,(A") = H4(S4(A4")) and the remarks preceding Lemma
3.1, the map ¢y, (4 is an isomorphism. In order to show that ¢,
is an isomorphism, we consider the following commutative diagram
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whose rows are exact:
0 — HyTy(M) —— H, T, H,(4")

M 0w b
0 — M ——  Hy4h

Furthermore, an exact sequence 0 — U = @ E(A) LAY VN (1)
J

induces the exact sequence
0— TyU) ™ T, (@E(A)) T Ty (M) -0 (2)
J

in which the group T,4(M) is A-solvable as a subgroup of T4(E(A4)) =
S4(4D).

Therefore, (2) is A-balanced because A is faithfully flat as an E(A4)-
module; and we obtain the following commutative diagram with exact
TOwS:

0 —— HyT4(U) 259, g, T,@®, E(4)) 2242, g,1,(M) —— 0
(m Jeo e Jon

00— 0 —— @,E4) L= M —0

Combining diagrams (I) and (II) yields that ¢,, is an isomorphism.
On the other hand, if G C 4! with S4(G) = G, then 6; is an
isomorphism by Lemma 3.1. This shows that H, and T4 define a
category equivalence between TL(A) and TL(E(4)).
Furthermore, we obtain a converse of the last result under some
slight restrictions on A.

THEOREM 4.5. Let A be a self-small abelian group, which is flat as
an E(A)-module, and whose endomorphism ring has no infinite set of
orthogonal idempotents. The following conditions are equivalent:

(a) The functors Hy and T4 are a category equivalence between
TL(A) and TL(E(A)).
(b) (i) A is a faithful left E(A)-module.
(ii) S4(A") is A-solvable for all index-sets I.

Proof. (a) = (b): Let I be a right ideal of E(A4) with I4 = A.
Consider the evaluation map j;: I — H4(IA) which is defined by
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[Jr(i))(a) = i(a) for all i € I and a € A. Since A is flat as an E(A)-
module, there is an isomorphism é: T4(I) — I4 with (i ® a) = i(a).

Furthermore, the map ¢; is an isomorphism since I € TL(E(A)).
Therefore, I = H,T4(I) = Hy(IA) = E(A), and I = ¢ E(A) for some

¢ € I. This yields an exact sequence 0 — U — A4 ? 4 - 0. Since
the group U is A-solvable by Lemma 3.1 there exists a non-zero map
a€ Hy(U) if U #0.

On the other hand, we have a decomposition E(A) = J; & J, where
Jy = {0 € E(A)|¢pa = 0} # 0 and J, = E(A) because of I = E(A)
and ¢a = 0. Then, E(A) contains an infinite family of orthogonal
idempotents which is not possible by the hypotheses on 4. Hence, ¢
is an isomorphism, and I/ = E(4).

Finally, S(A4’) € TL(A) yields that 6,4 is an isomorphism because
of (a).

(b) = (a) immediately follows from Proposition 4.4.

[G, Problem 5.B3] immediately yields that the map 65, 4) is an iso-
morphism if the inclusion map i: B — A factors through a finitely
presented module for all finitely generated E(A)-submodules B of A.
This condition is, for instance, satisfied if 4 is Rp-projective, i.e. every
finite subset of A4 is contained in a finitely generated projective sub-
module of 4. In particular, all groups constructed by [DG, Theorem
3.3] belong to this latter class of groups. Another important class of
examples is given by

COROLLARY 4.6. Let A be a self-small abelian group with a left
Noetherian endomorphism ring which is flat as an E(A)-module. The
functors Hy and T4 define a category equivalence between TL(A) and
TL(E(A)) if and only if A is faithful as an E(A)-module.

5. Examples. We give an example of a strongly non-singular, semi-
hereditary ring which is neither a valuation domain, finite dimen-
sional, nor hereditary:

PRroPOSITION 5.1. Let R = [], .., Rn Where addition and multipli-
cation are defined coordinatewise, and each R; is a principal ideal do-
main. The ring R is semi-hereditary and strongly non-singular. An
ideal I of R is essential in R if and only if n;(I) # 0 for all i < @ where
m;: R — R; is the projection onto the ith-coordinate.

Proof. Denote the ring [], ., Q» by S°R where Q, is the field of
quotients of R, for all n < w. It is self-injective and regular; and R is
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an essential R-submodule of S°R. Thus, S°R is the maximal ring of
quotients of R by [G, Theorem 2.10]. Suppose x = (7; 'sp)n<ew € S°R
where r, = 1 if s, = 0 and (r,, s,) = 1 otherwise. If r = (m,)n<p € R
with rx € R, then r,|m, for all n < w. Thus, {r € R|rx € R} =
(rn)n<eR is a finitely generated ideal of R. By [G, Theorem 3.10], R
is a strongly non-singular ring.

Moreover, let xj,..., X, bein R, say X; = (X; y)n<ew fOri=1,...,m.
We set I, = (X} ;- ; Xm,n), Which is an ideal of R,. Then,

m
]=<x1,,,,,xm)={(ij,nrj’n) rj,neRn}=HIn.
Jj=1 n<w

n<w
If Y C w is the set of all » < w with I,, # 0, then I, = R, for
n €Y yields that I =[], In = [I,cy In = [1,cy Rn is a projective
R-module. Thus, R is semi-hereditary.

Suppose, that E is an essential ideal of R. We denote the embedding
into the ith coordinate of R by d;. If n,(E) = 0 for some n < w, then
EnNdy(R,) = 0 yields a contradiction.

On the other hand, assume 7;(I) # O for all i < w where I is an
ideal of R. Let r = (r,)n<w be a non-zero element of R. If r,, # 0,
then there is e € I such that s, = n,,(e) # 0. Then,

0#rd(sm) = Om(rmSm) = €0 (rm) ErRN1I.

Hence, I is essential in R.

COROLLARY 5.2. The ring R = Z% is strongly non-singular and semi-
hereditary, but not hereditary.

Proof. Let I be the ideal (2,...)-R+[@, Z] of R. If I were projec-
tive, then it would be finitely generated by Sandomierski’s Theorem,
[CH, Proposition 8.24] since it contains the cyclic essential submodule
(2,...)R. Hence, we can find an index ny < w such that m, is even
for all elements (m;);<, € I and all indices ny < n < w. However, be-
cause of @, Z C I, this is not possible. Therefore, I is not projective;
and R is not hereditary.

By [DG, Theorem 3.3] in conjunction with [A7, Theorem 2.8], there
exists a proper class of abelian groups 4 with E(A4) = Z® which are
faithfully flat and have the additional property that E(A) is discrete
in the finite topology.
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However, the groups considered in this paper need not be torsion-
free:

ExAMPLE 5.3. Let 4 = [[{Z/pZ is prime}. Then, E(A) is strongly
non-singular, semi-hereditary and discrete in the finite topology; and
A is flat as an E(A4)-module. However, E(A) is not hereditary.

Proof. As a product of fields, E(A) is self-injective. By [02], a
hereditary, self-injective ring is semi-simple Artinian. But this is not
the case for E(A4).
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