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ON REGULAR COVERINGS OF
3-MANIFOLDS BY HOMOLOGY 3-SPHERES

E. LUFT AND D. SJERVE

We study homology 3-spheres M that admit fixed point free ac-
tions by a finite group G. If G also admits a fixed point free orthog-
onal action on S3 and if certain projective Z[ (7]-modules satisfy a
cancellation property we show that the regular covering M —* M/G
is induced from a standard regular covering S3 —• S3/G by means of
a map / : M/G —> S3/G whose degree is relatively prime to the or-
der of G (Theorem 1). We also completely characterize those regular
coverings M —• M where M is Seifert fibered (§4). Finally, start-
ing with any given regular covering M o —• Mo with group of covering
transformations G, M o irreducible, and Mo a homology 3-sphere,
we show how to construct another regular covering M —• M with
M a homology 3-sphere and the same group G of covering trans-
formations, with M sufficiently large, M and Mo not homotopy
equivalent, and a degree 1 map / : Λf —• Mo that induces the regular
covering M —• M from the regular covering MQ —> MQ .

1. Introduction. It is a classical result that the finite groups that
admit a fixed point free orthogonal action on the 3-sρhere S3 are
exactly the groups of the following four classes (see [ST] or [Mil]):

(I) The binary polyhedral groups, that is, the binary dihedral groups

Q4n = {x, y x2 = (xy)2 = yn}, n > 2

the binary tetrahedral group

T24 = { x , y ; x 2 = ( x y ) 3 = y \ x 4 = I } ;

the binary octahedral group

the binary icosahedral group

ino = {*, y x1 = (χy)3 = y5, * 4 = 1}

(II) The groups

D(2k, 2/ + 1) = {x, y x2" = 1, y2M = 1, xyx~ι =y~1},

k>3J>
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(III) The groups

Γ(8, 3*) = {*, y, z ; x 2 = (xy)2 = y 2 , z3* = 1,

zxz" 1 = j ; , zyz" 1 = xy}, k >2.

(IV) Cyclic groups Z w and direct products Zm x G, where G is
any group in classes (I), (II) or (III), with order relatively prime to m.

Except for the cyclic groups, the groups G are uniquely determined
up to conjugacy in (9(4). The orbit manifold S3/G is a spherical
space form. If G is not cyclic then S3/G is uniquely determined up
to isometry. We refer to the natural covering q: S3 -> S3/G and the
action of G on S3 as being standard. Each space form S3/G admits
a Seifert fibration.

A homology 3-sphere is a 3-manifold with the same homology as a
3-sphere. It was shown in [Mil] and [L] that if the finite group G acts
fixed point freely on some homology 3-sphere, then it must belong to
one of the classes (I), . . . ,(IV) or to the following class of groups:

(V) The groups

(2(8/1, fc, /) = {x9y, z ; x2 = (xy)2 = y2n, zkl = 1,

xzx~x = z r , yzy~ι = z" 1}

where n, k, / are relatively prime odd integers, r = — 1 (mod k)
and r = 1 (mod /) or direct products Z m x Q(Sn,k,l) where m
and the order Snkl of the group Q(Sn, k, I) are relatively prime.

Some of the groups in (V) act fixed point freely on some homology
3-spheres and some cannot act fixed point freely on any homology 3-
sphere (see [DM], p. 278). It is a conjecture that the groups in (V)
cannot act fixed point freely on S3 (see [Th]).

In this paper we will study those 3-manifolds M which admit regu-
lar coverings by a homology 3-sphere M. Thus if G denotes the group
of covering transformations, then G belongs to one of the classes (I),
. . . ,(V). If G is in (I), . . . ,(IV) then G has a fixed point free orthog-
onal action on S3. We address the following

Problem. Find conditions under which^there is a degree 1 map
/': M —• S3/G so that the covering p: M —• M is induced from
the standard covering q: S3 -• S3/G by the map f:M" -» S^JG.

If CMs a cyclic group Zn then any regular covering p: M —• M,
with Λf a homology 3-sphere and group of covering transformations
Zn, can be induced from a standard covering q: S3 —• 5 3/Zw by a
degree 1 map / : Af -• 5 3/Zw onto the lens space 5 3 /Z n which is
determined uniquely up to homotopy equivalence. See [LS2].
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Suppose G is a finite group. Let N = ΣχeGx denote the norm
element in the integral group ring Z[G]. For any integer r the left
ideal generated by r and N is denoted by (r, N). If r is relatively
prime to the order of G, then the ideal (r,N) is a finitely generated
projective Z[G]-module (see [SW1]). We say that G has the weak
cancellation property if (r, N) is free whenever it is stably free. (G
has the cancellation property, if Z[G] © P = Z[G] © Q implies that
P = Q for finitely generated Z[G]-modules P , β) -

Amongst the groups in (I), . . . ,(IV) the following are known to have
the weak cancellation property:

(1) All cyclic groups. (In fact finite abelian groups have the can-
cellation property [SE].)

(2) The groups Γ 2 4, O4% and 712o.
(3) The groups Q2k, Q4p with p an odd prime. See [SW2].

The augmentation ideal of Z[G] is denoted by ^[G] . A (G, m)-
complex is a finite connected m-dimensional CW-complex X with
π\(X) = G and whose universal covering space is (m - l)-connected.

In §3 we prove

THEOREM 1. Let p: M —> M^bea regular covering of the 3-manifold
M by the homology 3-sphere M. Assume that the group G of covering
transformations has the weak cancellation property, where G is in one
of the classes (I), (II), (III), or (IV). // q: S3 -+ S3/G is a standard
covering then

(1) The mapping cones Cp and Cq are homotopy equivalent
(G, ^-complexes with π4 = A[G].

(2) There is a map f:M-+S3/G with degree relatively prime
to the order of G andyith fπλ(M) = π{(S3/G) = G such that the
regular covering p: M —• M is induced from the standard regular
covering q: S3 -> S3/G by the map f:M-+ S3/G.

If the manifold Λ/jidmits a Seifert fibration then either M = S3,
M = S3/G, and^: M —• M is standard, or the group of covering
transformations of p: M ~+_M is cyclic and is ̂ transformation group
of the Seifert fibration of M induced by p: M -» M. See Theorem
(4.1). We give explicit descriptions of Seifert fibered homology 3-
spheres with fixed point free cyclic group actions.

THEOREM 2. Let po: Mo —• Mo be a regular covering of the ir-
reducible 3-manifold Mo by a homology 3-sphere Mo with group of
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covering transformations G. Then there is a sufficiently large 3-mani-
fold M containing an incompressible torus, M and MQ not homo-
topy equivalent, a regular covering p: M —> M of M by a homology
3-sphere M with the same group G of covering transformations and a
degree 1 map f:M—> MQ such that the regular covering p: M —• M
is induced from the regular covering p$: MQ -* MQ by f\M-+ MQ .

Starting with a standard covering q: S3 —> S3/G we can thus con-
struct an abundance of sufficiently large 3-manifolds containing in-
compressible tori, that admit regular coverings by homology 3-spheres
and with group of covering transformations G.

Also starting from a fixed point free action of one of the groups
Q(8n, k, /) on some homology 3-sphere MQ we can thus produce ex-
amples of sufficiently large homology 3-spheres M containing incom-
pressible tori and admitting fixed point free actions by Q(8n, k, I).

The case of G = I no, the binary icosahedral group (this is the case
of nontrivial regular coverings of homology 3-spheres by homology
3-spheres) was considered in [LSI].

2. Preliminaries. Throughout this paper we work in the PL cate-
gory. A PL homeomorphism we simply call an isomorphism. Our
reference for 3-manifold concepts is [Hel].

A 3-manifold M is irreducible if each 2-sphere in M bounds a
3-cell in M. Note that if a 3-manifold is regularly covered by a ho-
mology 3-sphere, then it is necessarily orientable (the covering trans-
formations must preserve the orientation by the Lefschetz fixed point
theorem).

A surface is a connected compact 2-manifold. A surface F in a
3-manifold M is proper if F ΠdM = dF, and it is incompressible
in M if it is not a 2-sphere or a 2-cell and if for each 2-cell D c M
with D n F = dD there is a 2-cell Do c F such that dD0 = 3D.
An orientable connected closed 3-manifold is sufficiently large if it is
irreducible and contains a 2-sided incompressible closed surface.

In [LS2] the following proposition was proved.

PROPOSITION (2.1). Let W be a compact 3-manifold with dW a
torus. Suppose there is a I-sphere Sι c dW such that H\{W) —
Z[Sι]. Then there is a connected proper 2-sided surface F c W such
that dF is a I-sphere in dW and dF intersects Sx transversally in
exactly one point.

The proof of Theorem 1 will be based on the following.
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PROPOSITION (2.2). Suppose G is a finite group with periodic coho-
mology and with minimal free period k. If G has the weak cancella-
tion property then all (G, M)-complexes with m = Ik and πm(X) =
A[G] as n^modules are homotopy equivalent.

Proof. This follows from results in [Dy], see also [LSI]. If X is
a (G, m)-complex with πm(X) = A[G], then its algebraic m-type
is (G, A[G], r) where r = r{X) e Hm+\G, πm(X)) = Z\G{ is the
k-invariant, |G| the order of G. It is a unit in Z\G\. Therefore
(r, N) is a projective ideal. It must be stably free (see Theorem 3.5
of [Dy]—the condition m > 3 is only needed for one of the directions
in this theorem). By hypothesis (r, N) is actually free. According to
Corollary (8.4) of [Dy] this means that there is only one isomorphism
class of algebraic m-types, and therefore only one homotopy type of
(G, m)-complexes with πm = A[G]. D

3. Proof of Theorem 1. In the following let G be any group from one
of the classes (I), (II), (III) or (IV), p: M -> M a regular covering with
G as group of covering transformations, M a homology 3-sphere, and
q: S3 —» S3/G the regular covering corresponding to any fixed point
free orthogonal action of G on S 3 .

If X is a space and f:X-+Y is a map let CX, SX and Cf de-
note the unreduced cone, suspension, and mapping cone respectively.

Define W to be the space W = Gx CM/(gχ, x, 0) = (g2 , x, 0).
See Figure 1.

Note that W is 3-connected since collapsing one of the cones to a
point gives a homotopy equivalence

W = SM V V SM. = β4 V V S4,.

\G\-l copies |G |-1 copies

Also note that there is a natural G-action on W defined by GxW —•

W, h (g9X,t) = (hg,h(x)9t) and that

WjG = CM/{(x, 0) = (g(x), 0)} = Cp .

\G\ copies of CM
joined along M.

M

FIGURE 1
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Since this action is fixed point free this implies that W is the uni-
versal covering space of Cp .

PROPOSITION (3.1). Cp is a ((?, 4)-complex with π4(Cp) = A[G]
(as Z[G]-modules).

Proof. The same argument as in Lemma 3.3 of [LSI] applies.

COROLLARY (3.2). Suppose the group G satisfies the weak cancella-
tion property. Then Cp and Cg are homotopy equivalent.

Proof. This follows immediately from Propositions (3.1) and (2.2).
The minimal free period of G is 2 if G is cyclic and nontrivial, and
4 otherwise. D

Note. If Ln ̂  , Lnϊ are lens spaces with fundamental groups ZΛ ,
and Pk'. S3 —• Ln^, p\: S3 —> Lnj are the universal coverings, then
CPk and CPι are homotopy equivalent. But Ln^ and Lnj are ho-
motopy equivalent if and only if kl = ±m2 (mod n) for some m
(see e.g. [Co], p. 96).

PROPOSITION (3.3). If Cp and Cq are homotopy equivalent, then
there is a map f:M-±S3/G so that:

(2) p*(πx(M)) = ker(/*: πx(M) - (?)
(3) the degree of f is relatively prime to the order \G\ of G.

Proof. Let h: Cp -> Cq be a homotopy equivalence and let /: M —•
Cp and j : S3/G -» Cq be the inclusions. Note that Cq is obtained
from S3/G by attaching a 4-cell. By the cellular approximation the-
orem we therefore can alter A by a homotopy if necessary, so that
hi(M) c S3/G. Let / = hi: M -* S3/*?. Thus we have the commu-
tative diagram

M 7 rt

1'
I'

\^p * y^q

Note that /*: πi(Af) -> πi(Cp) is an epimorphism and 7*: πι(S3/G)
—• π i ( Q ) is an isomorphism. Therefore fπχ(M) = π\(S3/G).
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Since p*πχ(M) c ker(/*: πx{M) -> G), it follows that p*πχ{M) =
ker(y*: πχ{M) —• G). Property (3) follows from the commutative
diagram

H3(M) = Z X H3(S3/G)

'•[ 4

where /*, y* are epimorphisms and h* is an isomorphism. D

Corollary (3.2) and Proposition (3.3) prove Theorem 1.

REMARK. It should be noted that a map f:M->S3/G inducing the
regular covering p: M —• M from the covering q: S3 —> S3/G can be
constructed by elementary obstruction theory. The properties (1) and
(2) are consequences of this construction. The map f:M-> S3/G
and its lift / : M —• S3 will define by coning a map h: Cp —• Cq

with K: K\{CP) —> π\{Cq) an isomorphism. This map, however, will
in general not be a homotopy equivalence (which was used to prove
property (3)).

The composite g / , where g: S3/G -* S3/G is any self map
inducing an isomorphism on π\ and having degree relatively prime
to \G\, will also satisfy the conclusions of Proposition (3.3), and this
will change deg / into the product (deg#) (deg/). We can also alter
deg / to any representative in its congruence class modulo |G | . (To
see this let B3 c M be any 3-cell. Then collapsing dB3 to a point
gives a map c: M —• Mv S2. Consider the composite

M-UMVS3 - ^ S3/G V S3/G -Z+ S3/G

where g: S3 —> 5 3/G has degree fc|G| and V is the folding map.

Then V(/Vg)/ will satisfy the conclusions of Proposition (3.3), where
now the degree is deg f + k\G\.)

4. Regular coverings of Seifert fibered 3-manifolds by homology 3-
spheres. We have the following uniqueness result.

T H E O R E M ^ . 1). Let M be a 3-manifold that admits a Seifert fibra-
tion, let p: M —> M be an non-trivial regular covering by a homology
Z-sphere, and let G be the group of covering transformations. Then
one of the following holds:

(1) Either M = S3, M = S3/G, and p: S3 -> S3/G is standard
(2) Or G is cyclic and it is a transformation group of the Seifert
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fibration of M induced by p: M —> M from the Seifert fibration on
M.

Proof. M is given the Seifert fibration induced by the regular cov-
ering p : M —• M from the Seifert fibration on M. Then G maps
fibers onto fibers.

If SQ C M is a regular fiber, then the components of P~1(SQ) are
all regular fibers.

Claim. If Sι c M is a singular fiber, then either p~ι(Sι) is con-
nected, or all components of p~ι(Sι) are regular fibers.

Proof of Claim. Suppose p~ι(Sι) is not connected and there is a
singular fiber Sι c p~ι(Sι). Since G acts transitively on the compo-
nents of p~ι(Sι) all components of p~ι(Sι) are singular fibers and
they have the same Seifert invariants. This contradicts the assumption
that M is a homology 3-sphere (see Satz 12 of [S]).

Case 1. All fibers of M are regular.

Then by the remark preceding Satz 12 of [S] M must be the 3-
sphere. Hence p : M —• M is standard.

Case 2. M has a singular fiber Sι.

Then G acts without fixed points on Sι and therefore must be
cyclic.

It remains to prove that in Case 2, G leaves the fibers setwise
fixed. Let S\, . . . , Ss, Sy+i, . . . , Ss+t denote the singular fibers in
M where p~ι{S\)9 . . . , p~ι(Ss) are the singular fibers in M and the
components of p~ι(Ss+i), / = 1 , . . . , / , are all regular fibers in M.
Let Λ/ be the number of components in ρ~ι(Ss+i), / = 1, . . . , t.

The Seifert surface of M is a 2-sphere (see [S] p. 207). Suppose
the Seifert surface of ¥ is a surface with Euler characteristic 2 — d,
d > 0. Let V\9 ... , Vs+t C M be disjoint fibered solid tori with
centers in the fibers *SΊ , . . . , Ss+ί - Then p\: M-p~l(V{U' -UVs+ί) -•
Af — (V\ U U Vs+t) is a regular covering projection. The Seifert surface
of M-p~ι(V\U' -UVs+t) is a 2-sphere with s + ̂ iH vnt holes, and
the Seifert surface of Af — (Fίu -liVs+t) has s+t holes. The covering
projection p\ induces a covering projection of, the Seifert surfaces.
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Suppose it has k sheets. Then we have the following formula for the
Euler characteristics of the Seifert surfaces:

2 - (s + nx + + nt) = k(2 - d - s - t).

Note that rtt < k, / = 1, . . . J^ Therefore, (s + d - 2)k ^j - 2.
Necessarily, d = 0. If s < 2, M must be a 3-sphere and p: M —> M
is standard.

If s > 3, then necessarily k = 1, i.e. the induced covering projec-
tion on the Seifert surfaces is an isomorphism. Therefore G leaves
each fiber of M setwise fixed, i.e. G is a transformation group of the
Seifert fibration of M (see [S], §14). D

A Seifert fibered space M has a unique geometric structure in the
sense of Thurston and there are exactly six possible geometries for M
determined by the following table (see [Scl] Theorem 5.3, p. 477):

e

e

=

Φ

0

0

χ>0

S2x

S3

R

X =

Nil

0 X<0

H2xR

SQR)

Here / is the orbifold Euler characteristic of the Seifert surface F,
e is the Euler number ofjthe Seifert bundle M —• F, and S2 x R,
S3 , E3 , Nil, H2xR, SL2(R) are the six possible universal coverings
(geometries) on which π\(M) acts by isometries. Note, both / and
e are rational numbers. If both M and F are orientable then the
Seifert invariant of M is (0, o g\b a\, β\ . . . ar, βr), and

where g is the genus of F and the (α/, /?,-), / = 1 r, are the invari-
ants of the singular fibers. See [SCI] p. 427 and p. 437 respectively.

In §12 of [S] the following is proved: If M is a homology 3-sphere
then g = 0 and the a\, . . . , ar are relatively prime in pairs. More-
over, if M Φ S3 then r > 3. Conversely, for any r > 3 pairwise co-
prime integers a\, . . . , ar > 2 there is a unique Seifert fibered homol-
ogy 3-sphere with Seifert invariant (0, o o\b a\, β\ . . . ar, βr).
We denote this homology 3-sphere by Σ ( α i , . . . , α r ) .

We have the following proposition ([Mi2], [N]).
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PROPOSITION (4.2). The geometry of ajteifert fibered homology 3-

sphere is either modelled on S3 or on SL2(R). The 3-sphere S3 and

the dodecahedral space Σ ( 2 , 3, 5) are modelled on S3. All other

homology 3-spheresJ£(a{, . . . , ar), r > 3, (αi, . . . , ar) φ (2, 3, 5)

are modelled on SL2(R).

Proof, Let M b e a Seifert fibered space with Seifert invariant (0, o

o\b ot\, β\ . . . ar, βr). Then equation (3) in §12 of [S] states that

bθί\ "-ar + β\0L2 "-ar + Oί\β2&τ> - - ar + m ' + &\ - -ar^γβr + ± 1 .

Hence e — ± l / α i -ar ψ 0 . Consequently, the only possible geome-

tries for M to be modelled on are S3, Nil, or SL2(R).

Since g = 0, χ = 2- ΣUΛ1 ~ ι/ai) I f M i s n o t ^ 3 t h e n r ^ 3

and it is easy to show the following

(1) χ > 0 only for the unordered triples (2, 2, n ) , ( 2 , 3 , 3 ) ,

( 2 , 3 , 4 ) and ( 2 , 3 , 5 )

(2) χ = 0 only for the unordered triples ( 2 , 3 , 6 ) , ( 2 , 4 , 4 ) ,

( 3 , 3 , 3 ) and for the 4-tuple ( 2 , 2 , 2 , 2 ) . The only homology 3-

sphere in this list comes from ( 2 , 3 , 5 ) since all of the other un-

ordered r-tuples (a\, . . . , ar) are not relatively prime in pairs. D

The homology 3-spheres Σ(aι > > ar) > r > 3, have representa-
tions as follows (see [N]).

Let ctjj e C, ί = 1, . . . , r - 2, j = 1, . . . , r, be such that every

(r - 2) x (r - 2) submatrix of the (r - 2) x r matrix A = (α ί ; ) is

non-singular. Then

f^(αi , . . . , ar)

= {(zι, . . . , zr) e Cr: anz
a^ + + α / r z/ = 0, / = 1, . . . , r - 2}

is a complex algebraic surface which is non-singular except at 0. Let

S2r~ι = {(zΪ9 ... , zr) eCr: | z ! | 2 + + \zr\
2 = 1} be the unit sphere

in C .

Then

In particular, the diίfeomorphism type of Σ(a\, . . . , ar) is indepen-

dent of the matrix A .

If r = 3, we may choose 4̂ = (1, 1, 1) and obtain

! , a2, α3) - {(Z!, z 2 , z3) G C 3 : z^ + z^2 + z^3 = 0} ΠS5.
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Let G = Ίjn be a cyclic group and suppose that n is relatively prime
to each of a\, . . . , ar. Then Zrt acts on Σ ( α i > > α r) without fixed
points as a transformation group of the Seifert fibration as follows:

( f , (ZX , . . . , ZΓ)) —• ( ί ^ i ' Z ! , . . . , <*«/<VzΓ)

where ί is a generator of Zn , α = c*i αΓ and ξ is a primitive nth
root of unity. We call any conjugate of this action a standard action
of Zn on the homology 3-sphere Σ ( α i > > α r) •

PROPOSITION (4.3). Lei G be a group acting fixed point freely on
the homology 3-sphere Σ ( α i > > α> ) 7%en G = Zn and the action
is standard.

Proof. Σ ( α i > 9 ar)/G has a Seifert fibered structure (see [Sc2]
p. 35). By Theorem (4.1), G = Zn is a transformation group of the
Seifert fibration of Σ(c*i, . . . , α r) induced by the regular covering
p: Σ ( « i > > ar) -* Σ ( « i > > ^ r ) / ^ . But the Seifert fibration of
Σ ( α i > 9 ar) is unique (see [S] Satz 12). D

Thus we have the following

COROLLARY (4.4). Let M be a Seifert fibered 3-manifold and let
p: M —• M be a regular covering by a homology 3-sphere with cyclic
group of covering transformations. Then either M = S3 or M =
Σ ( α i 9 - - - 9 ar) and the action is standard.

5. Proof of Theorem 2. Let W be an irreducible orientable compact
3-manifold with dW a torus and with H\(W) = Z, W not a solid
torus, (e.g. let X be any irreducible homology 3-sphere with π\(X) Φ
1 and 5 ] c l a 1-sphere not nullhomotopic in J , o r X = 5'3 and
Sι c S3 a knot. Then FT = JT-tfOS 1), where JV^S1) is a regular
neighborhood of Sι in X, is such an irreducible orientable compact
3-manifold). Note that dW is incompressible in W. By Proposition
(2.1) there is a connected proper 2-sided surface F c W such that dF
is a 1-sphere in dW, and d i 7 intersects Sι transversally in exactly
one point. Let dW = Sι x dF be such that [S1] is a generator of

By a result of [Ha], there is a 1-sphere SQ C M O which is null ho-

motopic in MQ and such that C = MQ — N(SQ) is a fiber bundle over
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a 1-sphere with fiber a proper surface Fo, where N(SQ) = SQ X D% is
a regular neighborhood of SQ in MQ . Note that C is irreducible and
the torus dC is incompressible in C . Let g: [W, dW) -> (N(S^),
ΘN(SQ)) be a map such that g\: dW —• ΘN(SQ) is an isomorphism,
g(F)=Dl and ^ [ S 1 ] = [ ^ ] in Hχ(dN(S^)). Define

and the map / : M —> A/Q by

The closed 3-manifold M is orientable, irreducible and the torus
dW = dC is incompressible in M . The map / : Λf -+ MQ has
degree 1. _^

Let p: M -^M be the regular covering induced from the regular
covering p$\ MQ —> Λf0 by the degree 1 map / : M —• A/Q . The same
Mayer-Vietoris sequence argument as in the proof of Theorem (5.1)
of [LSI] applies to prove that M is a homology 3-sphere.

Lastly, Λf and MQ cannot be homotopy equivalent since π\{M)
and πι(Mo) cannot be isomorphic. To see this, note that /*: n\(M) ->
πi(Afo) is an epimorphism with ker(/*) ^ 1. Thus if πi(Af) =
πi(Af0), then πi(Af) = 7Γi(Λf)/ker(/*) and πi(Af) is not Hopfian.
But M is sufficiently large and therefore π\(M) is residually finite
and hence Hopfian (see [He2]), a contradiction. D

REMARK. Since M is orientable and irreducible it follows from a
result of [Du] that M is also irreducible.
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