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INDICES OF UNBOUNDED DERIVATIONS
OF C*-ALGEBRAS

EDWARD KISSIN

The paper studies some properties of /-symmetric representations
of *-algebras on indefinite metric spaces. Making use of this, it de-
fines the index md(δ,S) of a *-derivation δ of a C*-algebra si
relative to a symmetric implementation S of δ . The index consists
of six integers which characterize the /-symmetric representation %s
of the domain D(δ) of δ on the deficiency space N(S) of the op-
erator S. The paper proves the stability of the index under bounded
perburbations of the derivation and that, under certain conditions on
δ, ind(c), S) has the same value for all maximal symmetric imple-
mentations S of δ . It applies the developed methods to the problem
of the classification of symmetric operators with deficiency indices
( 1 , 1 ) .

1. Introduction and preliminaries* Let si be a C*-subalgebra of
the algebra B(H) of all bounded operators on a Hubert space H. A
closed *-derivation δ from si into B{H) is a linear mapping from
a subalgebra D(δ) dense in si into B(H) such that

(i) δ(AB) = δ(A)B + Aδ(B)9

(ii) A e D{δ) implies A* e D{δ) and δ(A*) = δ(A)*,
(iii) An E D(δ), An -> A and J(v4w) -^ B implies ^ G Z)(ί) and

δ(A)=B.

An operator S on H implements δ if 2)(5) is dense in H and

ΛD(S) c D(S) and ί(^)jzχ5) = i[S, ^ ] b w = ι ( 5 ^ - ^ S ) ^

for all 4̂ e Z)(5). If Γ extends S and also implements δ, then Γ
is called a δ-extension of 5 . If *S is symmetric and it does not have
symmetric ^-extensions, it is called a maximal symmetric implemen-
tation of δ.

The case when a symmetric operator S implements the zero deriva-
tion on si , i.e., SA\D^ — AS\D($), A esf , was extensively investi-
gated (see, for example, [6], [21], [22]). Different sufficient conditions
were obtained for S to have a self adjoint extension T which com-
mutes with si.

The problem of (J-extension of a symmetric operator S which im-
plements a derivation δ on si has been addressed in a number of
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papers (see, for example, [7], [9]). In [9] it was proved that any
*-derivation δ from sf into B(H) implemented by a symmetric op-
erator has a maximal symmetric implementation S. The link between
the deficiency indices n+(S) and ri-(S) of S and finite-dimensional
irreducible representations of sf was investigated. This led to intro-
duction in [10] of the set M(δ, sf) of all pairs (n+(S), n-(S)) where
S are maximal symmetric implementations of δ .

The investigation of symmetric implementations of derivations δ is
deeply related to the investigation of /-symmetric representations of
their domains D(δ) on indefinite metric spaces (see [8], [9], [10]). The
nature of this relation can be easily seen from the following remarks.

If S is a symmetric operator and 5* is its adjoint, then

D(Sη = D(S) + N-(S) + N+(S),

where Nd(S) = {x e D(S*): S*x = idx), d = ± , are deficiency
spaces of S. The numbers n±(S) = dimN±(S) are called the de-
ficiency indices of S. We define a scalar product on D(S*) by the
formula:

{x,y} = (x,y) + (S*x,S*y).

Then D(S*) becomes a Hubert space and

D(Sη = D(S) Θ N-(S) Θ N+(S)

is the orthogonal sum of the subspaces D(S), N-(S) and N+(S)
with respect to { , } . Let N(S) = N-(S) Θ iV+(5) and let Q be the
projection on N(S) and Q+ be the projection on N+{S) in D(S*).
Set / = 2Q+ - Q. Then / is an involution on N(S) and N(S)
becomes an indefinite metric space Π^ (k = min(π+(AS), Π-(S)) with
the indefinite scalar product

[χ,y]s = {Jχ,y}9 χ,yeN(S).

Now if S implements a *-derivation δ from J / into JB(//) it
follows easily that D(δ) acts on D(S*) as an algebra of bounded
operators. Since D(S) is invariant for D{δ),

πs(A) = QAQ, AeD(δ),

is a representation of D(δ) on ^ ( 5 ) . It was proved in [9] that π̂ -
is a /-symmetric representation of D(δ) on N(S) and that there is
a one-to-one correspondence between symmetric ^-extensions of S
and null subspaces in N(S) invariant for π^. If & is a maximal
implementation of δ, then π^ does not have null invariant subspace
in N(S).
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Because of the close relation between derivations of C*-algebras
implemented by symmetric operators and /-symmetric representa-
tions of *-algebras on indefinite metric spaces the study of such rep-
resentations becomes very important. Section 2 is devoted to this
study. For every /-symmetric representation π we introduce a sex-
tuple ind(π) = (/c+, k-, d+(π), d-(π), z+(π), i-{n)) which we call
the index of π.

Powers [16] considered £o-semigroups oct of *-endomorphisms of
B{H) which have strongly continuous semigroups U{t) of intertwin-
ing isometries ("spatial" semigroups). If d is the generator of U(t),
then S = id is an unbounded maximal symmetric operator, i.e.,
Π-(S) = 0, and it is a maximal symmetric implementation of the
generator δ of at. Therefore, N{S) = N+(S) is a Hubert space, πs

is a ^representation of D(δ) on N(S) and (0, n+(S)) e M(δ,sf)
where si is the closure of D(δ). Powers [16] defined the index of at

as the maximal number of non-zero mutually orthogonal projections
in the commutant of πs(D(δ)). The examples of CAR-flows [16]
show that n+(S) = oo for all of them and that the index has values
i = 1,2, In [17] Powers and Robinson gave another definition
of the index which is independent of the existence of intertwining
semigroups of isometries. Arveson [2] and [3] used another approach
to this index theory for iso-senώgπnips based on the notion of con-
tinuous tensor product systems. He showed that for "spatial" semi-
groups the Powers-Robinson index can be associated with an integer
ι = l , 2 , . . . .

Jorgensen and Price [8] studied the variety Ψ of all operators
V: H H+ N{S) such that VA = πs(A)V, A e D{δ) 9 and showed
that Ψ' has a unique scalar form which turns "V into an indefinite
metric space. They introduced the F-index as the Krein dimension
of <V.

In this paper we associate the index ind(£, S) with every sym-
metric implementation S of a derivation δ. In order to do this we
consider the /-symmetric representation π^ of D{δ) and we define
ind(<5, S) = ind(π^). If n-(S) = 0, so that S is a maximal symmetric
operator, then

ind(δ,S) = (n+(S),0, n+(S), 0, i+(πs),0)

where i+(πs) is the Powers index and d+{πs) = n+{S). If

min(/2+(5f), n-(S)) < oo

and if Us extends to a bounded representation of sf (for example,
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if si is commutative), we show that d+(πs) — n+(S) and d-(%s) =

Theorem 3.6 proves that ind(<5, S) is stable under perturbations of
δ of the form

where B is a bounded selfadjoint operator, i.e.,

ind(<J, S) = inά(σ9S + B).

Every derivation implemented by a symmetric operator has an in-
finite number of maximal symmetric implementations. Therefore the
question arises as to whether the index ind(δ, S) may be the same
for all such implementations. In [10] it was shown that if δ has a
minimal symmetric implementation T (if si contains the algebra of
all compact operators, any closed derivation of si has such an im-
plementation [10]) and if min(/2_(Γ), n+(T)) < oo, then all maximal
implementations of δ have the same deficiency indices. In this pa-
per we show that in this case ind(<5, S) = ind(£, S\) for all maximal
symmetric implementations S and S\ of δ.

Theorem 3.2 investigates the link between the deficiency indices
of maximal symmetric implementations S of δ and dimensions of
irreducible representations of si . It improves the result of [9] and,
in particular, it shows that if 1 e si and if max(n+(S), Π-(S)) < oo,
then there are disjoint sets of irreducible representations {π;}f=1 and

{Pj}%\ o f & s u c h t h a t

P

n+ (S) = ̂ 2 d i m π/ and Π- (S) = ̂  dim pj.
i=l 7 = 1

If max(«+(5 t), n-(S)) = oo and k = mm{n+{S), n-(S)) < oo and if
πs extends to a bounded representation of si (1 Esi), then there are
irreducible representations {π/}^ of si such that A: = ΣP

i=ϊ dimπ/.
Every densely defined symmetric operator S has a *-algebra ^

associated with it: &s = {A e B(H): A and A* preserve D(S) and
(ιS^4-AS)|£(s) extends to a bounded operator}. The closure sis of £%$
is the maximal C*-subalgebra of B(H) such that *S generates a closed
*-derivation ^ of sfs i n t 0 ^ ( ^ ) a n d that D(δ$) = 3$s - I n Section 4
we make use of the results of Section 3 and associate a number β(S)
with every symmetric operator S such that n+(S) = n-(S) = 1 and
such that the representation πs of the algebra 3SS on N(S) does not
have null invariant subspaces. We obtain that 0 < β(S) < 1 and that
β(S) = β[T) if S and T are isomorphic.
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It is well-known (see, for example, [1]) that up to isomorphism there
is only one symmetric operator with the deficiency indices (1,0) and
only one with the deficiency indices (0, 1). The variety of symmet-
ric operators with the deficiency indices (1, 1) is much greater. All
symmetric differential operators

Sa = i-jL , D(Sa) = {y(x): y and y' in L 2(0, a), y(0) = y(a) = 0},

0 < a < oo, have n+(Sa) — Π-{Sa) = 1. Schmudgen [19] showed that
Sa and Sb are not isomorphic if a φ b .

Theorem 4.2 investigates the structure of the representations π$ of
the algebras 3S$ on N(Sa) and shows that β(Sa) = e~a. This pro-
vides us with another proof of Schmudgen's result and also shows that
β(S) takes all values in the interval [0, 1). The question arises as to
whether β(S) classifies up to isomorphism all the symmetric opera-
tors S such that n+(S) — n-(S) = 1 and such that the representations
π^ do not have null invariant subspaces.

2. /-symmetric representations of *-algebras. In this section we
consider /-symmetric representations of *-algebras in indefinite met-
ric spaces. For the benefit of the reader and for the sake of being
reasonably self-contained, we call attention to the references [12, 15]
and provide some amount of detail about indefinite metric spaces and
/-symmetric representations.

Let / be an involution on a Hubert space H, i.e., /* = / and
J2 = l . With the indefinite scalar product

[x,y] = (Jχ,y), χ , y eH,

H becomes an indefinite metric space. A subspace L in H is called
(a) nonnegative if [x, x] > 0 for all x e L,
(b) positive if [x, x] > 0 for all X G L , X Φ 0,
(c) uniformly positive if there exists r > 0 such that [x, x] >

r(x, x) for all x £ L,
(d) null if [x, JC] = 0 for all xeL.

The concepts of nonpositive, negative, uniformly negative subspaces
are introduced analogously.

Set Q = (/ + l)/2. Then H = H+ θ H-, Q is the projection
onto //+, 1 - Q is the projection onto H- and [x, x] — [x, x)
if i E ff+ and [x, x] = —(x,x) if x e H- . Therefore H+ is
uniformly positive and H- is uniformly negative. Let kd —
d = ± and let k = min(/c_ ,/:+). Then H is called a Π^-space.
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Law of inertia [12]. If L is a maximal nonnegative (nonpositive)
subspace of H, then

dimL = /c+(/c_).

A representation π of a *-algebra ^ into 2?(i/) is called /-
symmetric if for all AEJ/ and for all x, y in H

(1) J π μ * ) = π ( 4 ) V , so t h a t [π(A)x 9y] = [x, π(A*)y].

If a subspace L of H is invariant for π, then by π^ we denote
the restriction of π to I .

/-symmetric representations π and p of a *-algebra J / on // and
^ respectively are called J-equivalent if there is a bounded operator
ί/ from H onto ΛΓ such that Uπ = pU and such that

[C/x, Uy] = [x,y] for all x, y e 7/.

For every subspace L in H the subspace

ZW = { y e / ί : [x,y] = 0 for all J C G L }

is called J-orthogonal complement of L.

It is well-known that there always exists the decomposition

H = L®L±, L^ = {xeH: (y, x) = 0 for all y e L}.

In an indefinite metric space the decomposition

(2) H = L[+]LM

(the symbol [+] means that the sum is direct and the summands are
/-orthogonal) does not always exist.

THEOREM 2.1 ([12]). Let J be an involution on H. Then H =
H+ Θ //_ where Q — (J + l)/2 is the projection onto H+ . Let kd —
dim Hd, d = ±.

(i) Let L be a nonnegative {nonpositive) subspace of H. The de-
composition (2) holds if and only if L is uniformly positive {negative).

(ii) If L is an indefinite subspace, then (2) holds if and only if L
decomposes into a direct sum of two uniformly definite subspaces.

(iii) {Iohvidov and Ginzburg, see [12], page 118). Let k+ = oo.
ΓΛeft all the positive subspaces of H are uniformly positive if and only
if k- < oo.

For Π^-spaces (k < oo) Shulman [20] obtained the following strong
result.
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THEOREM 2.2. If n is a J-symmetric representation of a C*-algebra
$/ on a Yl^-space H (k < oo), then there are maximal negative and
maximal positive subspaces N and P respectively such that H =
N[+]P and such that N and P are invariant for π. The representa-
tion π is similar to a ^-representation of stf .

Let π be a /-symmetric representation of a *-algebra sf on H,
let P be a positive invariant subspace of H and let N be a negative
invariant subspace of H. Define scalar products on P and N by the
formulas:

(χ,y)p = [χ,y]> χ,yeP, and (χ9y)N = -[χ,y]> χ,yeN.

Then P and TV become pre-Hilbert spaces. Set p = πp. Since

(p(A)x, y)P = [π(A)x ,y] = [x, π(A*)y] = (x, p(A*)y)P,

/? is a ^representation of J / o n P . Similarly, πN is a ^representa-
tion of sf on TV.

If P and TV are uniformly positive and uniformly negative, then
they are Hubert spaces and there are positive r and q such that

( 3 ) r\\x\\2 < \\x\\2

P < \\x\\\ xeP, where \\x\\2

P = (x9x)P,

βflWI2<IWlΛΓ<IWI2, xε N, where \\x\\2

N = (x, x)N.
We have that

\\p(A)\\2

P = sup((p(A)x, p(A)x)P/(x9x)p)

= sup((Jπ(A)x, π(A)x)/(x9x)P)

<sup(\\π(A)x\\2/r\\x\\2)

= \\π(A)\\2/r.

THEOREM 2.3. Let L and M be uniformly positive (negative) sub-
spaces of H invariant for π.

(i) If M Π L^ = {0}, then there is an invariant subspace K in L
such that the representations %M and π# are equivalent, i.e., there is
an ίsometry U from M onto K with respect to the norms \\\\M and
\\\\κ such that UUM(A) = πκ(A)U for all A e srf. If in addition,
L Π Af[J-i = {0}, then the representations %M and π^ are equivalent.

(ή)IfL and M are maximal uniformly positive (negative) invariant
subspaces, then the representations %M and %κ are equivalent.

Proof. Let L and M be uniformly positive. Then, by (3), for x
in L and y in M ,

(4) \[χ9 y]\ = \{Jχ,y)\ < \\χ\
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Since M n L [ ± ] = {0}, for every y Φ 0 in M there is x in L
such that [x, y] Φ 0. Therefore y generates a non-zero bounded
functional fy{x) = [x, y] on L. Since L is a Hubert space, there
exists a linear operator S from M into L such that KerS = {0}
and such that for all x in L and y in Λf,

[x, y] = (x, Sy)L.

Let AT be the closure of the linear manifold {Sy: y e M} . Then

(x ? πL(A)Sy)L = (πL(A*)x, Sy)L = [πL(A*)x,y]

= [π{A*)x ,y] = [x, π{A)y] = [x, πM(A)y]

= (x, SπM(A)y)L,

so that 71L{A)S\M = SUM{A)\M for all A in s/. Therefore K is
invariant for π and UKS\M = S^MIM

Let now yw converge to 0 in M with respect to || \\M and let Syn

converge to x in L with respect to || \\L. Then, by (4),

|<JC, Syn)L\ = \[x,yn]\ < \\x\\L\\yn\\M/(rLrMΫ/2,

so that (x, ASJ^L converge to 0. Therefore (x, X)L = 0, SO that
x = 0. Thus S is a closed operator. Since it is defined on the whole
space M, it is bounded. From this and from Gelfand's and Naimark's
theorem [13, §21] it follows that there is an isometry U from M onto
K such that KKU = UUM .

Let, in addition, L Π MW = {0}. Then, for every x φ 0 in L,
there is y in M such that [x, y] ^ 0. Therefore imS is dense in
L, so that K = L. Part (i) is proved.

Let L be maximal uniformly positive. By Theorem 2.1(i), H =
Lt+JL^l . If i? = M n ZJ-1! ^ {0}, then R is a uniformly positive
invariant subspace in L ι ± 1 . Therefore L is not maximal. This contra-
diction shows that M n L^ = {0}. If M is also maximal uniformly
positive, then, similarly, L Π M[J-] = {0} . Therefore part (ii) follows
from part (i).

DEFINITION. Let π be a /-symmetric representation of a *-algebra
j / o n a Π^-space //, where k = min(/:_ , k+). If P is a uniformly
positive subspace in H invariant for π, then we define /+(P) as the
maximal number of non-zero mutually orthogonal projections in the
commutant of πp(s/) in P and we set d+(P) = dim P . Set

d+(π) = sup rf+(P) and /+(π) = sup /+(P)
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where &> is the set of all uniformly positive invariant subspaces in
H. Similarly, we define numbers d-{π) and i~(π) by considering
the set JV of all uniformly negative invariant subspaces in H. We
shall call the sextuple

ind(π) = (k+, fc_ , d+{π), d-(π), i+(π), ι'-(π))

the index of π .
By law of inertia, d+{π) < k+ and d-(π) < k-. It is clear that

if representations π and p on spaces /f and K respectively are J-
equivalent, i.e., there exists a bounded operator T from H onto K
such that [Γx, Ty] = [x, y], x,y e H, and such that pT = Tπ,
then ind(π) = ind(p).

THEOREM 2.4. (i) Lei H be a separable Πk-space and let L be
a uniformly positive invariant subspace. Then there exist uniformly
positive invariant subspaces {Lj} such that L c Lj, that Lj c L ; + i

and such that d+(π) = lim7_^oo<i-f(L7) am/ /+(π) = l im/-^ i+(Lj).
The same holds if L is a uniformly negative invariant subspace.

(ii) If there is a uniformly positive invariant subspace M such that
d+{M) = d+(π) and that i+(M) — i+(π), then any uniformly positive
invariant subspace L is contained in a uniformly positive invariant
subspace P such that d+(P) = d+{π) and that i+{P) = i+(π). The
same holds if M is uniformly negative.

(iii) Let H be a Πk-space such that k < oc and let π not have
null invariant subspaces. Then there exist maximal uniformly positive
and maximal uniformly negative invariant subspaces P and N in
H such that d-(π) = d-(N), ί_(π) = i-(N), d+(π) = d+(P) and

Proof. Let L be uniformly positive. If i+(L) < /+(π), then there
exists a uniformly positive invariant subspace M in H such that
i+(L) < i+(M). Set R = M n L^ . If R = {0} , then it follows from
Theorem 2.3(i) that %M is equivalent to a subrepresentation of UL -
Therefore i+(M) < i+(L). This contradiction shows that R Φ {0}.
Set K — L[+]R. Then K is a uniformly positive invariant subspace,
L C K and MnK^ = {0}. By Theorem 2.3(i), d+{M) < d+(K)
and i+(M) < i+{K).

If /+(π) = oo, then ^+(π) = oc. Since H is separable, there are
uniformly positive invariant subspaces {Mj} such that

i+(π) = lim
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Using the construction above, we obtain uniformly positive invariant
subspaces {Lj} such that Lj c Lj+\ and that /+(M/) < /+(£/)•
Therefore

/+(π) = lim /+(£/) = ex).
j->oo

Then obviously
lim d+(Lj) — d+{π) = oc.

If /+(7r) < oo, then, making use of the construction at the beginning
of the theorem, we obtain a uniformly positive invariant subspace P
such that L c P and that /+(P) - /+(π). If rf+(P) < rf+(π), then
there is a uniformly positive invariant subspace M such that d+(P) <
d+{M). Using the construction at the beginning of the theorem, we
obtain a uniformly positive invariant subspace K such that P c K
and that d+(M) < d+(K). Repeating this process, if necessary, we
conclude the proof of part (i).

Part (ii) follows easily from the construction at the beginning of the
theorem.

Assume that k = /c_ . Let {L/} be the uniformly positive invariant
subspaces as in part (i). Let P be the closure of \Jj Lj . Then P is a
nonnegative invariant subspace. Since π does not have null invariant
subspaces, it follows from Lemma 2.3(iii) [11] that P is positive. By
Theorem 2.1 (iii), P is uniformly positive. Therefore

d+(π) and i+(P) = i+(π).

The theorem is proved.

REMARK 2.5. Even if 0 < k = min(k-, fc+) < oc, one may find
that either one or both of the numbers d-(π) and d+{π) equals 0.
If, however, j / is a C*-algebra, then, by Theorem 2.2, H = N[+]P
where JV and P are respectively maximal uniformly negative and
maximal uniformly positive invariant subspaces. Then, by Theorem
2.4(iii) and by Law of inertia, d-(π) = dim TV = k- and d+(π) =
dim P = k+ . If H = JVi[+]Pi is another decomposition of if, then,
by Theorem 2.3, the representations π̂ y and π^ are equivalent and
the representations πp and πp are equivalent.

Let π be a /-symmetric representation of a *-algebra si on if and
assume that ϋ = iV[+]P where N and P are respectively uniformly
negative and uniformly positive invariant subspaces of H. Let L be
a maximal null invariant subspace in H. Then

L = {x + Tx: X G L }
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where L_ is a closed subspace of N invariant for π, T is an isometry
from L_ into P ((Tx, Ty)p = (x, y)κ) and

(5) π{A)T\L_ = Tπ(A)\L_ for all A in J / .

Set

L + = {Γx: J C G L } , 7VL = 7VnL[J-] and P L = P n L [ J - ] .

From (5) it follows that the representations πL and π^ are equiv-

alent. We also have that

N = NL[+]L., P = PL[+]L+ and L^ = NL[+]L[+]PL.

The subspaces NL and P^ are invariant for π.

THEOREM 2.6. Let π bea J-symmetric representation of a *-algebra
srf on H and let H = N[+]P where N and P are respectively uni-
formly negative and positive invariant subspaces. Let L and K be
maximal null invariant subspaces, so that L — {x + Tx: x G L-} and
K = {x + Rx: xe K-}. Then

(i) The representations πι , n% , π^ and π^ are equivalent.

(ii) If πι is a finite orthogonal direct sum of irreducible represen-
tations of srf, then the representations π^L and π^κ are equivalent
and the representations πp and πPκ are equivalent.

Proof. Set M = LnK. Then M = {x + Tx: x e M__} where

M_ = {x e L_ Π K-: Tx = Rx} . Set

X = L_(-)M_ and Y = K-{-)M-.

Then X and Y are closed subspaces in N. Since L and K are
invariant for π, M is invariant for π, so that M_ is invariant for
π. Since L_ and K_ are invariant for π, X and Y are invariant
for π.

The subspace K Π L^ is a null invariant subspace and M c
K Π Lf±]. If K Π LW ^ M ? then L[+](A: Π LW) is a null invari-
ant subspace larger than L. Since L is a maximal null invariant
subspace, K n L^l = Af. Similarly, L n K^ = M .

Define a form <2(x, y) on I x F by the formula:

If for some i i n l , Q(x, y) = 0 for all y in 7 , then
so that x G M_ . This contradiction shows that Q(x, y) is nonde-
generate. Since T and i? are isometries, we have that

\Q(χ,y)\<\[χ,y]\
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Therefore for every 3; in F , f(x) = Q(x, y) is a bounded functional
on X. Hence there exists a bounded operator S from Y into X such
that

Q(x,y) = {x,Sy)N, xeX,yeY.

Since Q(x, y) is nondegenerate, Ker(S) = {0} and Im(S) is dense
in X. Since T and i? commute with π,

(x, Sπ^J^ΛΓ = Q(x, π(^)y) = [x + Γx, π(Λ)y + Rπ(A)y]

= [x + Tx,π(A)(y

= [π(A*)x + Tπ(A*)x, y + Ry]

= Q(π(A*)x,y) = (π(A*)x,Sy)N.

Hence

= -[x9π(A)Sy] = (x,π(A)Sy)N.

Therefore Sπ(A)\γ = π(^4)AS|y. From this and from Gelfand's and
Naimark's theorem [13, §21] it follows that there is an isometry U
from Y onto X such that Uπ(A)\γ = π(A)U\γ. Therefore the rep-
resentations UL_ and %κ_ are equivalent. Similarly, the representa-
tions UL+ and πχ+ are also equivalent. Since the representations UL_
and πL are equivalent, part (i) is proved.

In order to prove part (ii) we shall prove the following lemma.

LEMMA 2.7. Let π and p be equivalent ^-representations of a
*-algebra s/ on Hubert spaces H and K respectively. Let H\ be
an invariant subspace of H such that the representation π\ = %HX is
irreducible and let K\ be an invariant subspace of K such that the
representation p\ = pκx is irreducible. If π\ and p\ are equivalent,
then the representations πjjeH^ and pκeκι are equivalent.

Proof. Let U be an isometry from H onto K such that Uπ(A) =
p(A)U for all A in sf. If UH\ = K\, the proof is obvious. Let
UHi φ Kx, let H2 be the closed span of Hi + U~ιKι and let K2 be
the closed span of K\ + UH\. Then H2 is invariant for π, K2 is
invariant for />, UH2 — K2 and Uπ\π = pU\n2. Therefore UHQH2

is equivalent to pκeκ2 I n order to prove the lemma it is sufficient to
show that the representations ππ2eHx and pκ2eκx are equivalent.

Since H\ and H2 are invariant for π , H2 θ H\ is invariant
for π. Let L and M be subspaces invariant for π. Set L =
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(LvM)θM and M = Lθ(LnM). It follows from Proposition 2.1.5
[18] that the representations π~ and π~ are equivalent. Substituting

U^xKχ for L and Hx for M we obtain that Z = ΛΓ2 θ H{ and that
Λf = U~ιKι θ (U~1K\C)Hι). Since πi and /?i are irreducible and
since UH{ φ Kλ, U-ιKxnHx = {0}. Thus Λf = £ / - % and the
representations ππ2eHλ and nu-ικ are equivalent. Similarly, we ob-
tain that the representations nκ2eκx and %un are equivalent. Since
U\ and /?i are equivalent, the representations %UHX and 7iv-iK are
equivalent. Therefore nn2eHx is equivalent to nκ2eκι The lemma is
proved.

We shall now continue the proof of Theorem 2.6. From Lemma
2.7 it follows that if τt\ and p\ are finite orthogonal direct sums
of irreducible representations, then the representations π/yθjy and
Pκeκ{ are equivalent.

Since N = NL[+]L_ = # * [ + ] # _ , it follows from (i) that the repre-
sentations πχL and πχκ are equivalent. Similarly, the representations
πpL and πpκ are equivalent. The theorem is proved.

3. Indices of derivations of C*-algebras. In this section we apply
the results of Section 2 to bounded and unbounded *-derivations of
C*-algebras implemented by symmetric operators.

Let H be a Hubert space, let δ be a closed *-derivation of a C*-
subalgebra si of B(H) into B(H) and let a symmetric operator S
implement δ, i.e.,

iίZ)(5) c D(5) and δ(A)\D{S) = i[S, A]\D{S) for all A e D(δ).

Recall that D(S*) becomes a Hubert space with respect to the scalar
product

{x,y} = {x,y) + (S*x,S*y), x,ye D(S*),

and that
£>(£*) = D(S) θ N+(S) θ N-(S)

is the direct orthogonal sum of the subspaces D(S)9 N+(S) and
N-(S) with respect to this scalar product. The subspace N(S) =
N-(S)®N+(S) becomes an indefinite metric space with the indefinite
scalar product

[x,y]s = {Jx,y}9 x,yeN(S),

where / is the involution on N(S) defined in §1. Then dim ^ ( 5 ) =
n(i(S)9 d = ± , are the deficiency indices of S, and we have that



138 EDWARD KISSIN

[x,x]s = 2(JC, JC) > 0 if x e N+(S), and [JC, x]s = -2(x, x) < 0 if
x G N-(S). Thus N(iS) decomposes into a simultaneously orthogonal
and /-orthogonal sum N(S) = N+(S) + N-(S)9 where N+(S) and
N-(S) are respectively uniformly positive and negative subspaces in
N(S).

It follows easily that for every A in D(δ)

AD(S*)CD(Sη and ^ ) | D ( r ) = i[S*, A]\D{S*y

Set | | |JC|| |2 = {*,*} for x e D(S*). Then

(6) IpxHI2 = (Ax, Ax) + (S*Ax,S*Ax)

= \\Ax\\2 + (AS*x,AS*x)

+ (δ(A)x, 2 2 2 2

Therefore D{δ) acts as an algebra of bounded operators on D(S*).
Let Q be the projection onto N(S) in D(S*). Since /^(S) is invariant
for Z)(J), we have that

AeD{δ)9

is a representation of Z)(<J) on N(S).

THEOREM 3.1 ([9]). (i) (cf. [8]) π^ /.s1^ J-symmetric representation
of D(δ) onto N(S).

(ii) There is a one-to-one correspondence between closed symmetric
δ-extensions of S and closed null subspaces in N(S) invariant for π$.

(iii) There is a maximal symmetric implementation T of δ which
δ-extends S. The representation %τ does not have null invariant sub-
spaces in N(T).

(iv) Let S be a maximal symmetric implementation of δ. If

max(ft_(S), n+(S)) < oc

or if 'si is commutative and min(n_(S), n+(S)) < oc then π$ extends
to a bounded representation of stf onto N(S).

Let P and Λ̂  be respectively uniformly positive and uniformly
negative subspaces in N(S) invariant for π$. Then they become
Hubert spaces with respect to the scalar products (x, y)P = [JC , y]s,
x,y e P, and (x, y)N = -[x, y]s, x, y e N. Let πP and πN be
the restrictions of the representation π$ to P and JV respectively.
Then πp and π̂ v are *-representations of D(δ).

From Theorems 2.2 and 3.1 we obtain the following theorem.
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THEOREM 3.2. Let S be a maximal symmetric implementation of
δ and let n = min(ft_(S), n+(S)) < oc.

(i) Let D(δ) = si {δ is a bounded derivation) or let π$ extend to a
bounded J-symmetric representation of si . Then

(1) N(S) = N[+]P where N and P are respectively uniformly
negative and uniformly positive subspaces invariant for πs

(2) Let Z be the maximal subspace in N(S) such that πs\z = 0 (if
for example, lesi, then Z = {0}.) Then either Z c P or Z c N.

(3) Assume that n = n-(S). Then there are finite-dimensional irre-
ducible representations {τti}p

i=ι of si such that

©*/, ifzcp,

(li®*i)®*s\z, ifZQN.

If also n+ (S) < oc, then there are finite-dimensional irreducible
representations {pjjj1^ of si such that

The sets {π, } α/irf {/?7} are disjoint.
(ii) Lei D(ί) ^ J / απJ let πs be nondegenerate. If N(S) is the

closure of N[+]P where N and P are respectively negative and posi-
tive closed subspaces invariant for πs, then πs extends to a bounded
representation of si and N(S) = N[+]P.

Proof It follows from (6) that | p | | | 2 < | | ^ | | 2 + ||<5(Λ)||2, where
|||^4||| is the norm of an operator A in D(S*) with respect to the
scalar product { , }. If D(δ) = si, then, since δ is closed, δ is
bounded. Therefore

Since \\πs(A)\\ < | | | β | | | 2 | | M | | | = | p | | | ? πs is a bounded representa-
tion of si . Since min(n_(5), w+(5)) < c», it follows from Theorems
2.1 and 2.2 that N(S) = N[+]P, where N and P are respectively
uniformly negative and uniformly positive invariant subspaces. Part
(i)(l) is proved.

I f x + y e Z , x e N, y e P, then πs(A)x = 0 and πs(A)y = 0.
Since Z is maximal, x and y belong to Z . Therefore Z = ZN\+\ZP

where Z# = ZnN and Zp = ZπP. Since £ is a maximal symmetric
implementation of δ, by Theorem 3.1(iii), π^ does not have null
invariant subspaces. Therefore either Z c JV or Z c P. Part (i)(2)
is proved.
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Let n = n~(S) and let Z c N. Then the representation π$ is
nondegenerate on TV θ Z and *-symmetric with respect to the def-
inite scalar product (x>y)N = ~[χ>y]s - Since N θ Z is finite-
dimensional, there are finite-dimensional representations {π,-}^ of
sf such that πs|jvθz = Σ/Li ©π/ If Π+(*Sf) < °°> ^ e n similarly
there are finite-dimensional representations {pjjJLγ of $/ such that

\p Σ?=ιPj
Let π/ = TIS\LI be equivalent to /?; = πs\κ where L/ c N and
C P. Let 17 be the isometry from L, onto Kj such that C/π,- =

Pj. Then the subspace Λf = {x + C/JC: Λ: e L, } is a null subspace
in N(S) invariant for π$, since

[x + Ux, x + ί/xf = [x9xf + [Ux, Uxf
= -(x, X)JV + (Ux, t7*)/> = 0

and since

%s{A){x + Ux) = πi(A)x + pj(A)Ux
= πi(A)x + Uπi(A)x e M

for all x e Li and all A € D(δ). Since S is a maximal symmetric
implementation of δ, by Theorem 3.1 (Hi), πs does not have null
invariant subspaces. Therefore the sets {π/} and {pi} are disjoint.
Part (i) is proved.

Let now D(δ) Φ s/ . Since P is positive, by Theorem 2.1, P is uni-
formly positive and N(S) = P[+]P^ . By Law of inertia, dim(JV) <
n-(S) < oo. Therefore, since N c P[J-1, either Λ̂  = P^ or there
is x in P [ ± ] which is /-orthogonal to N. If such an x exists, it is
/-orthogonal to N[+]P and therefore it is /-orthogonal to H. This
contradiction shows that N = P[±], so that H = 7V[+]P.

From Lemma 4 [20] it follows that π^ is similar to a ^representa-
tion of D(δ). Therefore π^ extends to a bounded representation of
sf which completes the proof of the theorem.

If N(S) = ΛΓ[+]P, then, by Law of inertia, dim TV = n-(S) and
dimP = n+(S). From this and from Theorem 3.2 we obtain the
following corollary.

COROLLARY 3.3. Let the conditions of Theorem 3.2(i) hold and let
q = dimZ. Then

n-{o) = f Σ / = i d i m π ^ ifZQP,
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If, in addition, n+(S) < oo, then

+ 4, ifZCP,

I Σ J i d i m p j , ifZCN.

DEFINITION. Let now S be a symmetric implementation of a
*-derivation δ of a C*-algebra J / into B(H). Then π$ is a
/-symmetric representation of D{δ) on # ( £ ) . We shall call the sex-
tuple

inά{δ, 5) = ind(π5)

the zWex 0/ 5 relative to S.
From Remark 2.5 and from Theorem 3.2(i) we obtain the following

lemma.

LEMMA 3.4. (i) If max(«+(5r), n-(S)) < oo, ί/zen d+(n$) — n+(S)
and d-(πs) = n-(S).

(ii) // min(ft+(S), n-(S)) < oc αnrf if either D(δ) = si or the
representation π$ extends to a bounded representation of stf, then
d+(πs) = n+(S) and d-(πs) = n-(5)

REMARK 3.5. If n-(S) = 0, so that S is a maximal symmetric
operator, then i+(πs) is the index introduced by Powers [16].

Let S be a symmetric implementation of a derivation δ of a
C*-subalgebra sf of £ ( # ) into J?(i/) and let B be a selfadjoint
bounded operator. Then the operator T = S + B is a symmetric im-
plementation of the *-derivation σ{A) = δ(A) + i[B, A] of si into
B(H). Then D{σ) = Z)(<5).

THEOREM 3.6. (i) 7%^ representations π$ and πj of D(δ) are
J-equivalent, i.e., there exists a bounded operator U from N(S) onto
N(T) such that πτll = Uπs and such that [Ux, Uy]τ = [x, y]s for
all x, ye N(S).

(ii) ind(ί,5 r) = ind(σ, T).

Proof. It is well-known (see [1, §100]) that n+(S) = n+(T) and
that n-(S) = n-(T). We shall consider a quadratic form (( , ))s on
D(S*)9 given by

((x, y))s = i((x, 5 » - (5*x, y)), x, y
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(see [4], [8]). Given any x and y in D(S*) and decomposing them

x = x0 + x+ + x_ and y = y0 + y+ + y~ ,

where x0, yo £ D(S), x + , y+ e N+(S) and x_, y_ G JV_(S), we
obtain that

(7) ({x,

We have that D(S*) = D{T*) and that Γ* = ̂ * + B . It is clear that

((χ9y))s = ((χ9y))τ, if x, ye D(S*)

and that
((x,y))s = 0 if x,yeD(S).

Therefore the forms (( , ))s and (( , ))τ generate the same indefinite
scalar product on the quotient space D{S*)/D{S) = D(T*)/D(T).

Let Qs and β j be the projections onto N(S) and onto N(T)
respectively in D(S*). Then it follows from (7) that for all X J E
D(S*)9

(8) [βsx, &y]5 = ((χ,y))s = ((χ,y))τ = [Qτχ, Ϋ\

For x e N(S), set Ux = Qτx. Since QTD(S*) = JV(Γ) and since
QτD(S) = {0}, C/ is a bounded operator which maps iV(S) onto

Decomposing any x in ΰ(5*) , I = .F + Z 5 where y e D(S) and
z G # ( £ ) , we obtain that

QTQSX = βΓβ^Cy + ̂ ) = Gr^ = Qτ(y + z) = Qτx.

Therefore, for any x in N(S) and for any A in D(δ) 9

Uπs(A)x = Q r β s ^ β 5 x = β r β s ^ x = G r ^ x .

Since -D(*S) is invariant for A, βΓτ4 = QT^QT Hence

C/πs(Λ)x = β Γ ^ x = QTAQTX = πτ(A)Ux.

Thus part (i) is proved. Part (ii) follows from (i).

THEOREM 3.7. Let S and T be maximal symmetric implementa-
tions of δ and let D = D(S) n D(T) be dense in H. Set R = S\D.
Then R is a symmetric implementation of δ. Let

(1) min(/i+(Λ), /i-(Λ)) <oo,
(2) (Γ - £)!/) extends to a bounded operator B,
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(3) either D(δ) = si or ΆR extends to a bounded representation
of srf.

Then the representations π$ and %τ are J-equivalent, so that
inά{δ, S) = ind(δ, T).

Proo/. We have that AD C D for all A e D(δ). Therefore R is a
symmetric implementation of δ and

Hence B belongs to the commutant si1 of si and

i? c S and RCT-B.

Set i 7 = T — B . Then i 7 is a maximal symmetric implementation of
5, D{T) = D(F) and R = F\D . If Z>(<5) = J / or if π^ extends to a
bounded representation of J / , then, by Theorem 2.2, N(i?) = P[+]iV
where P and JV are respectively uniformly positive and uniformly
negative subspaces invariant for UR . By Theorem 3.1(ii), there is
a maximal null invariant subspace L in N(R) which corresponds
to S. Then L = {x + Ux: x e L-} where L_ is a subspace in
N invariant for %R and U is an isometry from L_ into P , i.e.,
(Ux, Ux)p = (x, X)N- Since min(n+(i?), n-(R)) < oc, L is finite-
dimensional.

In the same way as in Theorem 2.6 set

NL = NΠL[±] and P L = P

Then

N = NL[+]L_, P = PL[+]L+ and L ^ = NL[+]L[+]PL

where L+ = {Ux: X G L } . It is easy to see that

N(S) = NL[+]PL and that πs = πR\N(S)

where Λ^ and PL are respectively uniformly negative and positive
subspaces invariant for πs.

Similarly, there is a maximal null invariant subspace K = {x +
Vx: x e K-} in N(R) which corresponds to i 7 , where ΛΓ_ is a
finite-dimensional subspace in JV invariant for UR and where V is
isometry from AΓ_ into P. Then, as above, N(F) = Nκ[+]Pχ , where
jV)r = TVnÂ t-11 and PK = P Π ^ I 1 1 are respectively uniformly negative
and uniformly positive subspaces invariant for π? .
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It follows from Theorem 2.6 that the representations {πs)N =
(^R)NL and (UF)NK = (KR)NK are equivalent and that the representa-
tions {π$)p = (TΪRJP and (πp)p = {TIR)P are equivalent. Therefore
the representations π$ and πp are /-equivalent, i.e., there exists a
bounded operator U from N(S) onto N(F) such that Uπs = πFU
and [Ux, t/yf = [JC , y f for all JC , y e N(S). By Theorem 3.6, the
representations πj and πp are /-equivalent, so that π^ and πj are
/-equivalent. The theorem is proved.

DEFINITION. We say that a symmetric implementation T of a
*-derivation δ from a C*-subalgebra J / of B(H) into /?(#) is mini-
mal if for every symmetric implementation S of £ there is a bounded
selfadjoint operator B in the commutant of J / such that T+B QS.

In [10] it was proved that δ has a minimal implementation if sf
contains the algebra C(H) of all compact operators. From this and
from Theorem 3.7 we obtain the following theorem.

THEOREM 3.8. Let δ be a ^-derivation of a C*-subalgebra srf of
B(H) into B(H). If δ has a minimal implementation T (for example
ifC(H) Cj/), ϊ/min(/ι+(Γ), /i-(Γ)) < oo andίfeither D(δ) =s/ or
πγ extends to a bounded representation ofsf, then the representations
π$ and π$ are J-equivalent for all maximal symmetric implementa-
tions S and S\ of δ, so that ind(δ, S) = ind(<J, S\).

4. Isomorphism of symmetric operators. We shall apply the results
about *-derivations of C*-algebras to the investigation of symmet-
ric operators. Every densely defined symmetric operator S has a
*-algebra associated with it:

= {A e B(H): AD(S) c D(S), A*D(S) c D(S) and
(SA - AS)\D^ extends to a bounded operator}.

By sis we denote the norm closure of 3S$ - Then s/s is a C*-
algebra, δs(A)\D(S) = i[S> A]\D(S) is a closed *-derivation from J ^
into B(H) and Z>(^) = &s - If ^ implements a *-derivation J
of a C*-subalgebra J / of £ ( # ) into 5(//), then D(δ) C , % and
J / C J / 5 , Thus j ^ is the largest C*-subalgebra of B(H) on which S
generates a closed *-derivation and π$ is a /-symmetric representa-
tion of 3§s o n ^ ( 5 )

Problems, (i) Is 5 always a maximal symmetric implementation
of δs ? In other words, does πs(βs) have null invariant subspaces in
N(S) or not? If τts(βs) has such subspaces, there exists a maximal
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^s-extension T of S such that 3$$ c <%τ and that πτ(&s) does not
have null invariant subspaces in N(T).

(ii) Let πs(&s) have no null invariant subspaces in N(S). Assume
also that π$ extends to a bounded /-symmetric representation πs

of sz?s and that N(S) = iV[+]P where iV and P are respectively
uniformly negative and positive invariant subspaces for πs. Are the
restrictions of πs to N and P always irreducible?

Symmetric operators S and T on H and i/i respectively are
isomorphic if there exists an isometry V from H onto H\ such that

(9) KZ)(£) = D{T) and F S ^ - TV\D{sy

Ginzburg [5] and Phillips [14] showed that in any Π^-space H
there is a one-to-one correspondence between maximal nonpositive
subspaces N in H and operators K from //_ into H+ such that
| |ϋ: | | < 1 : N = {x + iOc: x G //_}. If, in addition, TV is uniformly
negative, then ||AΓ|| < 1.

For every symmetric operator S we denote by Jf(S) the set of
all operators K from the Hubert space ΛL (S) into the Hubert space
N+(S) (with respect to the scalar product { , }) such that | | | i£| | | < 1
(|| |i£|| | is the norm of an operator K in N(S) with respect to the
scalar product { , }) and such that the subspaces {x + Kx: x e
N-(S)} are invariant for the representation πs of the algebra 3§s

The following lemma gives necessary conditions for two symmetric
operators to be isomorphic in terms of the representations π^ of the
algebras 3S$ and in terms of the sets

LEMMA 4.1. Let symmetric operators S on H and T on L be
isomorphic and let V be the isometry from H onto L such that VS =
TV. then V&sV* — &&τ and there exists an isometry U from N(S)
onto N(T) (\\\Ux\\\ = \\\x\\\, xeN(S)) such that UNd(S) = Nd(T),
d = ± , and such that

πτ(VAVη = Uπs{A)U*, A&&s,

and
Jf(T) = UJr(S)U* = {UKU*: K «

Proof. We have that V*V = 1H and F F * = \L. From this and
from (9) we obtain that

, V*D(T)=D(S), S*V*\D(T) =

*)9 SV*\D{T) = V*T\D{T)9
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Therefore it follows immediately that

VNd(S) = Nd(T) and V*Nd(T) = Nd(S),

and that

V^s V* = ̂ T and Vsrfs V* = s/τ.

We also have that for x, y e D(S*),

= (Vx, Vy) + (T*Vx,T*Vy)

= (x9y) + (VS*x,VS*y)

Therefore V generates an isometry U = QTVQS from N(S) onto
N(T), where (?s is the projection onto iV(5) in D(S*) and where
QΓ is the projection onto N(T) in D(T*). Since FQ 5 = QTV,

= Uπs{A)U* for all Λ e

Let K e 5r{S). Then |||AΊ|| < 1 and the subspace N = {x +
x G ΛΓ_(S')} is invariant for the representation π$ of the algebra

&s Set Kι = UKU*. Then | | | ^ ι | | | < 1 and the subspace M =
UN = {y + Kιy: y £ N-(T)} is invariant for the representation πj
of the algebra &τ > since

πτ(VAV*)M = Uπs{A)U*UN = Uπs(A)N CUN = M

for all Ae&s Therefore K{ e 3t{J).
If Kι e JT(T), similarly we obtain that U*KXU = K belongs to

which concludes the proof of the lemma.

It follows from Lemma 4.1 that in order to prove that two symmet-
ric operators S and T are not isomorphic it is sufficient to show that
there does not exist an isometry U from N(S) onto N(T) such that
UNd(S) = Nd(T), d = ±, and such that Jf(T) = U3ί(S)U*.

We shall now consider symmetric operators S such that n+(S) =
w-(S') = 1. We shall also assume that the representations πs of &&$
on N(S) do not have null invariant subspaces. By Theorem 3.1(iv),
πs extend to bounded representations of C*-algebras &$ It follows
from Theorem 3.2 that N(S) = N[+]P where Λ̂  and P are respec-
tively negative and positive subspaces invariant for πs and that the
representations π^l^ and πs\p are not equivalent. Then N and P
are the only subspaces in N(S) invarinat for π^, dim TV = dimP = 1
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and N = {x + Kx: x e N-(S)}, where K are operators from N-(S)
into N+(S) such that | | | ^ | | | < 1. Set

j&OS) = |||tf||.

Then 0 < β(S) < 1 and from Lemma 4.1 it follows that β(S) = β(T)
if S and T are isomorphic.

For every A e [0, 1), we shall construct a symmetric operator S
such that fl-OS) = n+(S) = 1 and such that β(S) = λ. The question
arises as to whether β{S) classifies up to isomorphism all the sym-
metric operators S such that n+(S) = tt-(S) = 1 and such that π^
do not have null invariant subspaces.

It is easy to construct a symmetric operator S such that β(S) = 0.
Let

<?+ = / - ,

D(S+) = {y(x): y and y' in L 2 (-oo, 0), y(-oo) = y(0) = 0},

D(S-) = {y{x): y and / in L 2(0, cx>), y(0) = y(oo) = 0}.

Set S = SV Θ 5_ on H = L2(-oo, 0) Θ L 2 (0 ? oo). Then n+(S) =
Π-(S) = 1 and it can be shown that N+(S) and N-(S) are invariant
for πs . Therefore K = 0, so that β(S) = 0.

Let us consider the following symmetric differential operators

D(Sa) = {y{x): y and / in L 2(0, a), y(0) = y{a) = 0},

0 < a < oo. It is well-known that n-(Sa) = n+ (Sa) = 1 for all 0 <
a < oc. Schmudgen [19] showed that Sa and Sb are not isomorphic
if a Φ b . Using Lemma 4.1 we shall give another proof of this result
and show that 0 < β(Sa) = e~a < 1, so that β{S) takes all values in
[0,1) .

THEOREM 4.2. For every a φθ, the representation πs of 38$ does
a a

not have null invariant subspaces and β{Sa) = e~a. The symmetric
operators Sa and S^ are only isomorphic if a = b.

Proof. We have that

(SaT = ijfc and D((SaT) = {y(x): V and / in L 2(0, a)}.
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Set h = h(x) = ex and g = g(x) = ea~x. Then

h(x),g(x)eD((Say),

(Sa)*h(x) = ih(x) and (Sa)*g(x) = -ig(x),

so that N-(Sa) = {g{x)} and N+(Sa) = {h(x)}. We also have that

= 2\\h(x)\\2 =

Let A be the bounded operator of multiplication by x, i.e., Ay (x):

= xy(x). Then

AD(Sa) C D(Sa) and i[Sa, A]\D{Sa) = -

Therefore Ae^s • Set

y(x) = h(x)-e-ag(x)=ex-e-\

z{x) = g(x) - e~ah(x) = ea~x - ex~a.

Then y(x) and z(x) form a basis in N(Sa) and

) = x(ex - e~x) = α(ex - e~x) + f{x) = ay(x) + f{x),

Az(x) = x(ea~x - ex~a) = q{x),

where the functions f(x) and q(x) belong to D(Sa). Therefore

πs (A)y(x) = y(x) and πs (A)z(x) = 0.
a a

Since ^ and h are /-orthogonal, we have that

[y, y] 5 = [A, Af. + e - 2 α [ ^ ? ^ 2 ^ 2

and

[z, zf* = [^, g]s* + e~2a[h, h]s* = (e2Λ - l)(^"2 β - 1) < 0.

Therefore the subspaces P = {y(x)} and Λ̂  = {z(x)} are respec-
tively positive and negative subspaces in N(Sa) invariant for π$ (A).
Moreover, they are the only subspaces in N(Sa) invariant for πs(A).
Therefore π^ {β$ ) does not have null invariant subspaces and it fol-

a a

lows from Theorem 3.2 that the subspaces N and P are invariant for
the representation πs of the algebra 38$ - Thus ^(Sa) consists of
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only one operator K and, by (11),

Kg{x) = -e~ah{x\

It follows from (10) that | | | ^ | | | = e~a. Thus 0 < β(Sa) < 1.
If a Φ b, β(Sa) φ β(St), so that Sa and Sb are not isomoφhic.

The theorem is proved.
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