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Abstract
Forr =(ry,...,rq) € RY the mapr,: 2% — Z¢ given by

w(@,...,84)= (@, ..., &, —[r@& +- - +rqaql)

is called a shift radix system if for each € Z¢ there exists an integek > 0
with z¥(a) = 0. As shown in the first two parts of this series of papers skaitix
systems are intimately related to certain well-known nuief number systems like
B-expansions and canonical number systems.

In the present paper further structural relationships betwshift radix systems
and canonical number systems are investigated. Among o#iseits we show that
canonical number systems related to polynomials

d
Y pX eZ[X]

i=0

of degreed with a large but fixed constant ternp, approximate the set of
(d — 1)-dimensional shift radix systems. The proofs make extensise of the
following tools: Firstly, vectors € RY which define shift radix systems are strongly
connected to monic real polynomials all of whose roots lisida the unit circle.
Secondly, geometric considerations which were estaldisindart | of this series of
papers are exploited. The main results establish two cturgx mentioned in Part ||
of this series of papers.
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1. Introduction

Let d > 1 be an integer and = (ry, ..., rq) € RY. Tor we associate the mapping
7. Z9 — Z9 in the following way: Fora= (ay, ..., aq) € Z9 let*

n(a) = (az, ..., a4, —Lral),

wherera =ria; +- - - +rgay, i.e., the inner product of the vectorsanda. We call t;
a shift radix systen{SRSfor short) if for eacha € Z¢ we can find somé > 0 such
that thek-th iterate ofz, satisfieszX(a) = 0.

Forde N, d>1 let

a Dy :={r e RY: Vae Z% the sequencerf(a))-o is ultimately periodi¢ and
"7 DYi={reR%:vacz® Ik > 0:1a) =0}

Dy is strongly related to the set of contracting polynomials.phrticular, let

Ea=EiQ) :={(r1, ..., rg) e RY: XV +rgXdt+. .+,
has only rootsy € C with |y| < 1}.

In [2, Lemmas 4.1, 4.2 and 4.3] we proved that

(1.2) int(Dg) = &q.

D§ is the set of all parameterse RY that give rise to an SRS. The structure f
is related to the characterization of bases of well knowrionst of humber systems
as p-expansions with a certain finiteness property (F) (cf. [5,11]) and canonical
number systems (cf. [6, 8] and see [2, 4] for the link to SR8)tHe present paper
we dwell mainly on relations between SRS and canonical nurapgtems.

Let P(X) = pgX%3+- - -+ pg € Z[X] with pp>2 andpg =1, and set\V" = {0, 1,...,
po — 1}. Furthermore, denote the image ¥f under the canonical epimorphism from
Z[X] to R:=Z[X]/P(X)Z[X] by x. Sincepy =1 it is clear that each coset &t has
a unique element of degree at makt 1, say

AX)= Agg X3+ A X+ Ay (Ao, ..., Agg € Z).
Let G := {A(X) € Z[X]: degA < d} and
d-1

Tp(A) = Z(Aiﬂ - qp+l)Xi,

i=0

1| ... ] denotes the floor function.
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where Ay =0 andq = [Ag/pol. ThenTp: G — G and

A(X) = (Ao — qm) + XTp(A), where Ao —qp e N,

If for each A € G there is ak € N such thatT'P‘(A) =0 we call P a canonical humber
system polynomialCNS polynomiafor short).
Associated to the notion of CNS we define for eatk N, d > 1 the sets

Cq ={(po,..., Pg—1) € 79 [Pol = 2 and Txa4p, , xd-1+..+p, NAS only finite orbits
and

Cq:=1(Po, - -, Pa-1) € Z%: [pol = 2 andVA € G I € N: Ty, o, (A) = O},

For M € N.g we set

(1.3) Ca(M) := {(% o %) R (M, pu, ..., Pa_) eCd}
and
(1.4) CO(M) = [(% o %) eRIL (M, py,. ., pact) € C3).

Finally, for x € R we need the following “cuts” ofD4 and Dg.

Da(X) :={(r2, ..., rq) € R (X, Iy, ..., rq) € Dy},

15
o DIX) == {(r2, ..., rd) € R4 (x,ra ..., rq) € DY)

In Part | of this series of papers (see [2, Section 3]) we stlidhe relation be-
tween SRS and CNS. In particular, we proved that

(Po, P, - -, Pa—1) € Cq (resp.CY)

1 _
if and only if (—, Pia %) € Dy (resp.DY).

Po  Po

(1.6)

In the present paper we investigate a further relationskiwéen the set§y and
Dy as well ascg and Dg. First we show that the elements @§ having a large fixed
first coordinatepy give a very good approximation dPyq_;. We will even prove that
the appropriately scaled limit fopy — oo is equal toDy_;. We will also prove that
the Lebesgue measure B, is the limit of the frequency o€4(M), i.e., of

{(py, - .., Pa-1) € Z%71: (M, pa, ..., Pa-1) € Ca}l

(1.7) o

for M — oo.
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The setsC and DI have a considerably more complicated structure tarand
Dgy. However, from Figs. 1 and 2 of [2] we see that the element€fwith fixed
first coordinatep, seem to give a very good approximation ng_l. In this paper we
make this precise in showing that the appropriately scafaid bf CS(M) for M -

is equal toD§_,. Furthermore, we prove that the Lebesgue measur®%f, is the
limit of the frequency ofC3(M), i.e., of

(P, - - - Pa-1) € Z92: (M, pa, ..., Pa-1) € CI

(1.8) YEE

for M — oo.

These results enable us to gain precise information abautsthucture ofCq as
well as CS by studyingDq_; as well asD , and vice versa. Specifically, we show
that the number of CNS polynomials of a given constant terrasismated by SRS.

The paper is organized as follows. In Section 2 we prove tesa the set§7g
which are needed in the sequel. They contain very genertd Etmuth and are of
interest in their own right. In Section 3 we review differemitions of limits of sets
which we will need. Sections 4 and 5 contain our resultsogrwhile Sections 6 and 7
are devoted to the results a.

2. General properties of the setSDg

In order to prove our main results we need the following teeowhich is of in-
terest also in its own right. It is well known thapd;..., psg_1) € Cg implies thatpg > 2
(cf. e.g. [6, Proposition 6]). Thus the first coordinate ofectorr € Dg associated to
an element of’§ is non-negative. We show that this is true for all elementDgf

Theorem 2.1. If (ry,...,rq) € D§ then i > 0.

Proof. Assume that :=(rq,...,rq) € Dg hasr; < 0. We will prove that in this
case there exists sonzec Z¢ with

(2.1) t¥(2) #0 forall keN.

This implies thatr gZDg and we are done.
Let R(r) be the matrix associated to the mapping(see [2, Section 4]). Its char-
acteristic polynomial is given by

x(X) = XG+rgXdL 4. 41X +ry.
Factorize this polynomial ifR:

x(X) = JX2 =& X —m)™ [J(X = o)™

i=1 j=1
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whereg;, ni, «; € R andm;, n; are positive integers with 2, m; + Zj n; =d. Since
r; < 0 the polynomialy has at least one positive real zero. Assume w.l.0.g.dhat
0. By the structure theorem of finitely generated modulesr grincipal ideal do-
mains, there exists a real regular matx= (sm) which gives a real Jordan block
decomposition

R(r) = S tdiag(Bs, ..., Bu+)S.

Here B; (1 <i < u+v) are the real Jordan blocks

g 1
n 0 1
§ 1
BI = ni 0 1
§ 1
ni O
of size dn; x 2m; fori =1,...,u and
Olj 1
BU+] =
1
aj

of sizenj xnj for j =1,...,v. Now suppose that for a givene 78 there exists & € N
such thatrr"(y) =0. Then (see [2, equation (4.2)]) there exist vectors (0,...,0,¢)t
with ¢ € [0, 1) such that

k k
y=— Y R(N)7vi =-S5 "diagBs. ..., Buw)™ (SV).
i=1

i=1

Let (v), be thel-th coordinate of a vectov. Then it is easy to see that tlteth co-
ordinate of—Sy satisfies

k
(-4 =) o, sudG-
i=1
Suppose thatyq > 0. Then Sy)q is always non-negative. Thus if we selece Z4
with (—Sz)q < 0 thenz satisfies (2.1) and we are done (note that we can selétt
this way sinceS is regular). Ifsyg < O we can argue in a similar way. This finishes
the proof. ]
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Note that the same proof shows that .(0,, O,ri,...,rq) € DY implies r; > 0.
The following corollaries follow immediately from Theore@l by using the corre-
spondence results in [2, Theorems 2.1 and 3.1], respegctivel

Corollary 2.2. Let 8 be a Pisot number with minimal polynomial a; X9-1 —
<+ —ag_1 X —ayq. If B has property(F) then g > 0.

Corollary 2.3. If P(X) = X9+ pg_1 X9 1+. ..+ p X+ pg € Z[X] is a CNS poly-
nomial then p > 2.

The following statement is not used in the sequel, but seenii into these sur-
roundings.

Theorem 2.4. LetgmeN, m>0, q> 1, se R™ and

r=(s,0,...,0...,5,0,...,0 € R™,
~——— —
q q

Then we have
r e Dy, < seDy.
Proof. This can easily be checked from the definitions. 0

3. Review of several notions of convergence of sets

We first summarize three different kinds of convergence aohgact sets. We start
with the topological limit of a collection 4,) (n € N) of sets in a topological space
(cf. [9, p.25] or [10,§29)).

e A point z belongs to thetppologica) lower limit Lim,_ A, if every neighbor-
hood of z intersects all theA, for n sufficiently large.

e A point z belongs to thetopologica) upper limit Lim,_, o, A, if every neighbor-
hood of z intersectsA, for infinitely many values of.

e The setA is said to be thetgpologica) limit of (A,), for short A= Lim,_» A,
it A=Lim,_ Ay =LMoo An.

If (A,) is compact, then LimA, is compact, too.

An analogous notion of limit can be defined also for an uncaliet collection
(Ax)xe1 for some intervall c R. In particular, we have:

e A point z belongs to thetbpologica) lower limit Lim, .,
hood of z intersects all theA, for |x — Xg| sufficiently small.
e A point z belongs to thetbpologica) upper limit mxﬁxo A if every neighbor-
hood of z intersectsAy, for a sequencexg)n-1 with lim X, = Xo.

Ay if every neighbor-
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e The setA is said to be thetgpologica) limit of (Ay), for short A = Limy_.x, Ay,
if A=Lim Ay = Limy_y, Ax.

X—>Xo

Assume that~ is metrizable and lep be its compatible metric. For the collection
of compact sets irF, the Hausdorff metric associated mis defined by

pu (A, B) = max(maxmin p(X, y), maxmin p(x, y))
xeA yeB xeB yeA
for two non-empty compact sets and B. For ¢ € R5g let
(3.1) Alel:={xe F:3aye A p(x,y) <¢}

be thes-body of a subseA of F. Note that thes-body of A can be written as

Ale] = | B.(¥)

XeA

where we set
B,(x) := {X" € F: p(x, X) < p}.

Then one has

pH (A, B) = ma><< min &, min 5).

Ale]D>B B[¢]DA

We say that a sequencé{) converges toA by the Hausdorff metric if

lim py (An, A)=0

and write A, H A. It is easily seen from the definition that &, LY A then Lim, A, =
A. However the converse is not true. For instance, considecaseF =R, p(x,y) =
X —y| and A, = {0, n}: Then Limy A, = {0}, but A, +H» {0}. If there exists a compact
setK in F such thatA, c K for all n, then LimA, = A implies thatA, LYY (cf. [9,
p.26)).

The third kind of convergence is defined wheR, (p) is equipped with a mea-
sure. Letv be an outer measure df. Assume thatv is a metric outer measure,
i.e., v(AU B) = v(A) + v(B) holds for any two subset® and B with p(A, B) =
infxeayes P(X, y) > 0. Thenv gives rise to a Borel measure which is written by the
same symbob.
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We say that a sequencéy{) of sets converges to a sét by the measure if

lim v(Aq & A) = 0

where
AAB=(A\B)U(B\A)

is the symmetric difference o and B. We denote this convergence iy, - A. If
An L A, then for any positivee we have

An A AC (Anfe] \ An) U(A[e] \ A).
As Ale] is measurable and\[¢] \ A is decreasing as — 0, we have

lim v(Ale] \ A) = v(AIO] \ A) =0.

Therefore A, LY A implies A, 2 A. Let us summarize these results.

Proposition 3.1. Let (F, p) be a metric space an(@A,) be a sequence of com-
pact subsets of FThen A LI\ impliesLim, A, = A. If there exists a compact set
K C F such that A c K for all n, thenLim, A, = A implies A H A. Assume that
v is a metric outer measure on.FThen A, AA implies A > A.

The convergence in the Hausdorff metric as well as the cgevere with respect
to a measure can be defined also for uncountable clagsgsof sets in an obvi-
ous way.

Let us come back to the Euclidean space. We denoté by (resp.|| - [l«) the
Euclidean norm (resg.® norm) and define the metric bg(x, y) = ||x — y||2. Define,
for a non-negative real number

(3.2) Al—e] = {x € A: p(X, dA) > ¢}.

4. Convergence properties of the seDy

The main result of this section is Theorem 4.11 where we pitnag the sets
Cq(M) defined in (1.3) yield a good approximation to the closuréDgf; for M — oo.
In view of (1.2) we use a characterization of the s&{sgiven by Schur [12]. There-
fore we need certain determinants which we define now.

ForpeR, ve{0,...,d—1} andr = (r1,...,rq) € RY we denote bys,(r, p)
the determinant of the-th Schur-Cohn matrix of the monic polynomiX® +ryX9-1+



RADIX REPRESENTATIONS ANDDYNAMICAL SYSTEMS 355

--+r,X +r; € R[X] whose roots are bounded hy (cf. [12]), i.e.,

,Od 0 ... 0rg pra . p"rwl
,od’lrd ,od ... 00 r. ... 27,
N ,Od_vrdfuﬂ_ ,Od_u+1rd7u+2 .. ,Od 0 0 . r
8,(r, p) = det d d-1 d—v
ry 0 0 o p“ 7y P Td—v+1
pr2 r 00 p% ... p% g s
p”rv+l p‘}flrv e rl 0 0 “en pd
To distinguish values and variables, we introduce indetemnms Ry, ..., Ry.

Lemma 4.1. For eachv e {0,...,d—1} and p € (0, 1]

Ritdu((Ry, ..., Ra), p)
holds

Proof. We prove this assertion by induction on Clearly, the assertion holds for
v =0 because

So((Re Ra), 0) = de P R =p? - R
LR | 1 R]_ pd 1

Now assume thaR; 1 8,((Ry, - .., R«), p), i.e., 8,((0, Ry, . .., R), p) Z 0 holds for all
0<v<k<d-1. Considers,+1((0, Ry, ..., Ry), p). By the construction ob,(r, p)
the (v + 1)-st and the i + 2)-nd column contain only zeros up to one singl@ in
the (v + 1)-st and the  + 2)-nd row, respectively. Applying the Laplace expansidn o
determinants,

8U+1((0! RZ! ce ey Rd)l 10) = IOZdSV((R21 ceey Rd)! p)
As the polynomial on the right hand side is nonzero by the é¢tidn hypothesis we get
8v+1((01 R2| LR Rd)i 10) # 01 i-e-! Rl + 5v+l((Rl| R2| ceey Rd)i ,O)
and we are done. OJ

An algebraic set inRY is the locus of real roots of non-zero polynomials of
R[Ry, ..., Rq]. It is obvious from Fubini's theorem that thé-dimensional Lebesgue
measure of an algebraic set is zero. In what follows we needpthjection

proj: RY — RI1,

(ry, ..., rg) > (ra, ..., rq),
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and forx e R and f e R[Ry, ..., Rq] we set
(4.1) At(X):={(X, 2, ..., rq) € RY: (X, rp, ..., rq) > O}
Lemma 4.2. Letd>2and fe R[Ry,..., Ry] such that
Rit f(Ry, ..., Rq).

Then for any compact set W R9-1,

lim -1 ((Proj(A+ (x)) 2 proj(A¢ (0)) N W) = 0.

REMARK 4.3. The lemma obviously remains true if we replace’ ‘in the def-
inition of A;(x) by “>", “<” or “ <"

Proof. By the assumption, there exgk R[Ry,..., Ry] and 0Zh € R[Ry,..., R4]
such thatf = Rig +h. Since

proj(As (x)) \ proj(A¢(0))
={(r2,...,rq): T(X,r2,...,1rg) >0and f(0,ra...,rq) <0}

={(rz, ..., rg): =xg(X, r2, ..., rq) < h(rz, ..., rq) <0}
and
proj(A(0)) \ proj(A+(x))
4.2) ={(r2,...,rq): f(O,rz,...,rg)>0and f(x,ro..,rq) <0}
={(rz,...,ra): 0<h(ra, ..., rq) < —=xg9(X, rz, ..., rq)}
we get
(proj(A¢(0)) A proj(A¢(x))) N W
C{lra,....rq) e W:|h(rp, ..., rg)l < IXg(X, ra, ..., rg)l}.
As W is compact,|xg(x, rz, ..., rq)| = 0 uniformly asx — 0. Noting

{(ra,...,ra) e Wi |h(r, ..., rg)|< ¢}
is measurable and decreasingsas> 0, we have
lim Ag-1({(r2, - - ., ra) € W |h(ra, ... ., ra)l < e})
=Ag_1({(ro, ..., rq) e W: h(rp, ..., rq) =0}).

The last measure is 0 singéo,...,rq): h(ro,...,rg) =0} is an algebraic set defined
by 0Zh e R[Ry, ..., Ry]. O
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Lemma 4.4. Let | € R be an interval xg € | and {M;(x) c R%: x € I,
1,..., m} be a family of Lebesgue measurable sets wigbM; (x)) finite (x € I,
1,..., m). Furthermore assume that

Jim Ag(Mi() A M) =0 (=1,...,m).

Then the following assertions hold

() Timyey Aa (i Mi(X) A N2 Mi(x0)) =0,

(i) 1imxoxo 2a (U2 Mi(x) & U2, Mi(x0)) =0,

(i) im x—x, 2a((M1(X) \ M2(x)) A (M1(Xo) \ M2(Xo))) = 0.

Proof. We clearly may assumm = 2. Moreover, we only prove the first asser-
tion. The other ones follow similarly. Let € R.o. By our assumptions we can find
somesd € R.g with

ra(Ma(X) & My(X)) < g and ag(Ma(x) A Ma(x)) < g

for all x, X" € 1 with |x —Xx’| < 8. Therefore using

(M1(x) N M2(x)) A (M1(x) N M2(X)) € (M1(x) A My(x')) U (M2(X) A M2(x'))

we find
Ad((M1(x) N Ma(x)) A (M1(x) N M2(X")))
< 2a((M1(x) A My(x)) U (M2(x) A M2(X)))
< Ad(M1(x) A My(X)) + La(M2(x) A M2(X))
& + & _ D

< E E =€£.

Lemma 4.5. Letd>2and fe R[Ry,..., Ry] such that

Rt f(Ry, ..., Ry).

Then for any compact set W Rd-1,

Lim proj(A¢ (x)) "W = proj(A¢ (0)) N W.

Proof. We prove two opposite inclusions.
o proj(As(0)) N W C Lim,_, 4 proj(As (X)) N W.

Suppose thay = (s, ..., &) € proj(A; (0)) N W. Then, using the notation of the
proof of Lemma 4.2 we havh(y) = ¢ > 0 for some fixed constart. This implies that
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there exists arxg > 0 such that-xg(X, s, ..., &) < ¢ holds for|x| < Xp. Equation (4.2)
now implies thaty € proj(A:(x)) N W holds for all thesex and then clearly

proj(A¢(0)) N W C Lim proj(As (X)) N W.

Xx—0

e proj(As(0))NW QLi_mx—w proj(A¢ (x)) N'W.
Suppose thay € Limy_o proj(A¢(x)) N W. Then for each neighborhodd of y

there is &,) with X, — 0 and proj@:(x,)) "U #@. We have to prove that
ye{(ra, ..., rq): f(0,rp, ..., rq) >0}

Suppose at the contrary that
ye{(ra,...,rq): f(O,rp...,rq) <O}.

By the continuity of f this implies that
ye{(ra,... . rq): f(X,ra...,rg) <0}

also holds forx small enough. Thus there is a neighborhddg of y such that
UpC{(ra,...,rq): f(X,r2,...,1q) <0}

for all x that are small enough. This is a contradiction because itiesphat

Proj(A¢ (xn)) N Uo =4
for n large enough. ]

REMARK 4.6. LetBj(x) (i € {1,...,n}) be finite unions of finite intersections
of A¢(x) for some finite family of f’s. Then

Lim ) Bi(x) = | Lim Bi(x),
Lim (1) Bi(x) = ] Lim Bi(x).

The first assertion follows from a general property of Limeg(d&0, §29, VI]). The
second assertion can be proved by slightly modifying thefpod Lemma 4.5 (instead
of a set

{(ro, ..., rq): f(O,r2, ..., rq) < 0}
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restricted by one strict inequality we get unions of setdried by several strict in-
equalities).

Note that in the previous lemma as well as in this remark wed regdct inequal-
ities in the definition of A¢(x). Otherwise the results do not hold.

In the following we denote by(r) the maximum of the absolute values of the
roots of the polynomialX® +rg X9+ ... +r; ¢ R[X] for r € RY, and forx, e € R
we let

Dd,s = {r € Dd: ,O(r) <1l- 8}1 Dd,a(x) = Dd,a N W(X)1

(43) 0 0 0 0
Dy, :={r e Dg: p(r) <1—e}, Dy.(X):=Dg, NW(X),

where we fixed some positivkl € R with

(4.4) &4 S [-M, M]
and let
(4.5) W(x) = {x} x [-M, M]971.

Note that by [2, Section 4] we have fere (0, 1)

Dy ={r eRY: p(r) <1—¢}

46 a1
(4.9 :ﬂ{reRd:au(r,l—s)>0}.
v=0

Lemma 4.7. The following two assertions hald
(i) Forall 6 € (0, 1) there is ac € R.q such that

*d(Dg \ Dy ,¢) < 8.
(i) We have
lim 14(Dg,) = Aa(Dy)-
Proof. (i) Observe that foeq, e2 € [0, 1) with &1 > ¢, we have
(reRY:5,(r,1—¢e1) >0} C{reRY: 5,(r, 1—¢p) > 0}

and use the fact that&y is a union of algebraic sets and therefargd&y) = 0.
(i) Because of

2a(D],) < Ad(DG) < 14(DY, U (Dg \ Da,e)) < 2a(DY,) + 2a(Da \ D)
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the assertion follows from (i). 0
Lemma 4.8. Lete > 0 be arbitrary Then

>I<i£>n0 Ad-1(Proj(Dg, (X)) A Dg-1,) = 0.

Proof. Using the notation defined in (4.1) let

Then in view of (4.3) we have

d-1
4.7) Dyo(x) =[] Du(X)-

v=0

From Lemma 4.1 we know thaR; { 8,((Ry,..., Ry), 1 —¢). Thus we may apply
Lemma 4.2 to conclude that

(4.8) lim A.g-1(proj(D, (x)) & proj(D,(0))) = 0.
Now we combine (4.7) and (4.8) to derive from Lemma 4.4 (ittha

)[iL‘ﬂO Ad—1(proj(Dg,e (X)) A proj(Dq,:(0))) = 0.

Since projQq,(0)) = Dy_1, the lemma is proved. ]
Theorem 4.9. For each d> 2 we have

|im0 Ad—1(Dg(X) A Dy—1) = 0.
X—

Proof. This is an easy consequence of Lemmas 4.7 and 4.8 sicae be chosen
arbitrarily small. O

Theorem 4.10. Let Dy(x) and Dy be defined as irBection 1. Then

Lim Dd(X) =Dqy_1.
x—0

Proof. Using the notation defined in (4.1) let
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Then we have

d-1
Int(Da(x)) = () Du().

v=0
From Lemma 4.1 we know thaR; 1 §,((Ry, ..., Ry), 1 — ¢). Thus we may apply
Lemma 4.5 and Remark 4.6 to obtain the result. ]

Theorem 4.11. Let C4(M) and Dy_;1 be given as in(1.3) and (1.1), respective-
ly. Then

nI/Tim Ca(M) =Dy
holds for all d> 2.

Proof. We first show thaDg ; € Lim,, ., Ca(M). Since Dy ; is the closure
of its interio® and Limy, . Ca(M) is closed it suffices to show that if§ ;) <
Limy_. o Ca(M).

Let

(4.9 y:i=(ra,...,rq) €int(Dy_1).

We have to show that each neighborhoodyointersects all but finitely many of the
setsCq(M). Choose an arbitrary neighborhobdof y. Using [2, Lemmas 4.1 and 4.3]
we see that (4.9) implies that the polynomial

X4 4rg X924+ 41y

is contractive. Since the roots of a polynomial vary cortimsly with respect to its
coefficients, there exists a positive constanwith the following properties:
e The polynomial

(4.10) X9 +tg X0+ X+t

is contractive iflti —rij| <e (i=2,...,d) and|t;| < ¢.
e B.(y) cUNint(Dq_1).
Thus for eachM > 1/¢ we can chooséd; of the form

1 M
= and f=t(M)= P

t = ty(M) = (=2...d

2This is an easy consequence of the following fact: Suppaaepitr) is a polynomial all of whose
roots are contained in the closed unit circle. Then by atblyr small modifications of its coefficients
we can obtain a polynomial all of whose roots are containethéopen unit circle.
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with integerspi(M). By the choice of, yu = (t1(M),...,t4(M)) € U for eachM > 1/¢.
On the other hand, since the polynomial (4.10) associategtds contractive, [2,
Lemma 4.2 (1)] implies thayy € Dy for M > 1/e. Now (1.3) and (1.6) imply that
ym € Cq(M) for M > 1/e. ThusU intersects all but finitely many of the sefg(M).
SinceU was arbitrary this proves ifi{y_1) < Lim,,_, . C4(M).

It remains to establish the inclusidPq_; 2 Limy_.., C4(M). We argue in a sim-
ilar way as in the proof of [2, Theorem 3.1] and obtain

Ca(M) = |(% o %): (M, s, ..., Po) € Cal

Pd-1 P1 1 pga P1
= — ., =)=, ..., = D,
f(Ber By (e B B e

C {(rz,...,rd): (%,rz,...,rd> eDd} :Dd<%>.

Thus, using Theorem 4.10 we gain
Lim Cg(M) € Lim D, 1) D
M — 00 d ~ M—-oo d M T rdl
and we are done. ]

5. Relations betweenDy_; and Cq4

In the next theorem we prove that thd £ 1)-dimensional Lebesgue measure of
Dy_1 is the limit of the quotient (1.7) foM — oo. Note that the Lebesgue measura-
bility of Dy is proved in [2, Theorem 4.10].

We need the following notations. Let

S
(5.1) W(x, S) = [x’ e RIL: X — X[l < 5} (x e R, seR)

and

WaM):= (] W(x, M™Y.
xeCq(M)

Theorem 5.1. Let d> 2, M a positive integer and set
N(d, M) = [{(p1, ..., Pa—1) € Z* 11 (M, py, ..., Pa—1) € Ca}l.

Then

. N(d, M
lim % = Ad-1(Dg-1)-

M—o0



RADIX REPRESENTATIONS ANDDYNAMICAL SYSTEMS
Proof. We obviously have

N(d, M)

(5.2) Yo

= hg-1(Wa(M)).

We will compare the latter with the Lebesgue measurégf;.
We first claim

(5.3) D1\ We(M) € Da 1\ ((Dd(Ml»[—ﬁ}).

To prove the claim we will show

o0~ 32 ] € Watr

By the definition of the norm| - |, if Y € Dg(M~Y)[—+/d/M] then

(5.4) W(y, M~1) c Dg(M™1).
Thus we can choosey, . .., pg—1 € Z with
_ ( Pd-1 & _1
z-(—M M) e W(y, M™).

363

Now (1.6) and (5.4) imply that € C4(M) N W(y, M~1). Thusy € W(z, M~?) for a

z € C4(M) which yieldsy € Wy(M) and the claim is proved.
On the other handy(M) c Dg(M 1) implies

Wa(M) < (Dd(Ml))[H
which yields
(5.5) Wa(M)\ Da 1 < (Dd(M—l»[H \Da 1.

Now (5.3) and (5.5) yield that

NG|

Wa(M) A Dy 1 (m\ ((Dd(M—l))[—V}» U ((Dd(M-l»[%] \m)

C (Dot 2 Dy(M ) U ((wd(“"l))[%})'
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Note that the second inclusion is an immediate consequehdkeodefinitions (3.1)
and (3.2), respectively. From this chain of inclusions wénga

/‘1‘%('\") - 1ﬁ| dig-1 = / Lvamyape dhd-1
= / 155 apym-y) dha-1 + / Lopom-tyrva/my drd-1-

Now we letM — oo. Then

/ Ypeiapym-ndra-1 — 0

by Theorem 4.9. Furthermore,

/ Yopgm-tyrva/m dAd-1 — 0

since 3Dgy_1(M~1) is defined by finitely many polynomial equations. Thus

/|1Wd(M) — 1,7 | dig-1— 0
and the theorem is proved. ]

It is worth mentioning the following result which we get as gptoduct of the
proof of Theorem 5.1.

Corollary 5.2. For d > 2 we have
rd-1(Wa(M) A Dg-1) — O
for M — oo.

6. Convergence properties of the seDg

The aim of this section is to describe the convergence of Gnelsg(x) defined
in (1.5) toDy_1 for x — 0. To this matter we need a description of the relation be-
tweenDy and Dg where we adopt the following notations and results from [Rgt
reRY and leta=(ay, ..., ag) be a non zero periodic point of period lendthfor t;,
i.e., a=1(a). Suppose this period runs through the points

7} (@) = (@14, .-, aaj) (O<j<L-1),
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whereaz« =&y, ..., ag+L = ag (note that the structure of the entries follows from the
definition of 7;). Then we will say that

aly"'yadaa'd+11"'1a|_

is a period ofr,. If a period occurs for some, with r € RY, we will call it for short
a period of Dy.

By the definition ofr, the set of allr = (ry, ..., rq) € RY which admit a given
period 7 is given by the simultaneous inequalities

(6.1) O<ria+j+---+rgagsj tagej+1 <1 (0<j<L—-1).

As each inequality gives an upper/lower half of hyperplame®Y, it is easy to see
that (6.1) defines a (possibly degenerated) convex polginedie call this polyhedron
a cutout polyhedrorand denote it byP(rr) (cf. [2, Section 4]).

Sincer € Dg if and only if 7, has 0 as its only period we conclude that

D3 =Dq\ | P(),
7#0

where the union is extended over all non-zero perigdsf Dy. We call the family
of (non-empty) polyhedra corresponding to this choice fdmaily of cutout polyhedra

of DJ.
Let now ¢ € (0, 1). We know from [2, Section 7] that there is a finite family
P :={Py,..., P} of cutout polyhedra such that

because critical points @4 can only occur on the boundary & (cf. [2, Lemma 7.2]).
Because of (6.1) for evetye {0,..., L} we can find pairwise disjoint finite sets J ¢ N
and linear polynomialsf| ; € R[Ry, ..., Ry] with

6.2  R=[)re[-M, M]% fii(r)>0n[)ir e[-M, M]%: fi;(r) > O}.

iel ied

Here we chooseM in a way that (4.4) is satisfied. We will subdivide the getof
cutout polyhedra into three parts. Indeed, set

Pr={R eP: Ri1fi(Ry..., Ry) holds for alli € I, U J},
Pr={R eP:Ri| fii(Ry ..., Ry) holds for at least one € I},
Ps:={R eP: Ry | fii(Rs ..., Ry) holds for at least oné € J}.
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In what follows we will use the notatio(x) := B N W(x) (see (4.5) for the
definition of W(x)). We first treat the cutout polyhedra contained in the sulifa?P;.

Lemma 6.1. For each P e P; we have
lim 24-1(proj(R (x)) A proj(R(0))) = 0.
Proof. Setting
A(X) = {r e [-M, M]%: fii(r) > 0} NW(x) (i el)
and
Bi(x) :={r e [-M, M]?: fii(") = 0} NW(x) (i €J)
we see from (6.2) that

R =) AN () BrLiX).

iel ied

BecauseP, (x) € P; the (linear) polynomialsf, ; satisfy the conditions of Lemma 4.2,
this lemma together with Remark 4.3 yields

fim 3a-2(Proj(A (x)) & Proj(A(0))) =0
and
lim Ag-1(proj(Byi (x)) A proj(B,,i(0))) = 0.
The result now follows from Lemma 4.4 (i). ]

In order to treat the cutout polyhedra containedFAxnwe need the following aux-
iliary result.

Lemma 6.2. Letd>2andr =(ry,...,rq) € P() be an element of a cutout
polyhedron given by a period of the form

cocaa 0---01- -
d-1

If ry > 0then p < —(ag/ay)r1, and if r; < 0 then > —(ag/ay)ri.
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Proof. By the definition we have the inequalities

(6.3) O<ar;+1<1,
(6.4) 0<apri +ayr> < 1.

Clearly, r; > 0 impliesa; < 0 by (6.3) and them, < —(ag/a1)r; by (6.4). The second
assertion is derived analogously. ]

For the elements oP, we can show the following assertion.

Lemma 6.3. For all ¢ > 0 we have

limoxdl((proj(mg(x)\ U H) Uproj(Dd,g(—x)\ U H)) ADd,g(O)) =0.
- PeP, ReP,

Proof. If R € P, then for somei € I, we haveR; | fii(Ry, ..., Ry). Because
fi; is a linear polynomial this implies that there exists a canst; € R\ {0} such
that fi;(Ry, ..., R4) = ¢ iR1. This implies that

R c{(ry,...,rq):q,ry >0}
which means that either

R c{(ry,...,rq):r.>0}

or

B c{(ry...,rq): r. <0}
Applying Lemma 6.2 we even get that there existe R such that either

R c{(ry,...,rq):r.> 0 andr, < bry}
or

B c{(r1,...,rg):r. <0 andr, > bry}.
Thus

Dy, ()\ |J P D Dae(®)N{(X r2...,1a): 12 <bx} (x> 0),
ReP,

Da:(x)\ | A DDa:(x)N{(X, T2, ..., Ta): 12> bx} (x <O0).
R eP>
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Combining these two inclusions we obtain that

Dy,e(X) N{(X, I2, . .., Ta): [r2| > bIx|}
- (Dd,s(x)\ U Pl) U (Dd,s(_x)\ U Pl) - Dd,s(x)
ReP, PeP,

holds for all x. Taking projections and letting tend to zero yield the result. [
Lemma 6.4. P3;=0.
Proof. If B € P3 then B contains an inequality
fii(ry, ..., rg)=cry >0

for somei € J. To get such an inequality the cycke which generate$ must contain
d consecutive zeros. Thus is the trivial cycle, a contradiction. ]

We are now in a position to prove the following theorem.
Theorem 6.5. For each d> 2 we have

lim Aq-1(D§(x) & DY_y) = 0.
X—>

Proof. Lete > 0 be arbitrary but fixed. Then fox > 0 Theorem 2.1 and Lem-
ma 6.4 yield
Dg«(x) =D .(x) UDG .(—x)  (since Dg ,.(~x) = 7)
= (D4-(X) UDg(—x)\ | A

ReP
= (Da(X) UDg(—)\ | J P
R ePLUP,
= ((Dd,s(x)wd,s(—x))\ U H) N ((Dd,s(x)wd,s(—x))\ U H)
RePy ReP.

=N ((Dd,gm\ U H) ! (Dd,e<—x>\ U H))
i=1,2 RePi RePi



RADIX REPRESENTATIONS ANDDYNAMICAL SYSTEMS 369

Taking projections this yields

proj(Dg, . (x))
(6.5) , _ . .
=N ((prOJ(Dd,a(X))\ U prOJ(H)) U (prOJ(Dd,s(—X))\ U prOJ(H)))-
i=1,2 P eP; PePi

Lemmas 4.8 and 6.1 imply together with Lemma 4.4 (ii) angd (hiat
(6.6)

lgnoxd_l((proj@d,g(x»\ U prOJ'(H)) A (proj(Dd,g(O))\ U DrOj(H)>> =0.

RePy RePy

Herex may approach zero from the left or from the right. For the sdcpart of (6.5)
we apply Lemma 6.3 to see that
(6.7)

limoxdl((proj(mg(x)\ U H) Uproj(Dd,g(—x)\ U H)) ADd,g(O)) =0.
- PePs RePs

Using Lemma 4.4 (i) and (ii) we can collect (6.6) and (6.7) &ick

>|<i£ﬂo ha-1(D].(X) ADY_;,) = )|(i_f)n0 rg-1(D§ . (X) A DY, (0))

= )I(iLno)Ld_l(Dg’S(X)A (Dd,s(o)\ U F’n))
RePy

=0.
Becauses can be chosen arbitrarily small the result follows from Lea#?7. ]

7. Relations betweenDJ_,; and C§

In the next theorem we prove that theé £ 1)-dimensional Lebesgue measure of
Dgfl is the limit of the quotient in (1.8) foM — oc. Note that the Lebesgue mea-
surability of DY is proved in [2, Theorem 4.10].

Theorem 7.1. Let d> 2 and M be a positive integer and set

No(d, M) :=|{(p, ..., Pa—1) € Z*: (M, py, ..., pa_1) € CI}I.

Then

lim N°(d, M)
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Proof. We will use the following notation. Le¥(x, s) be defined as in (5.1).

Now set fore € [0, 1)

9, (M) := [(M o %

v )eRd_l:(M,pL-u,Ddfl)ecg'

(B B) <1

and

We.M) = | wx M.
xecg‘s(M)

Furthermore, let
N*(d, M) == |{(Py, . - ., Pa—1) € Z**: (M, py,..., Pa—1) € C3 .
Then obviously

NO#(d, M)

(7.1) 0T

= ha—1 (VG (M)).

We will compare the latter with the Lebesgue measure§f, ..
We first claim

0 py d
(7.2) DY, \W3,(M) S DY .\ ((D&JWl»[-%D.
To prove the claim we will show
d
(DS,E(Ml))[—§} WE.(M).

By the definition of the nornj - ||, if Y € DQVS(M—l)[—\/H/M] then
(7.3) W(y, M) c D3, (MY).
Thus we can choosey, ..., pg—1 € Z with

Zz(% P1

= ,...,M>6W(y,M‘1).

Now (1.6) and (7.3) imply that € C3,(M) N W(y, M~%). Thusy € W(z, M) for a

Ze CS,G(M) which yieldsy € ngs(M) and the claim is proved.
On the other handg,(M) c D3 ,(M~?) implies

W) & 08, )|
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which yields
[ 1 [
7.4) WM\ DL, < 08, 0| 17 |\ P

Now (7.2) and (7.4) yield that

Wg,s(M) A Dg—l,s

- (1)) (or ol )
< (%, o P8 ) u (eng.n [ %))

Note that the second inclusion is an immediate consequehdbeodefinitions (3.1)
and (3.2), respectively. From this chain of inclusions wenga

/ g, 0 = S| e = f g, ooz, ha-s
= / Yoy apg a1 ¥ / Lopg, -y my dhd-1.

Now we letM — oo. Then

/ 1y, amg mytd-1 = 0

by Theorem 6.5. Furthermore,

/ Lopg (m-tyvaym) dha-1— 0

since aDgflys(M‘l) is defined by finitely many polynomial equations. Thus

/ ‘1Wg’€(M) — 1@ d}‘-d—l -0

and the theorem is proved by lettirg— 0 and observing Lemma 4.7. (Note that for
fixed ¢ the set’Dgfl\Dgflys is bounded by finitely many polynomial equations. So for
M large enough the number of lattice poin{s (M, ..., pg—1/M) with ps,..., pg—1 € Z
contained in it is essentiall}®~*A(D§_; \ DJ_, ,)). O

We now give the following result which we get as a byproducttiod proof of
Theorem 7.1.
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Fig. 1. The behavior oN°(3, M)/M? for 2 < M < 464.
Corollary 7.2. Letting Cg(M) as in (1.4) and setting

WaM):= ) wx, M

xeC§(M)
we have for d> 2

ra-1(WIM) A DY) — 0

for M — oo.

This shows that the set of CNS polynomials
d N
> X eZ[X]
i=0

with large but fixed constant termpy forms a good approximation for thel  1)-
dimensional SRS regio®] ,.

REMARK 7.3. Fig. ® displaysN°(3,M)/M?2 for 2 < M < 464. It seems that the
quotient stabilizes after the first few values at about 1.786ing known results on the
number of cubic CNS polynomials it can easily be seen thatMor 9 we have

1
§(13|v|2 —21M +51) < N°(3, M) < 2M? — M — 2.

As these bounds are quite weak we omit the proof here.

3We thank Andrea Huszti for preparing Fig. 1.



RADIX REPRESENTATIONS ANDDYNAMICAL SYSTEMS 373

8. Open questions

We have shown convergence results with respect to Lebes@asure in Theo-

rems 4.9 and 6.5. Can we have stronger convergence in the sérmroposition 3.1?

OPEN QUESTIONL. s it true that Lim_o D3(X) = Dg_l?

By Theorem 7.1, the number of CNS polynomials of a given amsterm is es-

timated by SRS.

OPEN QUESTION2. Can we estimate the number of Pisot polynomials of a given

trace having property (F) by SRS?

(1]

(2]
(3]
(4]
(5]
(6]
(7]
(8]
Bl

[10]
[11]

(12]

This question will be explored in a forthcoming paper.
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