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Kainen [5] showed that there exists a cohomology theory A*( (?) and

a natural short exact sequence

0 -> Ext (h^(X)9 G) - k*(X; G) - Horn (h*(X), G) -> 0

for any based CFF-complex X if h* is an (additive) homology theory and G is
an abelian group. On the other hand, for an (additive) cohomology theory Λ*
such that &*(ρoint) has finite type Anderson [3] constructed a homology theory
Dk* and a natural exact sequence

0 -> Ext (Dk* _,( F), Z) -» A*( F) -> Horn (£>&*( F), Z) -* 0

for any finite CW-complex whose extension to arbitrary CW-complexes is
given in a form of a four term exact sequence. He then determined homology
theories Dk* in the special cases k*=H*, K* and KO*. Ordinary cohomology
theory and complex X"-theory are both self-dual and real ^-theory is the dual

of sympletic ^-theory, i.e., DH*=H*, DK*=K* and DKSp*=KO*. More-

over he asserted that D2 is the identity, i.e., D(Dk)*—k*.
In this note we shall construct a CW-spectrum E(G) for every CW-

spectrum E and abelian group G by Kainen's method involving an injective
resolution of G, and state a relation between E and E(G) in a form of a universal
coefficient sequence

0 - Ext (E^(X)9 G) -> β(G)*(X) -* Horn (E*(X), G) -> 0

for any CW^-spectrum ^Γ. And we shall study some properties of E(G). For

example, under a certain finiteness assumption on π*(E) we show that β(R)
(R) has the same homotopy type of ER where J? is a subring of the rationale
Q (Theorem 2). The above universal coefficient sequence combined with
Theorem 2 gives us a new criterion for ER*(X) being Hausdorff (Theorem 3).
Also we shall discuss uniqueness of E(G) (Theorem 4). Furthermore, using
Anderson's technique we investigate the homotopy type of E(G) in the special
cases E=H, K and KSp (Theorem 5). Finally we note that K2n(K Λ ••• ΛX)
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and KOm(KO Λ ••• /\KO), WΞJΞ 1 mod 4, are both Hausdorff (Theorem 6).

1. Duality maps

1.1. Let u: X' /\X-»W be a pairing of CW-spectra. Such a pairing
defines a homomorphism

Γ= ZXiί)*: {F, E^X'} -> {YΛ*, #Λ W7}

by the relation T(f)=(l Λ u) (/Λ 1) for any CPF-spectra Y and £". A pairing
u: X' Λ X-*Wis called an E-duality map provided T(u)E is an isomorphism for

E fixed and Y=Σk for all *• If « ίs an ^-duality map, then Γ^)^ becomes an
isomorphism for any CW-spectrum Y.

Fix CW-spectra X and PFand consider the cohomology functor {— /\X, W}
defined on the category of CW-spectra. By the representability theorem, there
exists a function spectrum F(X, W) such that T: {Y, F(X,W)}-+{Y /\X, W]
is a natural isomorphism for all Y. So we see that the evaluation map

e:F(X, W)^X-*W

is a 5-duality map.
Let u: X' Λ X-+W, v: Y/

 Λ Y->P^, /: ^Γ->F, ^: Y^J^7 be maps such that
^(1 Λ /) and wte Λ 1) are homotopic. Consider the cofiber sequences

xί y->z, zr-> y7^^.

We have a CFF-spectrum g and maps p: X' ̂  X->Q, q: Y' /\Y-*Q, and
r: Zr j\Z-*Q giving rise to the diagram below homotopy commutative (up to
sign)

Since z;(l/\/) and W(^A!) are homotopic, an easy diagram chase shows that
there exists a map s: Q-+ W with s p~u and s q=v (see [7, Proof of Theorem
13.1]). So we obtain a map

making the diagram
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(1.1) I \w I
X'ΛX - > W < - Y'/^Y

U V

homotopy commutative (up to sign).
By use of (1.1) and "five lemma" we have

Lemma 1. Let u\Xf f^X-^W, v: Y' AY-*W be E-duality maps and
assume that maps f: X-+Y and g: Y'->X' satisfy the property that v(\ j\f) and
u(g Λ 1) are homotopic. Then the above map w : Z' Λ Z-*W is an E-duality map.
(Cf., [6, Theorem 6.10]).

Let C={Xn,fn} and C'= {Xn', gn} be a direct and an inverse sequence of
CW-spectra respectively. Pairings un: Xn' /\ Xn-*W induce the homomorphism

τ{un}: {y,j?

Taking Y=HXn' and E=S, there is a map

u:(Π.Xn')Λ(

with the homotopy commutative square

J\n~* n Λ

(1.2) I K

Under the assumption that the canonical morphism E ^(ΐίXn)-^Il(E /\Xn')
is a homotopy equivalence, we see that

(1.3) u is an E-duality map if so are all un.

Define maps/: VXn->\/Xn and#: ΐiXn'-+UXn' by

ίn — in+i fn =/'*« , Pn—gn'Pn+i = Pn'g

\vhere in: Xn->VXn,pn: ΐ[Xn'-+Xn' are the canonical maps. And, construct
the telescope TC and the cotelescope T*Cr so that we have the cofiber sequences

vxnί»vxH-»τc, τ*σ - uxn' - ttXn' .

Proposition 2. Let C= {Xn>fn} and C'= {Xn> gn} be a direct and an inverse
sequence of CW -spectra, and un: Xn' ^Xn-*W be pairings such that un+l(ί Λ/M)
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and un(gn/\ 1) are homotopίc. Then there exists a map u: T*C' Λ TC-+W such
that the following diagram is homotopy commutative (up to sign):

Λ TO) -> τ*crΛ re«- τ*e,

Moreover, assuming that the canonical morphism E /\(ΐ[Xn)-*ΐl(E Λ^V) ^ α

homotopy equivalence, ΰ is an E-dualίty map if so are all un.

Proof. An easy diagram chase shows that u(l /\f) and u(g j\ 1) are homo-

topic. We apply Lemma 1 and (1.3) to obtain the required map.

1.2. Let G be an abelian group and Γ: Q-^Pl-*P0-*G->Q a free resolution.
We realize Pt and φ by wedges MP{ of sphere spectra and a map Mφ: MP Γ*-
MP0. The mapping cone MΓ of Mφ forms a Moore spectrum of type G.

Then there exists a universal coefficient sequence

0 -> Ext(G, π*+ί(X)) -> {MΓ, X}* ̂  Hom(G, π#(X)) - 0

where tc associates to a map / the induced homomorphism /# in 0-th homotopy
(see [4]). Therefore a Moore spectrum of type G is uniquely determined up
to homotopy type. For any CW-spectrum E we define the corresponding
spectrum with coefficient group G

where MG is a Moore spectrum of type G.
Let / be a set of primes which may be empty, and denote by // the multi-

plicative set generated by the primes not in /. It is a directed set which is
ordered by divisibility. If R is a subring of the rationals Q (with unit), it is
just "the integers localized at /" where / is the set of primes which are not inver-

tible in R. Thus R=Zl=Iΐ1Z. Let lc denote the set of primes pk(pk<Pk+ι)
not in /, i.e., / A/c= {φ} and l^Γ= {all primes} . Putting ln=pi-~pn, we choose
a cofinal sequence 7/— {/„} in /,.

Fix a CPF-spectrum W. Cl={Xn=WJn^ln+llln} and Cf={XΛ'=W, gn

—In+i/ln} form respectively a direct and an inverse sequence (indexed by //).
Denote by W^ Wf the telescope of Cl and the cotelescope of Cf , i.e.,

W* = T{W, fn = ln+1/ln} , Wf = T* {W, gn = ln+1lQ .

Notice that Wf is homotopy equivalent to W /\S;. Since St is a Moore
spectrum of type Zh an easy computation shows that

(1.4) tfZ^S^Z^n/'/Z,/ and H^(St) = 0 for
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where I' is any set of primes with / ' n / c =f= {φ}.
i

Define by ιn and ρn the composite maps W^>\jW-^Wt,
and consider the cofiber sequences

> Wf W .

Si is obviously a Moore spectrum of type 2,/Z, and in addition

(1.5) HZftS^fyn,' and ffZ?/(S,) = 0, n Φ l

for any Γ with I' r\lc*{φ] -

1.3. Here we construct two useful duality maps.

Proposition 3. We have maps ΰ : Wf Λ S ί-^W and W : Wf Λ
the following diagram is commutative (up to sign) for all CW -spectra X and E:

{X,EAWf} - {X,EAWf}

\T(u)

{XASl,EAW}-*{XASl,,EAW}/

Proof. Take as un\ W ̂  S->W the canonical identification. From (1.2)
and Proposition 2 we obtain maps u: (TIW) Λ ( V S)-+W, ΰ: Wf Λ S^W with
the homotopy commutative squares

-+ W Wf^S, - > W.
u u

Putting the above two squares together we see that pn /\ 1 and u(l Λ ιn)
 are ho~

motopic. By (1.1) there exists a map W: Wf /\Sj-*W making the diagram
below homotopy commutative (up to sign)

Σ'α( W Λ S,) -> Wf Λ S, -
I |ϊZ7

H7Λ5 = W -
κ

Now we need the following result in order to apply Proposition 2.

Lemma 4. L^ί G be a direct product of R-modules GΛ and Ma a Moore
spectrum of type GΛ. Then T[M# becomes a Moore spectrum of type G, and the
canonical morphism E /\(ΐ[MΛ)-*ΐl(E /\MΛ) is a homotopy equivalence if π*(E)
has finite type as an R-module.

Proof. The result of Adams [1, Theorem 15.2] asserts that HR
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is a homotopy equivalence. Thus ΐ[MΛ becomes a Moore

spectrum of type G because π*(ϊ[Ma) is an .R-module and hence so is H*(Ϊ[MΛ).
In the commutative diagram

π*(E)®G - π*(E Λ TlMa) - Tor ?(**_!(£), G) - 0

J * j I
> Πτr*(£ Λ M.) - Π Tor ?(**_,(£), GΛ) - 0

involving the universal coefficient sequences, the left and right arrows are iso-
morphisms. The result follows from "five lemma".

Obviously the canonical identification un: W /\S-+W is an ^-duality map
for every E. Using Propositions 2, 3 and Lemma 4 we obtain

Theorem 1. Let G be an R-module and M a Moore spectrum of type G.
Assume that π*(E) is of finite type as an R-module. Then the maps ΰ: Mf /\ Sg-+
M and W: Mf Λ S/-»M given in Proposition 3 are both E-duality maps.

Remark that ^((S/JJ) and ^((S/)*) are Z/ -modules. Taking St as M and
the empty φ as / in the above theorem, we compute that

Thus Σ(^/)Φ and Σ(S/)* are Moore spectra of type Z//Z/ and of type Zl where
/φ {0} , because of (1.4) and (1.5). So we get

Corollary 5. Assume that π*(E) is of finite type as an R-module where R is
a proper subrίng of Q. Then there exist natural isomorphisms T(w): ER*(X)-+
E*+l(X Λ Sψ), T(ΰ): ER/Z*(X)-*E*+l(X Λ Sφ) with the commutative (up to sign)
diagram

ER*(X) - > ER/Z*(X)

I T(w) I T(ΰ) ^*E*

2. Universal coefficient sequences

2.1. Following Kainen [5] we shall construct a universal coefficient sequ-
ence for a generalized cohomology theory. Fix a CW-spectrum E. For every
injective abelian group / Horn (/?#(—), /) forms a cohomology theory defined on
the category of CW-spectra. The representability theorem gives us a CW-
spectrum E(I) and a natural isomorphism

Γ7: {X, E(I)} - Horn (E*(X), I)

•ψ1

for any CW-spectrum X. Let G be an abelian group and Γ: 0— >G-^7— >/— »0
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an injective resolution. Then there exists a unique (up to homotopy) map ψ:

E(I)-^E(J) whose induced homomorphism coincides with the natural trans-

formation T1/1"^** Tz. Denote by Σ^CO the mapping cone of -xjr, i.e.,

E(Γ)- £(/)-£(/)

is a cofiber sequence. By homological algebra we obtain a natural exact sequence

0 -» Ext (E^(X)9 G) -> Jβ(Γ)*(Jf) - Horn (E#(X), G) -> 0

for all X.

Let φ: G->G' be a homomorphism and Γ: 0-^G->/-^/^0, Γ': 0-»G'-»

/'-»y— >0 be injective resolutions. For a morphism μ,: Γ— >Γ' which is a lift
of 0, we may choose a map

A: E(Γ)->E(T')

making the diagram with cofiber sequences

homotopy commutative. However μ, is not uniquely determined (up to homo-

topy). The map μ yields the commutative diagram

0 - Ext (E*_ι(X), G) - έ(Γ)*(X) -* Horn (E*(X), G) -> 0

ΦΦ# ψ/t* Iφϊjί
0 -> Ext (^-X^Γ), GO - J5(Γ7)*(^) - Horn (E*(X), Gx) - 0 .

With an application of "five lemma' ' we find that μ : £(Γ)-».E(Γ/) is a homotopy

equivalence if φ\ G— >G' is an isomorphism. Thus the homotopy type of £"(Γ)

is independent of the choice of an injective resolution Γ of G. So we may put

Consequently we get

Proposition 6. Let E be a CW-spectrum and G an abelian group. Then
there exists a CW-spectrum E(G) so that

0 - Ext (E^(X)9 G) ̂  έ(G)*(X) - Horn (E*(X), G) -> 0

is a natural exact sequence for any CW-spectrum X. Moreover a homomorphism

φ: G-»G' induces a (non-unique) map φ: E(G)-*E(G') with the commutative
diagram
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0 — Ext (E^(X)9 G) -* (G)*(-Y) -» Horn (£*(-£), G) -* 0

10* IΦ* iφ*
0 -* Ext (E^(X)9 G') -> £(G')*(*) - Horn (E*(X), G') -> 0 .

(Cf., [5]).

If y is a finite CW-spectrum, then the function dual Y*=F(Y, S) can be

taken finite and E*(Y)^E-*(Y*), E*(Y)^E_*(Y*). We notice that

(2.1) there exists a natural exact sequence

0 -> Ext (£*+1(F), G) -> E(G)*(Y) -> Horn (£*( Y), G) -> 0

/or all finite Y.

Let /: E-+F be a map of CJ/F-spectra. Then / induces a (non-unique)

map /: F(G)->E(G) such that the diagram

0 - Ext (F* ̂ (-Y), G) -> P(G)*(X) -> Horn (F*(J?Q, G) -> 0

(2.2) |/* |/* |/*

0 -> Ext (^*-ιW, G) -> ^(G)*(J?) -> Horn (£*(-Y), G) -* 0

is commutative. Remark that / becomes a homotopy equivalence if so is /.

Hence we find that

(2.3) the homotopy type of E(G) depends only on that of E and the isomorphism

class of G.

2.2. For simplicity we write E instead of E(Z). We shall now show that

E(G) and EG have the same homotopy type under some finiteness assumptions

on E and G. First we require the following

Lemma 7. i) Let G be a direct product of abelίan groups Ga, i.e., G=

ΠGΛ. Then E(G) is homotopy equivalent to TίE(GΛ).

ii) Let G be a direct sum of R-modules GΛ9 i.e., G=]Γ]GΛ, and assume that π*(E)

is of finiye type as an R-module. Then E(G) is homotopy equivalent to V E(GΛ).

Proof, i) Denote by pΛ the canonical projection from G onto Grt. The

map Π/V E(G)-*ΠE(Ga) induces the composite homomorphism

for any CPF-spectrum X. In the commutative diagram

0 -* Ext (E+^X), G) — &(G)*(X) - Horn (E*(X), G) — 0
I I I

0 - Π Ext^*.^, GΛ) - τiέ(G»)*(X) - Π Hom(£*(-Y), G.) - 0
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involving the universal coefficient sequences, the left and right arrows are iso-
morphisms. By "five lemma' ' the center becomes an isomorphism, and hence
the map ΐ[pa is a homotopy equivalence.

ii) The canonical injections ia: GΛ-*G induce the composite homomor-

phism

(v £((?„))*( y) - Σ£(GΛ)*(y) -> E(Gγ(Y)
for any finite Y. Consider the commutative diagram

0 - Σ Ext]e(£* -,(30, Ga) - Σ (GΛ)*(Y) - Σ Hom^^F), Ga) - 0

I I I
0- Extj?(£*_1(F))G) - E(G)*(Y) - HomR(E*(Y), G) ^ 0 .

The vertical arrows on both sides are isomorphisms whenever Y is finite. So
the map V£ Λ : V έ(GΛ)-^E(G} becomes a homotopy equivalence.

Fix a subring R of Q and assume that π*(E) has finite type as an /?-module.

For any subrings R', /?", R'dRdR", the composite maps

(2.4) e(R') : £(R)R' -> E(R)R <- έ(R), e(R") : E(R)R" -> E(R")R"

become homotopy equivalences because all arrows induce isomorphisms in
homotopy. So we consider the diagram

E(R)R' -* E(R)Q -+ έ(R)Q/R'

E(R) -> E(Q) -

such that the rows are cofiber sequences and the left square is homotopy com-
mutative. Then there exists a homotopy equivalence

(2.5) e(QIR>):&(R)Q/R'^E(QIR)

(denoted by a dotted arrow in the above diagram) which makes the diagram
into a morphism of cofiber sequences. Moreover we get a map

(2.6) e(Zq) : έ(R)Zς -+ E(ZQ)

for the .R-module Z ,̂ which becomes also a homotopy equivalence. This gives
rise to a homotopy commutative diagram

έ(R)Z, -> E(R)Q/R - E(R)Q/R

I I I I
E(Z9) - E(QIR) - E(QIR) -

where the rows are cofiber sequences associated with the injective resolution
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Proposition 8. Let G be a direct sum or product of finitely generated R-
modules Ga. If π*(E) is of finite type as an R-module, then E(G) has the same
homotopy type of E(R)G.

Proof. We may put G^R or Zq. Using (2.4), (2.6) and Lemmas 4, 7
we find that the composite maps

E(R)G«- V&(R)GΛ-+ V&(GΛ)-»έ(G), E(R)G

are homotopy equivalences.

L1 i —

2.3. Let S^Sφ-^Sφ be the cofiber sequence constructed in §1. Assume
that for all finite CPΪ^-spectra Y we have natural homomorphisms

which satisfy the relation that <j>"(\ /\ l)*=(l Λ ~i)*φ'. Moreover we assume that
π*(E) and π*(F) are Λ-modules where R is a proper subring of Q. If π*(F) is
of finite type, then F&*(X) and FR/Z*(X) are always Hausdorff for all X [8,
III]. Thus FR*(X)^ \imF$*(Xλ) and F&/Z*(X)^ limFRIZ*(X^ where

{̂ Γλ} runs over the set of all finite subspectra of X. Applying Corollary 5 (and
Proposition 3) we obtain natural homomorphisms

» FR*(X), ψ': E&/Z*(X)

for arbitrary X which gives us the commutative square

E&*(X) -> ER/Z*(X)

I I
F&*(X) -> F&/Z*(X) .

Putt ing f'=ψ'(lER) andf"=ψ' '(\ERIZ) we get the diagram

f I ! f"

with cofiber sequences and a homotopy commutative square. Then there

exists a map

(2.7) /: E-»F

making the above diagram into a morphism of cofiber sequences. In particular,
we obtain the following result which is a useful tool in studying properties of
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Lemma 9. Assume that π*(E) and π*(F) have finite type as R-modules.

If for any finite CW -spectrum Y we have natural isomorphisms

such that φ"(\ /\ 7)* — (1 /\ ^ )*^> ̂ w ̂  ̂  homotopy equivalent to F.

/\
Now we study the homotopy type of £(-#) by use of Lemma 9.

Theorem 2. // Tr^E1) w of finite type as an R' -module, then E(R')(R) has

the same homotopy type of ER where R'dRdQ.

Proof. By [8, (II. 1.10)], (2.1) and Proposition 6 the composite homomor-

phism

E*(Y)®Q^Hom(Hom(E*(Y),R'), Q)

is a natural isomorphism for all finite Y. In particular the coefficient π*(έ(R')

(£))) is equal to the ^-module π*(EQ). Therefore E(R')(Q) becomes homotopy

equivalent to EQ.

So we may assume that R is a proper subring of Q. For any finite Y we

consider the following diagram

ER*+1(Y Λ SΦ) (ER)*(Y) - E*(Y) ® Ext(Q/R', R)

ER*+1( Y Λ Sφ) S^ (ER)&IZ*( Y) <- E*( Y) ® Ext (Q, R)

ϊk

- Ext (Horn (E*(Y), Q/R'), R) - Ext(E(Q/R%(Y), R)

) - Evt(£(Q)*(Y), R)

, K) 1 E(R') (/?)*( FΛSΦ)

(in which we drop the subscript R' on the functors ®, Hom^, Ext^). Note

that Ext(<2, R)^frlR^R®RIZ and Ext(Q/R', R)^β. All squares are com-

mutative by Corollary 5, (2.1), (2.5) and Proposition 6. In addition all horizontal

arrows are isomorphisms because of Corollary 5, [8, (II. 1.10)], (2.1), (2.4), (2.5)

and Proposition 6. Applying Lemma 9 to the above diagram the desirable result

is obtaind.

Theorem 2 asserts that we have a natural exact sequence
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(2.8) 0 -> Ext (£(#')* -ιW> R) -> £7?*(JQ -* Horn (£(#')* W> Λ) -> 0

for any X and R'CLRdQ if TT*^) is of finite type as an ^-module.
Using the above universal coefficient sequence we give a new criterion for

ER*(X) being Hausdorff.

Theorem 3. Assume that π*(E) has finite type as an R' -module. (ER)n+l

(X) is Hausdorff if and only if Ext(E(R')n(X)jTE(R')n(X), R)=Q where R'dR
c Q and TG denotes the torsion subgroup of G.

Proof. The proof is similar to that of [8, Theorem IV. 4]. Assume that
R is a proper subring. Recall that ERn+l(X) is Hausdorff if and only if the
boundary homomorphism 8: ER$IZn(X)->ERn+l(X) is trivial (cf., [8, Theorem
III.l)]. Then Corollary 5 implies that ERn+l(X) is Hausdorff if and only if
(1 Λ 0* : ERn+\X Λ Sφ)-*ER"+l(X) is trivial. In the commutative diagram

)y R) -> ERn+\X Λ Sφ)

I i
0 -> Ex.t(E(R')n(X\ R) -> ERn+l(X) -> Hom(£(R')n+l(X), R) -> 0 ,

the upper arrow is an isomorphism and the lower row is exact by (2.8). On
the other hand, the left vertical arrow admits a factorization

Ext(&(R')Qn(X), R) - Ext(£(R')n(X)IT&(R')n(X), R) - Ext (£(/?')„(*), R)

such that the former is an epimorphism but the latter is a monomorphism.

An easy diagram chase shows that (1 /\O* ^s tne zero maP if and only if Ext
(E(R')n(X)/T£(R')n(X)y R)=Q. So the result follows immediately.

2.4. Now we discuss uniqueness of E(G) under some restrictions on E
and G.

Theorem 4. Let G be a finitely generated R-module with Ύor(π*(E), G)
=0, and assume that π*(E) is of finite type as an R-module. If F satisfies the
property that there exists a natural exact sequence

0 -> Ext(£*-ι(*), G) - F*(X) -> Horn (£*(*), G) -> 0

for any CW -spectrum X, then F has the same homotopy type of E(G).

Proof. Assume that R is a proper subring of O. The torsion subgroup
Γ= TG is a direct summand of G and the quotient P=G/TG is a free 7?-module.
Consider the commutative diagram

E(P)*+1(X Λ SΦ) Ext(£ρ/Z*(X), P) - Ext(£ρ/Z*(.ϊ), G)

I
), P) - Ext(£ρ*(^), G)
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for any X. (2.7) gives rise to a map/: E(P)-*F with the commutative diagram

F*(X) -* PT?*^) -* F&IZ*(X).

Looking at the previous diagram we find that in the above the central arrow is a
monomorphism and the right is an isomorphism. So /*: E(P)*(X)-+F*(X)
becomes a monomorphism whenever E(P)*(X) is HausdorίF, and in addition /
induces an isomorphism /#: π*(E(P)) ® Q-*π*(F) <g) Q. Denote by Fτ the
mapping cone of/, thus

is a cofiber sequence. &(P)*(FT) is HausdorfF as 7r#(.FT)® Q=® [8, Theorem
III. 2], Therefore we have a short exact sequence

0 - έ(P)*(Fτ) -> F*(FT) -> F$(FT) -» 0 .

Then we may choose a map h: FT->F such that the composite map g h is
homotopic to the identity. This means that the sequence

0 -> (P)*(X) -> F*(X) -> F%(X) -> 0

is split exact. F is obviously homotopic to the wedge of E(P) and Fτ.
We are now left to show that Fτ has the same homotopy type of £^(7") under

the assumption that Tor(τr*(£'), G)=0. Consider the commutative exact dia-
gram

0 0 0

0 -> Ext(EQ/Z*(X), P) - E(P)*+\X Λ SΦ) -> Hom(^ρ/Z*+1(JO, P) - 0

I I I
0 -> Ext(£ρ/Z*(*), G) - F*+1(^Γ Λ Sφ) - Hom(^/Z*+1(JO, G) -» 0

, Γ) F^XJT Λ SΦ) Hom(£0/Z*+1(*), Γ)

I i I
o o o

in which Hom(£g/Z*+1(^), P)— 0. With an application of "3 x 3 lemma" we
get a natural exact sequence

for any X. Take a free resolution 0—^Pj—>P0—»71—»0 consisting of finitely gene-
rated 7?-modules. The composite homomorphisms
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Ezt(EQIZ*(X), P,) <- Eχt(EQIZ*(X), R) ® P,

-» E(R)*+1(X Λ S*) ® P,. - EWPf^X Λ S*)

are isomorphisms. The Λ-free resolution yields the following commutative
exact diagram

0

- «' ^^
0 - Ext(£ρ/Z*_,(*), Γ) - ̂ *(^ Λ SφV^ Hom^ρ/Z*^, Γ) -H. 0

E(R)Pr\X^SΦ)

, PO)
'

, Γ) - P*-(Z Λ S«) - Hom^ρ/Z^,^), T) -* 0
I
0.

Define homomorphisms

SΦ), S: F$(̂  Λ SΦ) - Λ

by the composite maps \Jτ— η' ψx η'1, δ=77 3 /c/. By an easy diagram chase
we show that the long sequence

- έ(R)Pf(X Λ SΨ) - E(R)P$(X Λ Sφ) ί F$(Jί Λ S+) i E(R)PΓ\X Λ Sφ) -

is exact for all X.
Next we consider the commutative exact diagram

E(R)P?(X) Π
|ί . |t * c=:J,t'

ϊ E(R)P,R*(X) % FTR*(X)
I

f E(R)PjίlZ*(X)

in which the middle row is rewritten the previous long exact sequence by the
aid of Corollary 5. As is easily seen, we get an exact sequence

E(R)Pf(X) ^ E(R)P$(X) £ F$(X)

for any X. Taking e/=p(l^RyPo)J the composite map e' φ becomes homotopic



UNIVERSAL COEFFICIENT SEQUENCES 319

to the zero map. Therefore ef admits a factorization (up to homotopy)

This yields the commutative triangle

E(R}T*(X]

If Tor(τr*(£), T)=Q, then Ύor(π*(E(R)), T)= 0 and hence the above e* is an
isomorphism. So Fτ becomes homotopy equivalent to E(T) because of Pro-
position 8. Putting this and the previous result together, the required result is
obtained from Lemma 7.

3. Complex and real JSΓ-theories

3.1. First we shall construct an injective resolution

Γ(G):0-»G-./c-*/G-*0

for every abelian group G which is functorial in G (see [5]). Let A(G) denote
the direct sum of copies Ag of A which runs over the set of all elements g of
G, where A=Z, Q or Z/Q. G admits the canonical free resolution 0— >P— * Z(G)
— >G— »0. Consider the commutative exact diagram

0 0

1 I
p = P
I

0 -» Z(G) -* Q(G] -* ρ/Z(G) -» 0

I I I
0 - G - 7G - / G - 0

I I
0 0

and take the lower row in the above diagram as Γ(G). Note that JG is
isomorphic to Q/Z(G).

Let μ: E f^F^ W be a pairing of CW-spectra with πa(W)^Z and n^(W)
torsion free. This gives rise to the natural homomorphism

μ: FG*(X) -> Hom(£H=(^), «£WG))

for any G.
We shall require the following result in studying the duals of /^-theories.
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Lemma 10. // μ induces isomorphisms ~μ: π*(FG')^> ΐlom(π-*(E), G') in
the cases G'=IG, Jc, then we have a homotopy equivalence f: FG-*E(G) with

μ=κ f*.

Proof. In the commutative diagram

FG*(X) -> Hom(E*(X), G) *- E(G)*(X)

I 4 I
FIG*(X) - Horn (£*(*), Ic) <- E(IC)*(X)

I I I
FJG*(X) - Hom(E*(Z), Jo) *

the last two left-hand arrows are isomorphisms. So the above diagram yields
the homotopy commutative diagram

FG - FIG -* FJG

i

with cofiber sequences. Choose a map

making the above diagram homotopy commutative. Then it becomes a homo-
topy equivalence from our hypothesis. The composite map κ f*: FG*(X)—>
E(G)*(X)—>Hom(E*(X)y G) coincides with the homomorphism ~μ induced by
the pairing μ, because lr{om(E*(X), G)-*Hom(E*(X), IG) is a monomorphism.

3.2. Let us denote by H, K, KO and KSp the Eilenberg-MacLane spec-
trum, the BU-, BO- and .BSp-spectrum respectively. We now investigate the

Λ Λ /\

homotopy types of H(G), K(G) and KSρ(G).

Theorem 5. For any abelian group G H(G), K(G) and KSρ(G) have the
same homotopy types of HG, KG and KOG respectively (cf., [3]).

Proof. The proof is essentially due to Anderson [3].
The A and K cases: Let E denote either H or K, and μE: E Λ E->E the

usual pairing. As is well known, ~μE: π*(E)-*Hom(π_*(E),Z) is an isomorphism.
This implies that JZE: π*(EG)-^>Horn(π_*(£"), G) is an isomorphism for all G.
The result follows immediately from Lemma 10.

/\
The KSp case: There is a well known pairing μκsp: KSp ^KO-*KSp.

We see easily that jzκsp πn(KO)-*Hom(π_n(KSp)ί Z) is an isomorphism except
n=ly 2 mod 8, and hence ~μκsρ πn(KOA)—>Hom(π_n(KSp), A) is so for all n
and ^-modules A. Fix a Q-module A. For any subgroup B of A we define
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homomorphίsms \n by the composite maps

πn(KO) ® A/B ̂  πn(KOA/B) -> Hom(π_n(KSp), A/B) when n =f= 2, 3 mod 8

πn(KOA/B) -> Hom(τr_w(^5/)), ,4/£)

when 72^2, 3 mod 8

which are natural with respect to B. Let η1 be the generator of π1(
and define as the multiplications by η1 φ: π1(KO)-^π2(KO) and φ: π_3(KSp)->

π_2(KSp). Then we remark that φ's are isomorphisms and 0* X2— λ3(^®l)
The simpletification 6SP: K-^KSp induces a natural transformation K*(Y)— >
KSp*(Y) of KO*( )-modules for all finite Y. So we get a weak homotopy
commutative diagram

I 1
KSp^KO - > KSp.

(In fact this diagram is homotopy commutative by use of Corollary 13 below).
This yields the commutative diagram

π2(KOAIB) - > Hom(π_2(KSp), π0(KSpA/B))

I I
π2(KA/B) -* Hom(τr_2(^), π0(KA/B)) -> Hom(7r_2(ί:), π0(KSpA/B)) .

The left vertical arrow is a monomorphism because π1(KOA/B)=Q, and the
lower horizontal ones are isomorphisms. Therefore the upper becomes a
monomorphism, and hence so are both X2 and X3. Let {5λ} be the set of all
finitely generated subgroups of B. As is easily checked, \n are isomorphisms
for all n and Bλ because Bλ is free. On the other hand, A/B is isomorphic to
the direct limit of A/Bλ and Hom(π_n(KSp), A/B)^limHom(π_n(KSp), A/BJ.

So we see immediately that \n are isomorphisms for any subgroup B. Thus

μκsp: πκ(KOG') - Hom(π_n(KSp), G')

is an isomorphism for any quotient group G' of a Q-module. Taking IG and
JG as the above G' and applying Lemma 10 we get the desirable result.

In other words, Theorem 5 says that there exist universal coefficient se-
quences

), G) -> HG"(X) -
(3.1) 0-^ E x t . ) , G) -> KGn(X) -* Hom(Kn(X), G) -> 0

0 ̂  Ext(^0M+3(^Γ), G)-^ KOGn(X) — Hom(KOn+4(X)9 G) -

for any CW-spectrum X.
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Theorem 3 combined with (3.1) implies the following

Corollary 11. i) HRn+ί(X) is Hausdorff if and only ifExt(Hn(X)/THn(X)y

R)=0.
ii) KRn+l(X) is Hausdorff if and only if Ext(Kn(X)ITKn(X)> R)=Q.

iii) KORn+1(X) is Hausdorff if and only if Ext(KOn+<(X)ITKOn+4(X), JR)=0.

3.3. Finally we shall make a comment for Hausdorff-ness of ./£- theories.

Proposition 12. Let E be a CW-spectrum such that π*(E] is of finite type

as an R-module and fix a degree n. If πk(X)®πk_n(E)®Q=Q for all k, then

En+ί(X) is Hausdorff. (Cf., [8, Theorem III, 2]).

Proof. Under our assumtions we compute

EZ\Z\X)^ W\X\ πk-n(E) ® Z\Z)^ ΠHom(tf „(*), πk.n(E) ® Z/Z) = 0 .

Then the result is immediate from [8, Theorem III. 1].

For CW-spectra E and X whose rational homotopy groups are sparse we

have

Corollary 13. Let E be a CW-spectrum such that π*(E) is of finite type as

an R-module. Assume that πm(E) ® Q=πm(X) ® Q=Q unless m = 0 mod n. Then

Em+1(X) is Hausdorff whenever m^O mod n.

As is well known, π2n+1(K)=0 and πm(KO) ® Q=Q if m^O mod 4. There-

fore Corollary 13 implies

Theorem 6. i) K2n(K Λ - - Λ K) is Hausdorff.

ii) KOm(KO Λ Λ KO) ™ Hausdorff whenever m^l mod 4.

REMARK. Informations on K*(K) and KO*(KO) have been obtained by

Adams, Harris and Switzer [2].

As an immediate corollary we have

Corollary 14. Complex and real K-theories K*y KO* (defined on the

category of CW-spectrά) possess an associative and commutative multiplication.

OSAKA CITY UNIVERSITY

References

[1] J.F.Adams: Stable Homotopy and Generalized Homology, Chicago Lecture in
Math., Univ. of Chicago Press, 1974.

[2] J.F. Adams, A.S. Harris and R. M. Switzer: Hopf algebras of cooperations for real
and compex K-theory, Proc. London. Math. Soc. 23 (1971) 385-408.



UNIVERSAL COEFFICIENT SEQUENCES 323

[3] D.W.Anderson: Universal coefficient theorems for K.-theory, mimeographed
notes, Berkley.

[4] P.Hilton: Homology Theory and Duality, Gordon and Breach, 1965.
[5] P. Kainen: Universal coefficient theorems for generalized homology and stable

cohomotopy, Pacific J. Math. 37 (1971), 397-407.
[6] E.H. Spanier: Function spaces and duality, Ann. of Math. 70 (1959), 338-378.
[7] R. Vogt: Boardman's Stable Homotopy Category, Lecture notes series 21, Arahus

Univ., 1970.
[8] Z. Yosimura: On cohomology theories of infinite CW'-complexes, II, III and IV,

Publ. Res. Inst. Math. Sci. 8 (1973), 483-508 and 9 (1974) 683-706 and 707-720.






