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Kainen [5] showed that there exists a cohomology theory k*(  (?) and
a natural short exact sequence

0 — Ext (hs_(X)G) — k*(X;G) — Hom (hs(X),G) - 0

for any based CW-complex X if Ay is an (additive) homology theory and G is
an abelian group. On the other hand, for an (additive) cohomology theory &*
such that k*(point) has finite type Anderson [3] constructed a homology theory
Dk, and a natural exact sequence

0 — Ext (Dks_,( F), 2 — k*( F) — Hom (Dky(F), Z) — 0

for any finite CW-complex whose extension to arbitrary CW-complexes is
given in a form of a four term exact sequence. He then determined homology
theories Dk in the special cases k*=H*, K* and KO*. Ordinary cohomology
theory and complex K-theory are both self-dual and real K-theory is the dual
of sympletic K-theory, i.e., DHy=Hy, DKy=K, and DKSps=KOx. More-
over he asserted that D’ is the identity, i.e., D(Dk)yx=Fx.

In this note we shall construct a CW-spectrum E(G) for every CW-
spectrum £ and abelian group G by Kainen’s method involving an injective
resolution of G, and state a relation between E and E(G)in a form of a universal
coefficient sequence

0 — Ext (Ex_(X),G) — E(G)*(X)— Hom (E«(X),G) — 0
for any CW-spectrum X. And we shall study some properties of ZA':(G) For
£\

example, under a certain finiteness assumption on z4(E) we show that E(R)
(R) has the same homotopy type of ER where J? is a subring of the rationals
O (Theorem 2). The above universal coefficient sequence combined with
Theorem 2 gives us a new criterion for ER*(X) being Hausdorff (Theorem 3).
Also we shall discuss uniqueness of E(G) (Theorem 4). Furthermore, using
Anderson’s technique we investigate the homotopy type of E(G) in the special
cases E=H, K and KSp (Theorem 5). Finally we note that K**(Kp +++ AK)
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and KO™(KOp*** AKO), m=%] mod 4, are both Hausdorfl(Theorem 6).

1. Duality maps

1.1. Let u: X’A X—W be a pairing of CW-spectra. Such a pairing
defines a homomorphism

T = Tu)g: {Y, EAX}— {Y A X, EAW}

by the relation T(f)=(Au) (f Al) for any CW-spectra Y and E. A pairing
u: X' AX—W iscalled an E-duality map provided T(u)gis an isomorphism for
Efixedand Y=Xorall k. If u isan E-dualitjmap, then 7T(#)pecomes an
isomorphism for any CW-spectrum Y.

Fix CW-spectra X and W and consider the cohomology functor {— A X, W}
defined on the category of CW-spectra. By the representability theorem, there
exists a function spectrum F(X, W) such that T: {Y, F(X,W)}—>{AX, W}
is a natural isomorphism for all Y. So we see that the evaluation map

e: F(X, WyAX—>W

is a S-duality map.
Let u: X' \X->W,v: YNY->W,/: XY, g: Y'—X'be maps such that
9(1 A /) and u(gA 1) aréhomotopic. Consider the cofibesequences

xly.z zovix.

We have a CW-spectrum Q and maps p: X' AX—0, ¢: YA Y—0, and
r: Z'nZ—Q giving rise to the diagram below homotopy commutative (up to
sign)
Y A X 27X AZ) Z'ANY
/ N\ v N / N
"AX VASNA Y'ANY

Y AY XA
\P /r q
Q

Since v(1 A f) and u(g A 1) are homotopic, an easy diagram chase shows that
there exists a map s: Q— Wwith s p=u and s g=v (see [7, Proof of Theorem
13.1]). So we obtain a map

wZ'NZ—->W

making the diagram
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DX NL) > ZNZ<—Z'N\NY
(1.1 I Vw I

X,/\X U>W<V—Y//\Y

homotopy commutative (up to sign).
By use of (1.1) and “five lemma’ we have

Lemma 1. Let u: Xo X—W, v: Y\ Y—>W be E-duality maps and
assume that maps f: X—Y and g: Y'—X'satisfy the property that v(\ A f) and
u(gp 1) are homotopic. Then the above map w: Z' nZ—Wis an E-dualitymap.

(Cf., |6, Theorem 6.10]).

Let C={X,, f.tand C'={X,/g,} be a direct and an inverse sequence of
CW-spectra respectively.  Pairings u,: X,/ A X,—Winduce the homomorphism

T{u}: {Y, EA(TIX,)} — {Y, TI(E A X))} = TI{Y, E A X}
M 1 (¥ X EAWY = V(¥ 7 X2, B W)
S{YA(VX,),EAW}.

Taking Y=TIIX,And E=S, there is a map
w: (IIX) A (VX)) = W

with the homotopy commutative square

(MX)A X = %A X,
(1.2) v Vi,
(ITX) A(VX,) ’;’ w.

Under the assumption that the canonical morphism E A (I1X,)—II(x X.)
is a homotopy equivalence, we see that

(1.3) u is an E-duality map if so are all u,.
Define maps f: VX,—VXand g: IIX,/—IIX,by
N fn =f1,, Pu—E8nPni1= Pn8&

where 7,: X,— VX, p,II1X,/—X,are the canonical maps. And, construct
the telescope 7C and the cotelescope T*C’so that we have the cofiber sequences

VX, Z» VX, TC, T*C'— X, —ttXn'

Proposition 2. Let C= {X,,, futand C'= {X,/ g,.} be a direct and an inverse
sequence of CW. -spectra, and u,: X,/ pn X,—Wbe pairings such that u, (1 f,)
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and u,(g, A1) are homotopic. Then there exists a map u: T*C'A TC—W such
that the following diagram is homotopy commutative (up to sign):

SYUIIX, A TC) — THC A TC < T*C' £ (V X,)
| \a |
(ILX) A(VED) — W (TIX) A (VXa) -

Moreover, assuming that the canonical morphism E a (I1X,)—II(p X)) s a
homotopy equivalence, U is an E-duality map ifso are all u,.

Proof. An easy diagram chase shows that u(/ A f)and u(ga 1) are homo-
topic. We apply Lemma 1 and (1.3) to obtain the required map.

1.2. Let G be an abelian group and T': O—>P1—'Z-S>Po—~>G-—>0 a free resolution.
We realize P; and ¢ by wedges MP, of sphere spectra and a map M¢: MP ,—
MP, The mapping cone MI' of My forms a Moore spectrum of type G.
Then there exists a universal coeflicient sequence

0 — Ext(G, mx (X)) {MT, X}x — Hom(G, 7x(X))— 0

where « associates to a map / the induced homomorphism fy in 0-th homotopy
(see [4]). Therefore a Moore spectrum of type G is uniquely determined up
to homotopy type. For any CW-spectrum E we define the corresponding
spectrum with coefficient group G

EG = E A MG

where MG is a Moore spectrum of type G.

Let / be a set of primes which may be empty, and denote by I, the multi-
plicative set generated by the primes not in /. It is a directed set which is
ordered by divisibility. If R is a subring of the rationals Q (with unit), it is
just "the integers localized at I’ where / is the set of primes which are not inver-
tible in R. Thus R=Z,=1I1;'Z. Let I° denote the set of primes pu(Pr<prr1)
not in /, i.e., IAl°= {g}and [\ I[°={all primes} . Putting ,=p%:** pn,we choose
a cofinal sequence J,= {l,,} in I,.

Fix a CW-spectrum W. C,={X,=W, f,=I,.,/l,}and C¥={X,/=Wg,
=1,.,/l,} form respectively a direct and an inverse sequence (indexed by J,).
Denote by W,, W the telescope of C, and the cotelescope of C¥ i.e.,

Wl = T{an = ln+1/ln} 5 W;k: T* {W’gn = ln+1/ln} .

Notice that W,is homotopy equivalent to W S,. Since S, is a Moore
spectrum of type Z,, an easy computation shows that

(1.4) tfZ~S~Z*n/'/Z,/ and HZ¥(S,)=0 for n%l
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where [’ is any set of primes with I’ A I°= {¢}.

7 n ”n
Define by ¢, and p, the composite maps W—>\/W—+W,W§"—>HW£>W
and consider the cofiber sequences

wWAW, W, Wiw"W.
S, is obviously a Moore spectrum of type Z,|Z, and in addition
(1.5) HZWS)=Zq and ffZ2/(S,) = 0, n=+1
for any 7 with 7/ ~1°= {¢}.
1.3. Here we construct two useful duality maps.

Proposition 3.  We have maps @: WS ,—Wand w: Wi S,—W such
that the following diagram is commutative (up to sign) for all CW-spectra X and E:

X, EAWY — {X, E W}
{22X, EAW} | T(w) VT(w) {X, EAW} .
{XAS, EAW}Y > {X A S, EAW}
Proof. Take as u,: W o S—Wthe canonical identification. From (1.2)

and Proposition 2 we obtain maps u: (IIW)A ( VS)—=W,8: Wf A S,—Wwith
the homotopy commutative squares

N
(TIW) A SPLSW S W A(VS) — (TTW) A (VS)
I pinl I ! Ju
(HW)/\(\/S) -J w W?‘/\S; —_— i > W.

Putting the above two squares together we see that p, o 1 and #(1A ¢,) are ho-
motopic. By (1.1) there exists a map W: WfaS,—W making the diagram
below homotopy commutative (up to sign)

Z_l( WA—S[) g VVf/\ S—z - W?‘/\S/
| \w !
W AS = W < W;k/\Sl.
u

Now we need the following result in order to apply Proposition 2.

Lemma 4. Let G be a direct product of R-modules G, and M, a Moore
spectrum of type G,. Then TIM,becomes a Moore spectrum of type G, and the
canonical morphism E 5 (TIM,)—TI(I\ M,) is a homotopy equivalence if =x(E)
has finite type as an R-module.

Proof. The result of Adams [1, Theorem 15.2] asserts that HR A [IM,—
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II(HRAM,) is a homotopy equivalence. Thus [IM,becomes a Moore
spectrum of type G because 7zx([[M,)is an R-module and hence so is Hx(I1M,).
In the commutative diagram

0 = 74(E)RG— mw(Ep IIM,)— Tor R(zx (E),G) — 0
| ¥ ! I
0= M7(E)QG, — [ln(E AM) — T Tor {(zx(E), Gu) — 0

involving the universal coefficient sequences, the left and right arrows are iso-
morphisms. The result follows from "five lemma”.

Obviously the canonical identification u,: W S—W is an E-duality map
for every E. Using Propositions 2, 3 and Lemma 4 we obtain

Theorem 1. Let G be an R-module and M a Moore spectrum of type G.
Assume that w«(E) is of finite type as an R-module. Then the maps #: M¥x S,—
M and w: Mf pn S,—M given in Proposition 3 are both E-duality maps.

Remark that 7«((S,)¥) and z«((S,)¥) are Z,-modules. Taking S, as M and
the empty ¢ as / in the above theorem, we compute that

Hy(S)3)=HZ¥(Ss), H((S)§)=HZ¥S,).

Thus 33(S,)¥ and 3Y(S,)¥ are Moore spectra of type Z 1/Z , and of type Z ;where
I+ {¢}, because of (1.4) and (1.5). So we get

Corollary 5. Assume that n«(E)is of finite type as an R-module where R is
a proper subring of Q.  Then there exist natural isomorphisms T(w)EAR*(X)—>
E**(Xa Sy), T(lZ):EIé/Z*(X)—»E*“(‘X S;) with the commutative (up to sign)
diagram

ER*(X) > ER|Z*(X)
E*(X) 17 (w) 1 T(%) E*\(X).

E*(X 7 Sy) — E*(X 5 S,)”

2. Universal coefficient sequences

2.1. Following Kainen [5] we shall construct a universal coefficient sequ-
ence for a generalized cohomology theory. Fix a CW-spectrum E. For every
injective abelian group / Hom(E«(—), /) forms a cohomology theory defined on
the category of CW-spectra. The representability theorem gives us a CW-
spectrum E(I)and a natural isomorphism

T,: {X,E(I)} -» Hom (E«(X),])

lr
for any CW-spectrum X. Let G be an abelian group and T: 0— >G—I-= >]J- >0
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an injective resolution. Then there exists a unique (up to homotopy) map +:
E(I)—E(J)whose induced homomorphism coincides with the natural trans-
formation 77 «4rs+ T;. Denote by > E(T") the mapping cone of 4, i.e.,

E(r) — E(I) - E(J)
is a cofiber sequence. By homological algebra we obtain a natural exact sequence
0 = Ext (Ex_,(X),G) — E(I)*(X) — Hom (Ex(X),G) — 0

for all X.

Let ¢: G—G’ be a homomorphism and T: 0-G—I—J—0, I'V: 0-G'—
I'— J’— >0 be injective resolutions. For a morphism w: T'— >T which is a lift
of ¢, we may choose a map

A: E(T') - EI)
making the diagram with cofiber sequences
E(r)— E{) - E(J)—~ ZE(T)
y

} } }
ET) — E(I') — E(J') - SET)

homotopy commutative. However g is not uniquely determined (up to homo-
topy). The map u yields the commutative diagram

0 — Ext (Ex(X),G) — E(T)*X}> Horn (Ex(X),6) — 0
Vs ) | ik Vs
0 — Ext (Ex_(X), GO — E(I")*(X) — Hom (Ex(X)G’) — 0.

With an application of “fivelemma’’ we find that g : E(I‘)-—)E‘(I") is a homotopy
equivalence if ¢: G- >G’ is an isomorphism. Thus the homotopy type of E(T)
is independent of the choice of an injective resolution I' of G. So we may put

EG)=ED), é=i.
Consequently we get

Proposition 6. Let E be a CW-spectrum and G an abelian group.  Then
there exists a CW-spectrum E(G)so that

/BN
0 — Ext (Ex_(X)G) = E(G)*(X)> Hom (E«(X),G) — 0
is a natural exact sequence for any CW-spectrum X.  Moreover a homomorphism

@: GG’ induces a (non-unique) map @: AE(G)—:E(G’) with the commutative
diagram
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0 — Ext (Ex_(X)G) — (G)*(X) - Hom (Ex(X), G) — 0
Vb Ls Vs
0 — Ext (Ex_(X)G’) = E(G)*(X) — Hom (E«(X),G')— 0 .
(Ct., [5]).

If Y is a finite CW-spectrum, then the function dual Y*=F(Y,S) can be
taken finite and Ex(Y)=E *(Y*),E*(Y)=E_4(Y*). We notice that

(2.1)  there exists a natural exact sequence
0 — Ext (E**(Y), G) — E(G)+(Y)}~> Hom (E*(Y), G) — 0
for all finite Y.

Let /: E—F be a map of CW-spectra. Then / induces a (non-unique)
map /: F(G)—E(G)such that the diagram

0 — Ext (Fx_(X), G) = F(G)*(X}~> Hom (Fx(X), G) =0

2.2) L 'z Lf*
0 = Ext (Ex_,(X), G) = E(G)*(X) — Hom (Ex(X), G) — 0

is commutative. Remark that / becomes a homotopy equivalence if so is /.
Hence we find that

(2.3) the homotopy type of E(G) depends only on that of E and the isomorphism
class of G.

2.2.  For simplicity we write E instead of AE(Z). We shall now show that
E(G) and EG have the same homotopy type under some finiteness assumptions
on Fand G. First we require the following

Lemma 7. i) Let G be a direct product of abelian groups G, i.e., G=
IIG,. Then AE(G) is homotopy equivalent to HAE(Gm).
ii) Let G be a direct sum of R-modules G,,i.e., G=3"G,, and assume that w4(E)
is of finiye type as an R-module.  Then AE(G) is homotopy equivalent to VE(GN).

Proof. i) Denote by p, the canonical projection from G onto G,. The
map [1pa: E(G)%HE(G,,)induces the composite homomorphism

E(GY(X) — TIE(G*(X) = (IIE(G.)*(X)
for any CW-spectrum X. In the commutative diagram

0 — Ext (Ex_,(X),G) — E(G)*(X)— Horn (E4(X),G) — 0
I I !
O — TExt(E4_(X),G,)— IE(G,)*(X3>> TTHom(E«(X),G,) — O
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involving the universal coefficient sequences, the left and right arrows are iso-
morphisms. By "five lemma’’ the center becomes an isomorphism, and hence

the map IIp.is a homotopy equivalence.
ii) The canonical injections Z,: G,—G induce the composite homomor-

phism
(VEG)*(Y) < SE(GHY) = EG)*(Y)
for any finite Y. Consider the commutative diagram

0 = S Extk(Ex(Y),Ga) = = (G)*(Y)> = Homg(Ex(Y), G.) = O
! | |
0 - Exth(Ex(Y),G) — EG)*(Y) — HomgE«Y),G) — 0.

The vertical arrows on both sides are isomorphisms whenever Y is finite. So
the map V1i,: VE(G,)—E(G)ecomes a homotopy equivalence.

Fix a subring R of O and assume that zx(E) has finite type as an R-module.
For any subrings R/, R”’, R*"C RC R”,the composite maps

(24) eR): E(R)R— E(R)R— E(R), ¢(R”): E(R)R"— E(R")R"— E(R")

become homotopy equivalences because all arrows induce isomorphisms in
homotopy. So we consider the diagram

E(R)R’ - E(R)Q — E(R)Q/R~ S ER)R
’ |
E(R) - E(Q) - E(Q/R) - SER)

such that the rows are cofiber sequences and the left square is homotopy com-
mutative. Then there exists a homotopy equivalence

(2.5) e(Q/R): E(R)Q/R’ — E(Q/R)

(denoted by a dotted arrow in the above diagram) which makes the diagram
into a morphism of cofiber sequences. Moreover we get a map

(2.6) o(Z)y E(RYZ,~ E(Z,)

for the R-module Z,, which becomes also a homotopy equivalence. This gives
rise to a homotopy commutative diagram

E(R)Z,— E(R)Q|R — E(R)Q/R—> X E(R)Z,
I I I I
EZ,) — EQ|R) — EQIR) — ZEZ,)

where the rows are cofiber sequences associated with the injective resolution
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0—Z,~0/R%0/R—0.

Proposition 8. Let G be a direct sum or product of finitely generated R-
modules G,. If n«(E) is of finite type as an R-module, then E(G) has the same
homotopy type of E(R)G.

Proof. We may put G,=R or Z,. Using (2.4), (2.6) and Lemmas 4, 7
we find that the composite maps

E(R)G < V E(R)G,—~V E(G,)~ E(G), B(RG— IIER)G,— T1E(G.) —E(G)
are homotopy equivalences.

-
23. Let S—S§4—S, be the cofiber sequence constructed in §1. Assume
that for all finite CW-spectra Y we have natural homomorphisms

¢ EX(Y ASy) = FX(Y ASs), ¢": E¥(Y A Sy) = F¥(Y A S,)

which satisfy the relation that ¢”(1a 2)*=(1a 2)*¢’. Moreover we assume that
7x(E) and zy(F)are R-modules where R is a proper subring of Q. If z4(F)is
of finite type, then FR*(X)and FR/Z*(X)are always Hausdorff for all X [8,
ITI]. Thus FR*(X)’:‘:(—_Iiir_l FR*(X*) and FI%/Z*(X)zl‘i_mFR/Z*(X“)Where

{X*} runs over the set of all finite subspectra of X. Applying Corollary 5 (and
Proposition 3) we obtain natural homomorphisms

v ER*(X) — FR*(X), +': ER|Z*(X)> FR|Z*(X)
for arbitrary X which gives us the commutative square
ER*(X) — ER|Z*(X)

i i
FR*(X)— FR|Z*(X).

Puttingf'=+'(1g#) and f”"=+'(1gi/z)we get the diagram

E—ER—>ER|Z—E
fli/ l/f//
F—>FR—>FR|Z—>S\F

with cofiber sequences and a homotopy commutative square. Then there
exists a map

2.7) /. E—-F

making the above diagram into a morphism of cofiber sequences. In particular,

we obtain the following result which is a useful tool in studying properties of
E(G).
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Lemma 9. Assume that nx(E) and 7«(F)have finite type as R-modules.
Iffor any finite CW-spectrum Y we have natural isomorphisms

¢t EX(Y ASy) > FX(Y A Sy), ¢": EX(Y A Sy) = FX(Y 5 S,)

such that ¢ (15 0)*— (1 A 2 )*¢, then E is homotopy equivalent fo F.
VN
Now we study the homotopy type of lAi'(R) by use of Lemma 9.
PN
Theorem 2. If ny(E) s of finite type as an R’-module, then E(R')(R)has
the same homotopy type of ER where R’"C RC Q.

Proof. By [8, (II. 1.10)], (2.1) and Proposition 6 the composite homomor-
phism

K* A K ,\/\
E*(Y)®Q —Hom (Hom (E*(Y),R’), Q)— Hom (E(R)«(Y), Q) < E(R") (Q)*(Y)

is a natural isomorphism for all finite Y. In particular the coefficient n*(E(R’ )
(Q)) is equal to the Q-module zx(EQ). Therefore E(R’ )(Q)becomes homotopy

equivalent to EQ.
So we may assume that R is a proper subring of Q. For any finite Y we

consider the following diagram

- T(w
R*“(Y/\ Ss) (ER)R*(Y)* EX(Y)® Ext(Q/R’,R)

sre (v 59 TR GRAZAD — B p ® B (0, B

~+ Ext(Hom(EX(Y), Q/R), B> Ext(E(QJR)«(¥),R

} !

— Ext(Hom(E*(Y), O), R) — Ext(EAJ(Q)*( Y)R)
«(QI2)* o

Ext(E(R)Q/Z«(Y), R) — E(RYR)*(Y A Sy)

(4 n A
—> EXt(E(R')Q*( Y), R) — E(R)(R)*(Y ASs)
(in which we drop the subscript R’ on the functors ®, Hompg/, Extg’). Note

that Ext(Q, R)= IQ/RgR®k/an Ext(Q/R’,R)= R. All squares are com-
mutative by Corollary 5, (2.1), (2.5) and Proposition 6. In addition all horizontal
arrows are isomorphisms because of Corollary 5, [8, (II. 1.10)], (2.1), (2.4), (2.5)
and Proposition 6. Applying Lemma 9 to the above diagram the desirable result

is obtaind.

Theorem 2 asserts that we have a natural exact sequence
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(2.8) 0 — Ext(E(R)x(X), R) = ER*(X) — Hom (E(R))«(X), R) = 0

for any X and R'C RC Q if nx(E) is of finite type as an R’-module.

Using the above universal coefficient sequence we give a new criterion for
ER*(X)being Hausdorff.

Theorem 3. Assume that ns(E) has finite type as an R’-module. (ER)"*!
(X) is Hausdorff if and only if Ext(E(R')(X)/TE(R)(AR)=0 where R'CR
c O and TG denotes the torsion subgroup of G.

Proof. The proof is similar to that of [§, Theorem IV. 4]. Assume that
R is a proper subring. Recall that ER**'(X)is Hausdorff if and only if the
boundary homomorphism 3&: ERI@/Z"(X)—>ER"+ Y(XY trivial (cf., [8, Theorem
IT11.1)]. Then Corollary 5 implies that ER**'(X)is Hausdorff if and only if
(I A u)*: ER™Y(XA S4)—ER""(X)s trivial. In the commutative diagram

Ext(E(R)0X), R) — ER™ (XA Sy)
! !
0 — Ext(E(R)(X),R) — ER*(X)—> Hom (E(R'),(X)R) — 0 ,

the upper arrow is an isomorphism and the lower row is exact by (2.8). On
the other hand, the left vertical arrow admits a factorization

Ext(E(R)OX)R) — Ext(E(R)X)/TER)(XB) — Ext(E(R)(X), R)

such that the former is an epimorphism but the latter is a monomorphism.

An casy diagram chase shows that (1 A4)* 1s the zero magf and onlif Ext
(E(R’),,(X)/TE(R’),.()R):O. So the result follows immediately.

24. Now we discuss uniqueness of é(G) under some restrictions on E
and G.

Theorem 4. Let G be a finitely generated R-module with Tor(r4(E),G)
=0, and assume that ny(E) is of finite type as an R-module. If F satisfiesthe
property that there exists a natural exact sequence

0 — Ext(Ex_,(X), G) - F*(X)>Hom(E«(X), G)—0
for any CW-spectrum X, then F has the same homotopy type of AE(G).

Proof. Assume that R is a proper subring of O. The torsion subgroup
T= TG is a direct summand of G and the quotient P=G/TGis a free R-module.
Consider the commutative diagram

E(Py**(X\Sy) ~Ext(EQ|Z«(X), P) — Ext(EQ|Z«(X), G) = F**(X 5 5,)

y ! ! ¥
E(P*(X 7 S) = Ext(EQx(X), P) — Ext(EQ«(X),G) — F*"'(X 5 S,)
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for any X. (2.7) gives rise to a map f: E(P)—>Fwith the commutative diagram

E(PY(X) — E(P)R¥(X) — E(P)R|Z*(X)
| ! !
F*X) — FR¥X) — Fﬁ/Z*(X) .

Looking at the previous diagram we find that in the above the central arrow is a
monomorphism and the right is an isomorphism. So f*: E(P)*(X)—F*(X)
becomes a monomorphism whenever E(P)*(X)is Hausdorff, and in addition /
induces an isomorphism fy: 7«(E(P))Q O—r«(F)Q Q. Denote by Fr the
mapping cone of f, thus

Epy L réF,

is a cofiber sequence. E(P)*(Ff)is Hausdorff as 74(Fr) @ O=0 [8, Theorem
III. 2]. Therefore we have a short exact sequence

0 — E(P)*(Fy—> F*(Fz)— F§(Fr)— 0 .

Then we may choose a map k: Fr—F such that the composite map g / is
homotopic to the identity. This means that the sequence

0 =" (PYX)> F¥X)—> F¥(X)— 0

is split exact. F is obviously homotopic to the wedge of %(P) and Fr.

We are now left to show that Fhas the same homotopy type of E‘( T) under
the assumption that Tor(z«(E), G)=0. Consider the commutative exact dia-
gram

0 0 0
0 — Ext (ES/Z*(X)P) - E“(P)*“(LXA SHE Hom(EQ/Z*il(X), P) -0
0»Ext(EQI/Z*(X), G) — F*H()IfAs}) - Hom(EQ/ZL,(X), G)—0
Ext(Egiz*(X), T) F’F*&AS@ Hom(EQ/Z}H(X), T)
i
0 0 0

in which Hom(EQ/Zx ,(X), P)=0. With an application of "3 x 3 lemma" we
get a natural exact sequence

0 — Ext(EQ[Z«(X), T) — F$(X A Sy) — Hom(EQ|Z4 (X), T) — 0

¢
for any X. Take a free resolution 0—P,—P,—T—0 consisting of finitely gene-
rated R-modules. The composite homomorphisms
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Ext(EQ|Z+(X),P;) < Ext(EQ/Zx(X).R) ® P
— E(Ry(X) S;) ® P; —"E(R)P/"'(X 5,)

are isomorphisms. The R-free resolution yields the following commutative

exact diagram

0
n - K —
0 = Ext(EQ|Zs_,(X), T) - F$(X AS,) —Hom(EQ/Zx(X), T)— O
= 0 _
Ext(EQ|Z«(X), P\) — E(R)PF™(X A S,)
L6 T L9+
Ext(EQ|Z«(X), P,) :;7 E(R)PE(X AS,)
s
0 — Ext(EQ/Zy(X),T) — F£*(XS,) — Hom(EQ|Zy.,(X), T) — O
.I 3 K
0.
Define homomorphisms
¥: ERPHX A Sy) = FEX A Ss), S: FEHXASy) = A Sy)

by the composite maps yr=7" rx 7Y, 8=% 3 &’. By an easy diagram chase

we show that the long sequence
B Jr S .
— E(R)PFAS,) — E(RPH(XAS,) > FHX 7 S) > BRIPE(XAS,) —

is exact for all X.
Next we consider the commutative exact diagram

! !
E(R)P¥(X) oy E(R)P¥(X) F%(X)
be . Ve * =\
— BRPR*X) 2 E(R)P.RXX)> FrR*(X)>
| |
E(RPRIZX) >  ERP.RIZXX)
T }

in which the middle row is rewritten the previous long exact sequence by the
aid of Corollary 5. As is easily seen, we get an exact sequence

BRPHX) ERPY X)L FiX)

for any X. Taking ¢'=p(1zp,)the composite map e’ ¢ becomes homotopic
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to the zero map. Therefore ¢ admits a factorization (up to homotopy)

A A e
E(R)P,— E(R)T — F1.
This yields the commutative triangle

) E(R)T*(X)
ERX)QT lex
® ’} FX(X) .

If Tor(z«(E), T)=0, then Tor(n-*(E(R)),T)=O and hence the above ex is an
isomorphism. So F; becomes homotopy equivalent to E(T) because of Pro-
position 8. Putting this and the previous result together, the required result is
obtained from Lemma 7.

3. Complex and real K-theories
3.1. First we shall construct an injective resolution
F(G): 0— G—)IG—>JG"‘)O

for every abelian group G which is functorial in G (see [5]). Let A(G) denote
the direct sum of copies 4, of A which runs over the set of all elements g of
G, where A=Z, Q or Z/Q.G admits the canonical free resolution 0— >P- > Z(G)
— >G— >0. Consider the commutative exact diagram

0 0
1) |
p = P
I
0 — Z(G) — Q(G)~ QJZ(G) — 0

I | I
0—- G - IG - JG —- 0
! |
0 0
and take the lower row in the above diagram as T(G). Note that Jg is
isomorphic to Q/Z(G).
Let u: EnF— W be a pairing of CW-spectra with zy(W)=Zand =_,(W)
torsion free. This gives rise to the natural homomorphism
B FG*(X) — Hom(Ex(X), =(WG))

for any G.
We shall require the following result in studying the duals of K-theories.
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Lemma 10. If u induces isomorphisms 7z: nx(FG’)—=Hom(x_x«(E),G) in
the cases G'=Ig, Ji, then we have a homotopy equivalence f: FG—E(G) with

A=t fx.
Proof. Inthe commutative diagram

FG*(X)— Hom (E4(X),G) < E(G)*(X)

[ 4 |
FIz*(X)— Hom (Ex(X), I5) < E(I)*(X)
| [ [

FJ*(X)> Hom(Ex(X), Jo) < E(Jo)*(X),

the last two left-hand arrows are isomorphisms. So the above diagram yields
the homotopy commutative diagram

FG - FI, - Fj, - SFG
¥

E(G) ~ E(Io) > E(Jo) = ZE(G)
with cofiber sequences. Choose a map
f: FG — E(G)

making the above diagram homotopy commutative. Then it becomes a homo-
topy equivalence from our hypothesis. The composite map « fy: FG*(X)—
E(G)*(X)eHom(E*(XQ) coincides with the homomorphism 7 induced by
the pairing u, because Hom (E«(X),G)—>Hom (E«(X)l;) is a monomorphism.

32. Let us denote by H, K, KO and KSp the Eilenberg-MacLane spec-
trum, the BU-, BO- and BSp-spectrum respectively. We now investigate the

N N\
homotopy types of H(G), K(G) and KSp(G).

. , /N
Theorem 5. For any abelian group G H(G), K(G) and KSp(G)have the
same homotopy types of HG, KG and KOG respectively (cf., [3]).

Proof. The proofis essentially due to Anderson [3].

The H and Kcases: Let E denote cither H or K, and ur: EAE—Ethe
usual pairing. As is well known, %g: 7wx(E)—Hom(z_4«(E), 4y an isomorphism.
This implies that zg: 74«(EG)—>Hom (7 _4«(E),G) is an isomorphism for all G.
The result follows immediately from Lemma 10.

The I{S\p case: There is a well known pairing uxss: KSp A KO—KSp.
We see easily that Zigs, #(KO)—Hom(n_,(KSpZ) is an isomorphism except
n=1, 2 mod 8, and hence Tksr 7 (KOA)—Hom (n_,(KSp)) is so for all n
and Q-modules 4. Fix a Q-module 4. For any subgroup B of A we define
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homomorphisms A, by the composite maps

7(KO)® A|B S #,(KOA|/B— Hom(z_,(KSp)A/B) when n=2, 3 mod 8

7n-(KO) ® B= 7, (KOB) < 7, (KOA/B)> Hom(z_,KSp), A/B)
when =2, 3 mod 8

which are natural with respect to B. Let 7, be the generator of =, (KO)=Z,
and define as the multiplications by 7, ¢: 7,(KO)—>z,(KOpnd ¢: =_j(KSp)—
w_)(KSp). Then we remark that ¢’s are isomorphisms and ¢* A,= A, (¢®1)

The simpletification £g,: K—KSpinduces a natural transformation K*(Y)— »
KSp*(Y) of KO*( )-modules for all finite Y. So we get a weak homotopy
commutative diagram

K/\KO——)K/\K—*K
I 1
KSp KO — > KSp.

(In fact this diagram is homotopy commutative by use of Corollary 13 below).
This yields the commutative diagram

7(KOA[B)  — > Hom (z_,(K:Sp),x(KSpA|B))
!

|
#(KA/B)y— Hom (7_,(K), =(KA/B))— Hom (=_yK), =(KSpA|B))

The left vertical arrow is a monomorphism because =,(KOA/B)=0,and the

lower horizontal ones are isomorphisms. Therefore the upper becomes a

monomorphism, and hence so are both A, and A,. Let {B,} be the set of all

finitely generated subgroups of B. As is easily checked, A, are isomorphisms

for all » and B, because B, is free. On the other hand, A/B is isomorphic to

the direct limit of A/B, and Hom(x_,(KSp),A/B)==lim Hom(r_.(KSpA/B,).
B

So we see immediately that \, are isomorphisms for any subgroup B. Thus
prsp: m(KOG') — Hom(z_(KSp),G’)

is an isomorphism for any quotient group G’ of a Q-module. Taking I; and
Je as the above G’ and applying Lemma 10 we get the desirable result.

In other words, Theorem 5 says that there exist universal coefficient se-
quences

0— Ext(H,_(X), G) — HG"X) —> Hom(H,(X), G) =0
(3.1) 00— Ext(K,(X), G) — KG"X)— Hom(K,(X),G)— 0
0 — Ext(KO,(X), G)— KOG*X}> Hom(KO,,(X)G) — 0

for any CW-spectrum X.
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Theorem 3 combined with (3.1) implies the following

Corollary 11. i) HR"\(X)is Hausdorfff and only if Ext(H(X)/TH.X),

R)=0.
ii)  KR"(X)is Hausdorff if and only if Ext(K,(X)/TK,(XR)=0.
iiiy  KOR™X) is Hausdorff if and only if Ext(KO,,(X)/TKO,,(XR)=0.

33. Finally we shall make a comment for Hausdorff-ness of K-theories.

Proposition 12. Let E be a CW-spectrum such that nx(E) is of finite type
as an R-module and fix a degree n. If ny(X) Qi o(E)Q O=0r all k, then
E**(X)is Hausdorff. (Cf., [8, Theorem III, 2]).

Proof. Under our assumtions we compute
EZ)Z"(X)=TIH*X ;74_(E) ® Z]Z)=TIHom(H (X), 7s_i(E)® Z|Z)= 0 .
Then the result is immediate from [8, Theorem III. 1].

For CW-spectra E and X whose rational homotopy groups are sparse we
have

Corollary 13. Let E be a CW-spectrumsuch that m«(E) is of finite type as
an R-module.  Assume that 7t,,(E)® Q=mn,(XQ Q=0 unless m =0 mod n. Then
E™*(X)is Hausdorff whenever m=%E0 mod n.

As is well known, 7,,4,(K)=0and z,,(KO)® Q=0 if m==0 mod 4. There-
fore Corollary 13 implies

Theorem 6. i) K* (KA -+ AK) is Hausdorff.
iiy KO™KOA A KO) s Hausdorff whenever m=1 mod 4.

REMARK. Informations on Kx(K) and KO«(KO)have been obtained by
Adams, Harris and Switzer [2].

As an immediate corollary we have

Corollary 14. Complex and real K-theories K*, KO* (defined on the
category of CW-spectra)possess an associative and commutative multiplication.
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