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Introduction

In 1958, J. H. C. Whitehead [10] generalized the sphere theorem
by C. D. Papakyriakopoulos in the following way :

WHITEHEAD’S SPHERE THEOREM. Let M be an orientable 3-manifold,
compact or not, with boundary which may be empty, such that =,(M)==0.
Then there exists a 2-spheve S semi-linearly embedded in M, such that
SA£O0® in M.

As the example S'x P*® (S* means k-sphere) shows, the above
sphere theorem does not hold generally for non-orientable 3-manifolds.
Therefore it remains as a question that for what 3-manifolds the sphere
theorem does not hold? This problem naturally leads to the fixed point
free involution (homeomorphism on itself of order 2) of S'x S? as
Theorem 2 of §3 in this paper shows.

The main purpose of this paper is to prove the following

Theorem 1. If T is a fixed point free involution of S'xS? and if
M is the 3-manifold obtained by identifying x and Tx in S'xS* then M
is etther homeomorphic to (1) S'xS? or (2) 3-dimensional Klein Bottle™
(we denote it by K®), or (3) S'X P? or (4) P*%$“ P>,

This theorem may be regarded as an analogy of the following

Theorem (G. R. L1veEsay [4]). If T is a fixed point free involution

1) 0 means not homotopic to a constant.

2) P2 is the real projective plane.

3) 3-dimensional Klein Bottle is defined as follows: let S,, S; be the boundaries of S2X[0,
1]. Then S, S; have the orientations induced from the orientation of S?2X[0,1]. Let f be an
orientation preseving homeorphirm from S, to S;. Identifying S, with S; by f in S2x[0. 1],
we obtain a non-orientable closed 3-manifold which we call 3-dim. Klein Bottle.

4) P3 is the projective space. P3#P? is defined as follows: Let E’, E” be two open 3-
cells in P3, P? respectively. Matching the boundaries of P?*—E’ and P?*—E”, we obtain a new
closed 3-manifold which we denote P3% P3,
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of S® then the space obtained by identifying x and Tx in S° is the
projective space.
Theorem 2 follows almost immediately from Therem 1.

§1

According to E. E. Moise [ 7], we may suppose that S'xS? and M
have fixed triangulations and that 7 is simplicial on some subdivision
of the triangulation of S*x S* (See Chap. 1. of [4]). Therefore we stand
throughout this paper on the semi-linear point of view : i.e., a 2-sphere
will be considered as a 2-sphere semi-linearly embedded in M and any
curve will be considered as polygonal, any homeomorphism as a semi-
linear homeomorphism and so on.

Lemma 1. Let E, E,, E, be disks in a connected closed 3-manifold
M, such that they have a common boundary ¢ and E,NE,=ENE =ENE,
=c. If any two of 2-spheres S=E, VE,, S,;=EUE, and S,=EE, separate
M, then the other one also separates M.

Proof. Suppose S and S, separate M. Let A, B be two components
of M—S, and let A,, B, be two components of M—S,. Since ENS=0FE
=¢, IntECA or Int ECB. Here we suppose Int ECA. In the same
way, we may suppose Int E,C A,. Take a point P on IntE,. Then,
there exist two points P,, P, sufficiently close to P, such that P,e A nA
and P,e¢ A,nB. :

Suppose S, does not separate M. Then we can take a simple arc
w in M which starts from P, and ends in P,, such that wnS,=¢, wnN
Int E, consists of an even number of points, Q,, @,, -, @s_1,&... Let
w; (1=1, 2, ---, n) be the subarcs of w from @,;_, to @,;. Then we replace
w; by w;, such that w} is an arc from @,;_, to @, on Int E,, and w;Nn
wi;=¢, if i==j. For convenience, we denote w by the same letter w
after the deformation. Then shifting each wj; slightly into A,, we can
delete the intersection wnNE,, keeping wnS,=¢ and getting any new
intersections of w and E,. Hence P, is joined with P, in M—S by an
arc, which contradicts that S separates M. Therefore S, must separate
M.

Thus Lemma 1 is proved.

Lemma 2. Let S'xS* be obtained from IxS*, where I is the closed
interval [0, 11, by identifying its boundaries 0xS*> and 1xS*. Let S be
a 2-sphere semi-linearly embedded in S*'x S? such that SN (0xS*)=¢ and
S does not separate S'xS°. Then S is isotopic to 0xS® in S*'x S

Proof. Let S® be a 3-sphere obtained from IxS® by filling in the



ON FixEp PoiNT FREE INVOLUTION OF S!'XS? ’ 147

boundaries 0x S® and IxS*® with two 3-cells e, ¢§. Since S is semi-
linearly embedded in S° by Alexander’s theorem®™ ([1], [2], [6]), S
divides S® into two 3-cells E}, E3 such that S*=E}UE} and E}InE}=
oE3=90E3=S. Since S does not separate S'xXS? we may suppose that
Int E$>0%xS? and Int E§ >1xS% Therefore there exists a homeomor-
phism % : IxS*— E3}—Inte} by Alexander’s theorem.

Thus Lemma 2 is proved.

Hereafter we suppose throughout this paper that S*'x S® is obtained
from I x S? by identifying its boundaries 0x S* and 1xS%

Lemma 3. There exists a 2-sphere S* in S < S* which is isotopic to
0x S? such that S*NTS*=¢ or TS*=S*.

Proof. Let S=0xS% If TS=£S, nor SNTS==¢, then we may
suppose SNTS consists of a finite number of simple closed curves c,,
¢,, '+, C,. If otherwise, by a small isotopic simplicial deformation of S,
we obtain SNTS in such a form. Letc be one of the innermost inter-
section curves on 7S: i.e., there exists a disk E on TS, such that c=90F
and IntENnS=¢. c¢ divides S into two disks E,, E, such that E,VE,=S
and E,NE,=0FE,=0FE,=c. Since there is no intersection curves on
Int TE, we may suppose, without loss of generality, TEC E, (equality
holds, if and only if c=7c¢). Let S,=EVUE,, S,=EVUE,. Then one of S,
or S, does not separate S'xS% For, if both S, and S, separate S'x S?
then S, S, and S, satisfy the conditions of Lemma 1. Therefore S
separates S'x S? by the conclusion of Lemma 1, which contradicts the
first assumption.

(1) S, does not separate S'x SZ

If c=Tc, then TS,=T(EVE,)=TEVTE,=E,JE=S,. Hence S, is
an invariant 2-sphere under T.

If ¢+=Tc, then TESE,. Take a simple closed curve ¢’ on E, so
close to ¢ that the ring domain R bounded by ¢ and ¢’ on E, has no
intersection with 7S except ¢ (Fig. 1). Then span a disk E’ on ¢’ so
close to E that Si=(E,—R)\VE’ does not separate S'xS? E'NTE’'=¢,
E'NnTS=¢ and E‘nS=0FE’=c¢’. From the way of construction of S%,
SiNTS] consists of a subset of {c,, ¢,, -, ¢,}. we shall denote by
n (SN TS) the numbar of intersection curves of SNTS. Then it follows
that # (S1NTS1)<n (SNTS), because the former is diminished at least
by 2 (c and Tc¢) from the latter.

5) Alexander’s theorem: Let S be a polygonal 2-sphere in the 3-sphere S3. Then S3=
e e, and e;Me,=0e¢;=0e,=S where ¢, ¢, are topological 3-cells.
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Fig. 1

(2) S, does not separate S*'x S>

If ¢c=1Tc, then we can take a simple closed curve ¢’ and a disk E’
so close to ¢ and E that they satisfy the following conditions: (i) ¢’ C E,
and the domain R bounded by ¢ and ¢’ on E, has no intersection with
TS, (ii) EEnTS=¢ and E'NS=0F’'=c¢’/, (iii) S;=(E,—R)v E’ does not
separate S'xS% Furthermore we can take E’ such that E'NTE' =¢,
because TE'NS=¢, TE'NnTS=Tc¢ (Fig. 2). Then #n (S;n TS5)<_

SZI TSQ,
TE —>

Fig. 2
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n (SN TS), because c¢ is deleted and there arise no new intersection curves.

If c==Tc, then n (S,NTS,)=n (E,NTE,)<_n(SNTS), because ¢ and
Tc are not contained in S, N TS,. ‘

As has been shown there exists in both cases (1), (2), a 2-sphere S’
which does not separate S'xS? such that n (S'"TS)<n (SNTS) or TS
=S§’. Furthermore, from the way of our construction of S/, we have by
a small deformation of S’ S’ S=¢ without changing any other situations.
Therefore it follows from Lemma 2 that S’ is isotopic to S. Since # (S
NTS) is a non negative integer, we can find by proceeding with the
above procedure a 2-sphere S* which is isotopic to S and S*NTS*=¢
or TS*=S* in a finite step.

Thus Lemma 3 is proved.

§2

Proof of Theorem 1. By Lemma 3, there exists a 2-sphere S which
is semi-linearly embeded in S*'xS? and is isotopic to 0x S? such that
SNTS=¢ or S=TS. we divide our proof into the following two cases :

(1) SNTS=4¢,

(2) S=TS and there is no 2-sphere S which is isotopic to 0x S*
and SNTS =¢.

1) SNTS=¢. Since S is isotopic to 0x S’ we may suppose S=0
xS%.  Then S'xXS*—(SuTS) consists of two components A, B. Here A
and B are homeomorphic to /xS® by Lemma 2. Then the following
two cases are possible :

(a) TA=A, (b) TA=B.

Case (a). Let p be a map from S'xS* onto M defined by px=pTx.
Then p: S'xS?*—M is a double covering. Let M,, M, be closed 3-
manifolds obtained from pA, pB by filling in the boundary 2-sphere
S'=p (SuTS) with 3-cells respectively. Filling in 9A=Sv TS with two
3-cells, we obtain from A a 3-sphere S°. Since T is a fixed point free
involution of A, T is extended naturally to a fixed point free involu-
tion T’ of S®. Then, by Theorem 3 of [4], 7’ is equivalent to the antipodal
map: i.e. there exists a homeomorphism /%: S*—S® such that A7T’4?
is an antipodal map. Hence M,=P? In the same way, it follows that
Myz=P°. Therefore M=P*4%P° (For example Fig. 3).

Case (b). In this case, M is homeomorphic to the manifold obtained
from A by matching S and 7S by the homeomorphism 7. Therefore
M is either homeomorphic to S*'xS? or K°.

(2) By Lemma 2, we may suppose S:%XSZ. There are the

following two cases to be considered :
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Fig. 3

(c). For all number & where 0< &< %- 1 there exists a point @ such

that Qe[z ;+e]><52 TQgé[ >><Sz.2

(d). There exists a number & such that O<E<_ and T([l 1

. 2’ 2
Jes)e[ )5
Case (c). Since 5 X S? is invariant under 7T, there exists two numbers

«, B such that 0<B(a<;, and T([ -5, %+,3]><Sz> C [%_a, %
+a], Then by the assumption, there exists vx S* with 0< y<8, such

that T (yxS)N(yxS*)=¢. Hence this case does not actually occur.
Case (d). Cut S'xS? by %XS?. Then it is homeomorphic to Ix S*

and we may suppose that T is a fixed point free involution of IxS2

Then T restricted to the boundary 7xS*? (/=0,1) is an antipodal map A

on 2-sphere S°. Hence, by Lemma 3.1 of [3] T is equivalent to ex A:

I xS*—1IxS? where e: I—1I is the identity. Matching again the

boundary of Ix S’ we obtain that M is homeomorphic to S*'x P2
Thus Theorem 1 is proved.

83
A connected closed 3-manifold M is said to be irreducible if every

2-sphere which is semi-linearly embedded in M and separates M bounds
a 3-cell in M.
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Using Theorem 1, we obtain the following

Theorem 2. Under Poincaré Hypothesis®, the following two propo-
sitions are equivalent :

(I) Let M be the orientable double covering of a commected closed
3-manifold M. If M is irrveducible, then M is irreducible.

() S'XP? is the only one connected closed 3-manifold for which the
Sphere theorem does not hold.

Proof. First suppose that (I) is true. Let M be a connnected closed
3-manifold for which the sphere theorem does not hold: i.e., 7,(M)==0
but every 2-sphere semi-linearly embedded in M is homotopic to a
constant in M. Then M is irreducible. For, if M is reducible, then
7, (M) is a free product of two non trivial groups. Then it follows
from Whitehead’s theorem (Theorem 1.1 of [9]) that there exists a
2-sphere S semi-linearly embedded in M, such that S0 in M, which
contradicts the assumption. Therefore by (I), M is irreducible. From
Milnor’s result ([5], [8]) and Poincaré Hypothesis, M is homeomorphic
to (1) S*x S? or (2) is aspherical, or (3) has a non trivial finite funda-
mental group. Case (2) or (3) does not occur. For, if M is aspherical,
then =, (M)~ =,(M)=0, which contradicts the assumption. If =, (M)
is finite, then the universal covering M of M is S°. Hence =, (M)~

7,(M)~ =,(M)=0, which contradicts the assumption. Therefore M is
homeomorphic to S'x S% Since M is irreducible and non orientable, it
follows from Theorem 1 that M is homeomorphic to S'x P2

Next, suppose that (II) is true. Suppose M is redudible. Then by
Whitehead’s theorem, 7, (M)==0. Therefore =, (M)==0. If there exists
a 2-sphere semi-linearly embedded in M, such that S*#40, then by
Whitehead’s theorem, M is reducible or M=S'xS* or M=K®. If there is
no 2-sphere semi-linearly embeddee in M, such that S*0, then it follows
from (II) that M=S'x P? On the other hand, by Theorem 1, if M=S"
xS? or=K® or=S'xP? then M=S'xS? which contradicts the first
assumption. Hence M is reducible. Therefore (I) is true under the
assumption of (II).

Thus Theorem 2 is proved.

(Received March 17, 1962)

6) Poincaré Hypothesis: Every simply connected closed 3-manifold is the 3-sphere.
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