Tao, Y. Osaka Math. J. 14 (1962), 145-152.

ON FIXED POINT FREE INVOLUTIONS OF $S^1 \times S^2$

Dedicated to Professor K. Shoda on his sixtieth birthday

Bч

Үоко ТАО

Introduction

In 1958, J. H. C. Whitehead [10] generalized the sphere theorem by C. D. Papakyriakopoulos in the following way:

WHITEHEAD'S SPHERE THEOREM. Let M be an orientable 3-manifold, compact or not, with boundary which may be empty, such that $\pi_2(M) \neq 0$. Then there exists a 2-sphere S semi-linearly embedded in M, such that $S \neq 0^{(1)}$ in M.

As the example $S^1 \times P^{2(2)}$ (S^k means k-sphere) shows, the above sphere theorem does not hold generally for non-orientable 3-manifolds. Therefore it remains as a question that for what 3-manifolds the sphere theorem does not hold? This problem naturally leads to the fixed point free involution (homeomorphism on itself of order 2) of $S^1 \times S^2$ as Theorem 2 of § 3 in this paper shows.

The main purpose of this paper is to prove the following

Theorem 1. If T is a fixed point free involution of $S^1 \times S^2$, and if M is the 3-manifold obtained by identifying x and Tx in $S^1 \times S^2$, then M is either homeomorphic to (1) $S^1 \times S^2$, or (2) 3-dimensional Klein Bottle⁽³⁾ (we denote it by K^3), or (3) $S^1 \times P^2$, or (4) $P^3 \#^{(4)} P^3$.

This theorem may be regarded as an analogy of the following

Theorem (G. R. LIVESAY [4]). If T is a fixed point free involution

¹⁾ $\neq 0$ means not homotopic to a constant.

²⁾ P^2 is the real projective plane.

^{3) 3-}dimensional Klein Bottle is defined as follows: let S_0 , S_1 be the boundaries of $S^2 \times [0, 1]$. 1]. Then S_0 S_1 have the orientations induced from the orientation of $S^2 \times [0, 1]$. Let f be an orientation preseving homeorphirm from S_0 to S_1 . Identifying S_0 with S_1 by f in $S^2 \times [0, 1]$, we obtain a non-orientable closed 3-manifold which we call 3-dim. Klein Bottle.

⁴⁾ P^3 is the projective space. $P^3 \# P^3$ is defined as follows: Let E', E'' be two open 3-cells in P^3 , P^3 respectively. Matching the boundaries of P^3-E' and P^3-E'' , we obtain a new closed 3-manifold which we denote $P^3 \# P^3$.

of S^3 , then the space obtained by identifying x and Tx in S^3 is the projective space.

Theorem 2 follows almost immediately from Therem 1.

§1

According to E. E. Moise [7], we may suppose that $S^1 \times S^2$ and M have fixed triangulations and that T is simplicial on some subdivision of the triangulation of $S^1 \times S^2$ (See Chap. 1. of [4]). Therefore we stand throughout this paper on the semi-linear point of view : i.e., a 2-sphere will be considered as a 2-sphere semi-linearly embedded in M and any curve will be considered as polygonal, any homeomorphism as a semi-linear homeomorphism and so on.

Lemma 1. Let E, E_1 , E_2 be disks in a connected closed 3-manifold M, such that they have a common boundary c and $E_1 \cap E_2 = E \cap E_1 = E \cap E_2$ =c. If any two of 2-spheres $S = E_1 \cup E_2$, $S_1 = E \cup E_1$ and $S_2 = E \cup E_2$ separate M, then the other one also separates M.

Proof. Suppose S and S_1 separate M. Let A, B be two components of M-S, and let A_1 , B_1 be two components of $M-S_1$. Since $E \cap S = \partial E$ = c, Int $E \subset A$ or Int $E \subset B$. Here we suppose Int $E \subset A$. In the same way, we may suppose Int $E_2 \subset A_1$. Take a point P on Int E_2 . Then, there exist two points P_1 , P_2 sufficiently close to P, such that $P_1 \in A_1 \cap A$ and $P_2 \in A_1 \cap B$.

Suppose S_2 does not separate M. Then we can take a simple arc w in M which starts from P_1 and ends in P_2 , such that $w \cap S_2 = \phi$, $w \cap$ Int E_1 consists of an even number of points, $Q_1, Q_2, \dots, Q_{2n-1}, Q_{2n}$. Let w_i $(i=1, 2, \dots, n)$ be the subarcs of w from Q_{2i-1} to Q_{2i} . Then we replace w_i by w'_i , such that w'_i is an arc from Q_{2i-1} to Q_{2i} on Int E_1 , and $w'_i \cap w'_j = \phi$, if $i \neq j$. For convenience, we denote w by the same letter w after the deformation. Then shifting each w'_i slightly into A_1 , we can delete the intersection $w \cap E_1$, keeping $w \cap S_2 = \phi$ and getting any new intersections of w and E_1 . Hence P_1 is joined with P_2 in M-S by an arc, which contradicts that S separates M. Therefore S_2 must separate M.

Thus Lemma 1 is proved.

Lemma 2. Let $S^1 \times S^2$ be obtained from $I \times S^2$, where I is the closed interval [0, 1], by identifying its boundaries $0 \times S^2$ and $1 \times S^2$. Let S be a 2-sphere semi-linearly embedded in $S^1 \times S^2$, such that $S \cap (0 \times S^2) = \phi$ and S does not separate $S^1 \times S^2$. Then S is isotopic to $0 \times S^2$ in $S^1 \times S^2$.

Proof. Let S^3 be a 3-sphere obtained from $I \times S^2$ by filling in the

boundaries $0 \times S^2$ and $I \times S^2$ with two 3-cells e_1^3 , e_2^3 . Since S is semilinearly embedded in S^3 , by Alexander's theorem⁽⁵⁾ ([1], [2], [6]), S divides S^3 into two 3-cells E_1^3 , E_2^3 such that $S^3 = E_1^3 \cup E_2^3$ and $E_1^3 \cap E_2^3 =$ $\partial E_1^3 = \partial E_2^3 = S$. Since S does not separate $S^1 \times S^2$, we may suppose that $\operatorname{Int} E_1^3 > 0 \times S^2$ and $\operatorname{Int} E_2^3 > 1 \times S^2$. Therefore there exists a homeomorphism $h: I \times S^2 \to E_1^3 - \operatorname{Int} e_1^3$ by Alexander's theorem.

Thus Lemma 2 is proved.

Hereafter we suppose throughout this paper that $S^1 \times S^2$ is obtained from $I \times S^2$ by identifying its boundaries $0 \times S^2$ and $1 \times S^2$.

Lemma 3. There exists a 2-sphere S^* in $S^1 \times S^2$ which is isotopic to $0 \times S^2$, such that $S^* \cap TS^* = \phi$ or $TS^* = S^*$.

Proof. Let $S=0\times S^2$. If $TS \neq S$, nor $S \cap TS \neq \phi$, then we may suppose $S \cap TS$ consists of a finite number of simple closed curves c_1 , c_2 , \cdots , c_n . If otherwise, by a small isotopic simplicial deformation of S, we obtain $S \cap TS$ in such a form. Let c be one of the innermost intersection curves on TS: i.e., there exists a disk E on TS, such that $c=\partial E$ and $\operatorname{Int} E \cap S = \phi$. c divides S into two disks E_1 , E_2 such that $E_1 \cup E_2 = S$ and $E_1 \cap E_2 = \partial E_1 = \partial E_2 = c$. Since there is no intersection curves on $\operatorname{Int} TE$, we may suppose, without loss of generality, $TE \subseteq E_1$ (equality holds, if and only if c=Tc). Let $S_1=E \cup E_1$, $S_2=E \cup E_2$. Then one of S_1 or S_2 does not separate $S^1 \times S^2$. For, if both S_1 and S_2 separate $S^1 \times S^2$, then S, S_1 and S_2 satisfy the conditions of Lemma 1. Therefore Sseparates $S^1 \times S^2$ by the conclusion of Lemma 1, which contradicts the first assumption.

(1) S_1 does not separate $S^1 \times S^2$.

If c = Tc, then $TS_1 = T (E \cup E_1) = TE \cup TE_1 = E_1 \cup E = S_1$. Hence S_1 is an invariant 2-sphere under T.

If $c \neq Tc$, then $TE \subseteq E_1$. Take a simple closed curve c' on E_1 so close to c that the ring domain R bounded by c and c' on E_1 has no intersection with TS except c (Fig. 1). Then span a disk E' on c' so close to E that $S'_1 = (E_1 - R) \cup E'$ does not separate $S^1 \times S^2$, $E' \cap TE' = \phi$, $E' \cap TS = \phi$ and $E' \cap S = \partial E' = c'$. From the way of construction of S'_1 , $S'_1 \cap TS'_1$ consists of a subset of $\{c_1, c_2, \dots, c_n\}$. we shall denote by $n(S \cap TS)$ the numbar of intersection curves of $S \cap TS$. Then it follows that $n(S'_1 \cap TS'_1) < n(S \cap TS)$, because the former is diminished at least by 2(c and Tc) from the latter.

⁵⁾ Alexander's theorem: Let S be a polygonal 2-sphere in the 3-sphere S^3 . Then $S^3 = e_1 \cup e_2$ and $e_1 \cap e_2 = \partial e_1 = \partial e_2 = S$ where e_1 , e_2 are topological 3-cells.

(2) S_2 does not separate $S^1 \times S^2$.

If c = Tc, then we can take a simple closed curve c' and a disk E'so close to c and E that they satisfy the following conditions: (i) $c' \in E_2$ and the domain R bounded by c and c' on E_2 has no intersection with TS, (ii) $E' \cap TS = \phi$ and $E' \cap S = \partial E' = c'$, (iii) $S'_2 = (E_2 - R) \cup E'$ does not separate $S^1 \times S^2$. Furthermore we can take E' such that $E' \cap TE' = \phi$, because $TE' \cap S = \phi$, $TE' \cap TS = Tc'$ (Fig. 2). Then $n(S'_2 \cap TS'_2) <$

148

 $n(S \cap TS)$, because c is deleted and there arise no new intersection curves. If $c \neq Tc$, then $n(S_2 \cap TS_2) = n(E_2 \cap TE_2) < n(S \cap TS)$, because c and Tc are not contained in $S_2 \cap TS_2$.

As has been shown there exists in both cases (1), (2), a 2-sphere S' which does not separate $S^1 \times S^2$ such that $n(S' \cap TS') < n(S \cap TS)$ or TS' = S'. Furthermore, from the way of our construction of S', we have by a small deformation of $S' S' \cap S = \phi$ without changing any other situations. Therefore it follows from Lemma 2 that S' is isotopic to S. Since $n(S \cap TS)$ is a non negative integer, we can find by proceeding with the above procedure a 2-sphere S* which is isotopic to S and $S^* \cap TS^* = \phi$ or $TS^* = S^*$, in a finite step.

Thus Lemma 3 is proved.

§ 2

Proof of Theorem 1. By Lemma 3, there exists a 2-sphere S which is semi-linearly embedded in $S^1 \times S^2$ and is isotopic to $0 \times S^2$, such that $S \cap TS = \phi$ or S = TS. we divide our proof into the following two cases: (1) $S \cap TS = \phi$

(1) $S \cap TS = \phi$,

(2) S=TS and there is no 2-sphere S' which is isotopic to $0 \times S^2$ and $S' \cap TS' = \phi$.

(1) $S \cap TS = \phi$. Since S is isotopic to $0 \times S^2$, we may suppose $S = 0 \times S^2$. Then $S^1 \times S^2 - (S \cup TS)$ consists of two components A, B. Here A and B are homeomorphic to $I \times S^2$ by Lemma 2. Then the following two cases are possible:

(a) TA = A, (b) TA = B.

Case (a). Let p be a map from $S^1 \times S^2$ onto M defined by px = pTx. Then $p: S^1 \times S^2 \to M$ is a double covering. Let M_A , M_B be closed 3-manifolds obtained from pA, pB by filling in the boundary 2-sphere $S' = p (S \cup TS)$ with 3-cells respectively. Filling in $\partial A = S \cup TS$ with two 3-cells, we obtain from A a 3-sphere S^3 . Since T is a fixed point free involution of A, T is extended naturally to a fixed point free involution T' of S^3 . Then, by Theorem 3 of [4], T' is equivalent to the antipodal map: i.e. there exists a homeomorphism $h: S^3 \to S^3$ such that $hT'h^{-1}$ is an antipodal map. Hence $M_A = P^3$. In the same way, it follows that $M_B = P^3$. Therefore $M = P^3 \# P^3$ (For example Fig. 3).

Case (b). In this case, M is homeomorphic to the manifold obtained from A by matching S and TS by the homeomorphism T. Therefore M is either homeomorphic to $S^1 \times S^2$ or K^3 .

(2) By Lemma 2, we may suppose $S = \frac{1}{2} \times S^2$. There are the following two cases to be considered :

Υ. ΤΑΟ

Fig. 3

(c). For all number ε , where $0 < \varepsilon < \frac{1}{2}$, there exists a point Q such that $Q \in \left[\frac{1}{2}, \frac{1}{2} + \varepsilon\right] \times S^2$, $TQ \notin \left[\frac{1}{2}, 1\right) \times S^2$.

There exists a number ε such that $0 < \varepsilon < \frac{1}{2}$ and $T\left(\left[\frac{1}{2}, \frac{1}{2} + \left[\frac{1}{2}, \frac{1}{2}\right]\right] + \left[\frac{1}{2}, \frac{1}{2}\right]$

 $\begin{aligned} \varepsilon_{\alpha}(\alpha), & \text{There exists a linear field of a linear field o$ that $T(\gamma \times S^2) \cap (\gamma \times S^2) = \phi$. Hence this case does not actually occur.

Case (d). Cut $S^1 \times S^2$ by $\frac{1}{2} \times S^2$. Then it is homeomorphic to $I \times S^2$ and we may suppose that T is a fixed point free involution of $I \times S^2$. Then T restricted to the boundary $i \times S^2$ (i=0,1) is an antipodal map A on 2-sphere S². Hence, by Lemma 3.1 of [3] T is equivalent to $e \times A$: $I \times S^2 \rightarrow I \times S^2$, where $e: I \rightarrow I$ is the identity. Matching again the boundary of $I \times S^2$, we obtain that M is homeomorphic to $S^1 \times P^2$.

Thus Theorem 1 is proved.

§ 3

A connected closed 3-manifold M is said to be *irreducible* if every 2-sphere which is semi-linearly embedded in M and separates M bounds a 3-cell in M.

150

Using Theorem 1, we obtain the following

Theorem 2. Under Poincaré Hypothesis⁽⁶⁾, the following two propositions are equivalent:

(I) Let \tilde{M} be the orientable double covering of a connected closed 3-manifold M. If M is irreducible, then \tilde{M} is irreducible.

(II) $S^1 \times P^2$ is the only one connected closed 3-manifold for which the sphere theorem does not hold.

Proof. First suppose that (I) is true. Let M be a connected closed 3-manifold for which the sphere theorem does not hold: i.e., $\pi_2(M) \neq 0$ but every 2-sphere semi-linearly embedded in M is homotopic to a constant in M. Then M is irreducible. For, if M is reducible, then $\pi_{1}(M)$ is a free product of two non trivial groups. Then it follows from Whitehead's theorem (Theorem 1.1 of $\lceil 9 \rceil$) that there exists a 2-sphere S semi-linearly embedded in M, such that $S \neq 0$ in M, which contradicts the assumption. Therefore by (I), \tilde{M} is irreducible. From Milnor's result ([5], [8]) and Poincaré Hypothesis, \tilde{M} is homeomorphic to (1) $S^1 \times S^2$, or (2) is aspherical, or (3) has a non trivial finite fundamental group. Case (2) or (3) does not occur. For, if \tilde{M} is aspherical, then $\pi_{2}(M) \approx \pi_{2}(\tilde{M}) = 0$, which contradicts the assumption. If $\pi_1(\widetilde{M})$ is finite, then the universal covering \widetilde{M} of \widetilde{M} is S³. Hence $\pi_{2}(M) \approx$ $\pi_2(\tilde{M}) \approx \pi_2(\tilde{M}) = 0$, which contradicts the assumption. Therefore \tilde{M} is homeomorphic to $S^1 \times S^2$. Since M is irreducible and non orientable, it follows from Theorem 1 that M is homeomorphic to $S^1 \times P^2$.

Next, suppose that (II) is true. Suppose \tilde{M} is redudible. Then by Whitehead's theorem, $\pi_2(\tilde{M}) \neq 0$. Therefore $\pi_2(M) \neq 0$. If there exists a 2-sphere semi-linearly embedded in M, such that $S^2 \neq 0$, then by Whitehead's theorem, M is reducible or $M = S^1 \times S^2$ or $M = K^3$. If there is no 2-sphere semi-linearly embeddee in M, such that $S^2 \neq 0$, then it follows from (II) that $M = S^1 \times P^2$. On the other hand, by Theorem 1, if $M = S^1 \times S^2$, or $= K^3$, or $= S^1 \times P^2$, then $\tilde{M} = S^1 \times S^2$, which contradicts the first assumption. Hence M is reducible. Therefore (I) is true under the assumption of (II).

Thus Theorem 2 is proved.

(Received March 17, 1962)

⁶⁾ Poincaré Hypothesis: Every simply connected closed 3-manifold is the 3-sphere.

Y. TAO

References

- J. W. Alexander: An example of a simply connected surface bounding a region which is not simply connected Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
- [2] W. Graeub: Die semilinearen Abbildungen, S. Ber. Heidelberger Akad. Wiss. (1950), 205–272.
- [3] M. W. Hirsch and S. Smale: On involutions of the 3-sphere, Amer. J. Math. 81 (1959), 893-900.
- [4] G. R. Livesay: Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611.
- [5] J. W. Milnor: A unique decomposition theorem for 3-manifolds (Unpublished). Cf. [8] pp. 327.
- [6] E. E. Moise: Affine structures in 3-manifolds I, Ann. of Math. 54 (1951), 506-533.
- [7] E. E. Moise: Affine structures in 3-manifolds V, Ann. of Mah. 56 (1952), 96-114.
- [8] C. D. Papakyriakopoulos: Some problems on 3-dimensional manifolds, Bull. Amer. Math. Soc. 64 (1958), 317-335.
- [9] J. H. C. Whitehead: On finite cocylces and the sphere theorem, Colloquium Math. 51 (1958), 271-281.
- [10] J. H. C. Whitehead: 2-spheres in 3-manifolds, Bull. Amer. Math. Soc. 64 (1958), 161-166.