ON FIXED POINT FREE INVOLUTIONS OF $\mathbf{S}^{\mathbf{1}} \times \mathbf{S}^{\mathbf{2}}$

Dedicated to Professor K. Shoda on his sixtieth birthday

By

Үоко ТАО

Introduction

In 1958, J. H. C. Whitehead [10] generalized the sphere theorem by C. D. Papakyriakopoulos in the following way:

Whitehead's sphere theorem. Let M be an orientable 3-manifold, compact or not, with boundary which may be empty, such that $\pi_{2}(M) \neq 0$. Then there exists a 2 -sphere S semi-linearly embedded in M, such that $S \neq 0^{(1)}$ in M.

As the example $S^{1} \times P^{2(2)}$ (S^{k} means k-sphere) shows, the above sphere theorem does not hold generally for non-orientable 3-manifolds. Therefore it remains as a question that for what 3 -manifolds the sphere theorem does not hold? This problem naturally leads to the fixed point free involution (homeomorphism on itself of order 2) of $S^{1} \times S^{2}$ as Theorem 2 of $\S 3$ in this paper shows.

The main purpose of this paper is to prove the following
Theorem 1. If T is a fixed point free involution of $S^{1} \times S^{2}$, and if M is the 3-manifold obtained by identifying x and $T x$ in $S^{1} \times S^{2}$, then M is either homeomorphic to (1) $S^{1} \times S^{2}$, or (2) 3-dimensional Klein Bottle ${ }^{(3)}$ (we denote it by K^{3}), or (3) $S^{1} \times P^{2}$, or (4) $P^{3} \#^{(4)} P^{3}$.

This theorem may be regarded as an analogy of the following
Theorem (G. R. Livesay [4]). If T is a fixed point free involution

[^0]of S^{3}, then the space obtained by identifying x and $T x$ in S^{3} is the projective space.

Theorem 2 follows almost immediately from Therem 1.

§ 1

According to E. E. Moise [7], we may suppose that $S^{1} \times S^{2}$ and M have fixed triangulations and that T is simplicial on some subdivision of the triangulation of $S^{1} \times S^{2}$ (See Chap. 1. of [4]). Therefore we stand throughout this paper on the semi-linear point of view : i.e., a 2 -sphere will be considered as a 2 -sphere semi-linearly embedded in M and any curve will be considered as polygonal, any homeomorphism as a semilinear homeomorphism and so on.

Lemma 1. Let E, E_{1}, E_{2} be disks in a connected closed 3-manifold M, such that they have a common boundary c and $E_{1} \cap E_{2}=E \cap E_{1}=E \cap E_{2}$ $=c$. If any two of 2 -spheres $S=E_{1} \cup E_{2}, S_{1}=E \cup E_{1}$ and $S_{2}=E \cup E_{2}$ separate M, then the other one also separates M.

Proof. Suppose S and S_{1} separate M. Let A, B be two components of $M-S$, and let A_{1}, B_{1} be two components of $M-S_{1}$. Since $E \cap S=\partial E$ $=c$, Int $E \subset A$ or Int $E \subset B$. Here we suppose Int $E \subset A$. In the same way, we may suppose Int $E_{2} \subset A_{1}$. Take a point P on Int E_{2}. Then, there exist two points P_{1}, P_{2} sufficiently close to P, such that $P_{1} \in A_{1} \cap A$ and $P_{2} \in A_{1} \cap B$.

Suppose S_{2} does not separate M. Then we can take a simple arc w in M which starts from P_{1} and ends in P_{2}, such that $w \cap S_{2}=\phi, w \cap$ Int E_{1} consists of an even number of points, $Q_{1}, Q_{2}, \cdots, Q_{2 n-1}, Q_{2 n}$. Let $w_{i}(i=1,2, \cdots, n)$ be the subarcs of w from $Q_{2 i-1}$ to $Q_{2 i}$. Then we replace w_{i} by w_{i}^{\prime}, such that w_{i}^{\prime} is an arc from $Q_{2 i-1}$ to $Q_{2 i}$ on Int E_{1}, and $w_{i}^{\prime} \cap$ $w_{j}^{\prime}=\phi$, if $i \neq j$. For convenience, we denote w by the same letter w after the deformation. Then shifting each w_{i}^{\prime} slightly into A_{1}, we can delete the intersection $w \cap E_{1}$, keeping $w \cap S_{2}=\phi$ and getting any new intersections of w and E_{1}. Hence P_{1} is joined with P_{2} in $M-S$ by an arc, which contradicts that S separates M. Therefore S_{2} must separate M.

Thus Lemma 1 is proved.
Lemma 2. Let $S^{1} \times S^{2}$ be obtained from $I \times S^{2}$, where I is the closed interval [0,1], by identifying its boundaries $0 \times S^{2}$ and $1 \times S^{2}$. Let S be a 2 -sphere semi-linearly embedded in $S^{1} \times S^{2}$, such that $S \cap\left(0 \times S^{2}\right)=\phi$ and S does not separate $S^{1} \times S^{2}$. Then S is isotopic to $0 \times S^{2}$ in $S^{1} \times S^{2}$.

Proof. Let S^{3} be a 3 -sphere obtained from $I \times S^{2}$ by filling in the
boundaries $0 \times S^{2}$ and $I \times S^{2}$ with two 3 -cells e_{1}^{3}, e_{2}^{3}. Since S is semilinearly embedded in S^{3}, by Alexander's theorem ${ }^{(5)}$ ([1], [2], [6]), S divides S^{3} into two 3-cells E_{1}^{3}, E_{2}^{3} such that $S^{3}=E_{1}^{3} \cup E_{2}^{3}$ and $E_{1}^{3} \cap E_{2}^{3}=$ $\partial E_{1}^{3}=\partial E_{2}^{3}=S$. Since S does not separate $S^{1} \times S^{2}$, we may suppose that Int $E_{1}^{3} \supset 0 \times S^{2}$ and Int $E_{2}^{3} \supset 1 \times S^{2}$. Therefore there exists a homeomorphism $h: I \times S^{2} \rightarrow E_{1}^{3}-$ Int e_{1}^{3} by Alexander's theorem.

Thus Lemma 2 is proved.
Hereafter we suppose throughout this paper that $S^{1} \times S^{2}$ is obtained from $I \times S^{2}$ by identifying its boundaries $0 \times S^{2}$ and $1 \times S^{2}$.

Lemma 3. There exists a 2-sphere S^{*} in $S^{1} \times S^{2}$ which is isotopic to $0 \times S^{2}$, such that $S^{*} \cap T S^{*}=\phi$ or $T S^{*}=S^{*}$.

Proof. Let $S=0 \times S^{2}$. If $T S \neq S$, nor $S \cap T S \neq \phi$, then we may suppose $S \cap T S$ consists of a finite number of simple closed curves c_{1}, c_{2}, \cdots, c_{n}. If otherwise, by a small isotopic simplicial deformation of S, we obtain $S \cap T S$ in such a form. Let c be one of the innermost intersection curves on $T S$: i.e., there exists a disk E on $T S$, such that $c=\partial E$ and Int $E \cap S=\phi . \quad c$ divides S into two disks E_{1}, E_{2} such that $E_{1} \cup E_{2}=S$ and $E_{1} \cap E_{2}=\partial E_{1}=\partial E_{2}=c$. Since there is no intersection curves on Int $T E$, we may suppose, without loss of generality, $T E \subseteq E_{1}$ (equality holds, if and only if $c=T c$). Let $S_{1}=E \cup E_{1}, S_{2}=E \cup E_{2}$. Then one of S_{1} or S_{2} does not separate $S^{1} \times S^{2}$. For, if both S_{1} and S_{2} separate $S^{1} \times S^{2}$, then S, S_{1} and S_{2} satisfy the conditions of Lemma 1. Therefore S separates $S^{1} \times S^{2}$ by the conclusion of Lemma 1, which contradicts the first assumption.
(1) S_{1} does not separate $S^{1} \times S^{2}$.

If $c=T c$, then $T S_{1}=T\left(E \cup E_{1}\right)=T E \cup T E_{1}=E_{1} \cup E=S_{1}$. Hence S_{1} is an invariant 2 -sphere under T.

If $c \neq T c$, then $T E \subsetneq E_{1}$. Take a simple closed curve c^{\prime} on E_{1} so close to c that the ring domain R bounded by c and c^{\prime} on E_{1} has no intersection with $T S$ except c (Fig. 1). Then span a disk E^{\prime} on c^{\prime} so close to E that $S_{1}^{\prime}=\left(E_{1}-R\right) \cup E^{\prime}$ does not separate $S^{1} \times S^{2}, E^{\prime} \cap T E^{\prime}=\phi$, $E^{\prime} \cap T S=\phi$ and $E^{\prime} \cap S=\partial E^{\prime}=c^{\prime}$. From the way of construction of S_{1}^{\prime}, $S_{1}^{\prime} \cap T S_{1}^{\prime}$ consists of a subset of $\left\{c_{1}, c_{2}, \cdots, c_{n}\right\}$. we shall denote by $n(S \cap T S)$ the numbar of intersection curves of $S \cap T S$. Then it follows that $n\left(S_{1}^{\prime} \cap T S_{1}^{\prime}\right)<n(S \cap T S)$, because the former is diminished at least by $2(c$ and $T c)$ from the latter.

[^1]

Fig. 1
(2) S_{2} does not separate $S^{1} \times S^{2}$.

If $c=T c$, then we can take a simple closed curve c^{\prime} and a disk E^{\prime} so close to c and E that they satisfy the following conditions: (i) $c^{\prime} \subset E_{2}$ and the domain R bounded by c and c^{\prime} on E_{2} has no intersection with $T S$, (ii) $E^{\prime} \cap T S=\phi$ and $E^{\prime} \cap S=\partial E^{\prime}=c^{\prime}$, (iii) $S_{2}^{\prime}=\left(E_{2}-R\right) \cup E^{\prime}$ does not separate $S^{1} \times S^{2}$. Furthermore we can take E^{\prime} such that $E^{\prime} \cap T E^{\prime}=\phi$, because $T E^{\prime} \cap S=\phi, \quad T E^{\prime} \cap T S=T c^{\prime}$ (Fig. 2). Then $n\left(S_{2}^{\prime} \cap T S_{2}^{\prime}\right)<$

Fig. 2
$n(S \cap T S)$, because c is deleted and there arise no new intersection curves.
If $c \neq T c$, then $n\left(S_{2} \cap T S_{2}\right)=n\left(E_{2} \cap T E_{2}\right)<n(S \cap T S)$, because c and $T c$ are not contained in $S_{2} \cap T S_{2}$.

As has been shown there exists in both cases (1), (2), a 2 -sphere S^{\prime} which does not separate $S^{1} \times S^{2}$ such that $n\left(S^{\prime} \cap T S^{\prime}\right)<n(S \cap T S)$ or $T S^{\prime}$ $=S^{\prime}$. Furthermore, from the way of our construction of S^{\prime}, we have by a small deformation of $S^{\prime} S^{\prime} \cap S=\phi$ without changing any other situations. Therefore it follows from Lemma 2 that S^{\prime} is isotopic to S. Since $n(S$ $\cap T S$) is a non negative integer, we can find by proceeding with the above procedure a 2 -sphere S^{*} which is isotopic to S and $S^{*} \cap T S^{*}=\phi$ or $T S^{*}=S^{*}$, in a finite step.

Thus Lemma 3 is proved.

§ 2

Proof of Theorem 1. By Lemma 3, there exists a 2 -sphere S which is semi-linearly embeded in $S^{1} \times S^{2}$ and is isotopic to $0 \times S^{2}$, such that $S \cap T S=\phi$ or $S=T S$. we divide our proof into the following two cases :
(1) $S \cap T S=\phi$,
(2) $S=T S$ and there is no 2 -sphere S^{\prime} which is isotopic to $0 \times S^{2}$ and $S^{\prime} \cap T S^{\prime}=\phi$.
(1) $S \cap T S=\phi$. Since S is isotopic to $0 \times S^{2}$, we may suppose $S=0$ $\times S^{2}$. Then $S^{1} \times S^{2}-(S \cup T S)$ consists of two components A, B. Here A and B are homeomorphic to $I \times S^{2}$ by Lemma 2. Then the following two cases are possible:
(a) $T A=A$, (b) $T A=B$.

Case (a). Let p be a map from $S^{1} \times S^{2}$ onto M defined by $p x=p T x$. Then $p: S^{1} \times S^{2} \rightarrow M$ is a double covering. Let M_{A}, M_{B} be closed 3manifolds obtained from $p A, p B$ by filling in the boundary 2 -sphere $S^{\prime}=p(S \cup T S)$ with 3-cells respectively. Filling in $\partial A=S \cup T S$ with two 3 -cells, we obtain from A a 3 -sphere S^{3}. Since T is a fixed point free involution of A, T is extended naturally to a fixed point free involution T^{\prime} of S^{3}. Then, by Theorem 3 of [4], T^{\prime} is equivalent to the antipodal map: i.e. there exists a homeomorphism $h: S^{3} \rightarrow S^{3}$ such that $h T^{\prime} h^{-1}$ is an antipodal map. Hence $M_{A}=P^{3}$. In the same way, it follows that $M_{B}=P^{3}$. Therefore $M=P^{3} \# P^{3}$ (For example Fig. 3).

Case (b). In this case, M is homeomorphic to the manifold obtained from A by matching S and $T S$ by the homeomorphism T. Therefore M is either homeomorphic to $S^{1} \times S^{2}$ or K^{3}.
(2) By Lemma 2, we may suppose $S=\frac{1}{2} \times S^{2}$. There are the following two cases to be considered:

Fig. 3
(c). For all number ε, where $0<\varepsilon<\frac{1}{2}$, there exists a point Q such that $Q \in\left[\frac{1}{2}, \frac{1}{2}+\varepsilon\right] \times S^{2}, T Q \notin\left[\frac{1}{2}, 1\right) \times S^{2}$.
(d). There exists a number ε such that $0<\varepsilon<\frac{1}{2}$ and $T\left(\left[\frac{1}{2}, \frac{1}{2}+\right.\right.$ $\left.\varepsilon] \times S^{2}\right)\left(\left[\frac{1}{2}, 1\right) \times S^{2}\right.$.

Case (c). Since $\frac{1}{2} \times S^{2}$ is invariant under T, there exists two numbers α, β such that $0<\beta<\alpha<\frac{1}{2}$, and $T\left(\left[\frac{1}{2}-\beta, \frac{1}{2}+\beta\right] \times S^{2}\right)<\left[\frac{1}{2}-\alpha, \frac{1}{2}\right.$ $+\alpha]$. Then by the assumption, there exists $\gamma \times S^{2}$ with $0<\gamma<\beta$, such that $T\left(\gamma \times S^{2}\right) \cap\left(\gamma \times S^{2}\right)=\phi$. Hence this case does not actually occur.

Case (d). Cut $S^{1} \times S^{2}$ by $\frac{1}{2} \times S^{2}$. Then it is homeomorphic to $I \times S^{2}$ and we may suppose that T is a fixed point free involution of $I \times S^{2}$. Then T restricted to the boundary $i \times S^{2}(i=0,1)$ is an antipodal map A on 2 -sphere S^{2}. Hence, by Lemma 3.1 of [3] T is equivalent to $e \times A$: $I \times S^{2} \rightarrow I \times S^{2}$, where $e: I \rightarrow I$ is the identity. Matching again the boundary of $I \times S^{2}$, we obtain that M is homeomorphic to $S^{1} \times P^{2}$.

Thus Theorem 1 is proved.

§ 3

A connected closed 3-manifold M is said to be irreducible if every 2 -sphere which is semi-linearly embedded in M and separates M bounds a 3-cell in M.

Using Theorem 1, we obtain the following
Theorem 2. Under Poincaré Hypothesis ${ }^{(6)}$, the following two propositions are equivalent:
(I) Let \tilde{M} be the orientable double covering of a connected closed 3-manifold M. If M is irreducible, then \tilde{M} is irreducible.
(II) $S^{1} \times P^{2}$ is the only one connected closed 3-manifold for which the sphere theorem does not hold.

Proof. First suppose that (I) is true. Let M be a connnected closed 3 -manifold for which the sphere theorem does not hold: i.e., $\pi_{2}(M) \neq 0$ but every 2 -sphere semi-linearly embedded in M is homotopic to a constant in M. Then M is irreducible. For, if M is reducible, then $\pi_{1}(M)$ is a free product of two non trivial groups. Then it follows from Whitehead's theorem (Theorem 1.1 of [9]) that there exists a 2 -sphere S semi-linearly embedded in M, such that $S \neq 0$ in M, which contradicts the assumption. Therefore by (I), \tilde{M} is irreducible. From Milnor's result ([5], [8]) and Poincaré Hypothesis, \tilde{M} is homeomorphic to (1) $S^{1} \times S^{2}$, or (2) is aspherical, or (3) has a non trivial finite fundamental group. Case (2) or (3) does not occur. For, if \tilde{M} is aspherical, then $\pi_{2}(M) \approx \pi_{2}(\tilde{M})=0$, which contradicts the assumption. If $\pi_{1}(\tilde{M})$ is finite, then the universal covering $\widetilde{\bar{M}}$ of \tilde{M} is S^{3}. Hence $\pi_{2}(M) \approx$ $\pi_{2}(\tilde{M}) \approx \pi_{2}(\widetilde{\bar{M}})=0$, which contradicts the assumption. Therefore \tilde{M} is homeomorphic to $S^{1} \times S^{2}$. Since M is irreducible and non orientable, it follows from Theorem 1 that M is homeomorphic to $S^{1} \times P^{2}$.

Next, suppose that (II) is true. Suppose \tilde{M} is redudible. Then by Whitehead's theorem, $\pi_{2}(\tilde{M}) \neq 0$. Therefore $\pi_{2}(M) \neq 0$. If there exists a 2 -sphere semi-linearly embedded in M, such that $S^{2} \neq 0$, then by Whitehead's theorem, M is reducible or $M=S^{1} \times S^{2}$ or $M=K^{3}$. If there is no 2-sphere semi-linearly embeddee in M, such that $S^{2} \neq 0$, then it follows from (II) that $M=S^{1} \times P^{2}$. On the other hand, by Theorem 1, if $M=S^{1}$ $\times S^{2}$, or $=K^{3}$, or $=S^{1} \times P^{2}$, then $\tilde{M}=S^{1} \times S^{2}$, which contradicts the first assumption. Hence M is reducible. Therefore (I) is true under the assumption of (II).

Thus Theorem 2 is proved.
(Received March 17, 1962)

[^2]
References

[1] J. W. Alexander: An example of a simply connected surface bounding a region which is not simply connected Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
[2] W. Graeub: Die semilinearen Abbildungen, S. Ber. Heidelberger Akad. Wiss. (1950), 205-272.
[3] M. W. Hirsch and S. Smale: On involutions of the 3-sphere, Amer. J. Math. 81 (1959), 893-900.
[4] G. R. Livesay: Fixed point free involutions on the 3-sphere, Ann. of Math. 72 (1960), 603-611.
[5] J. W. Milnor: A unique decomposition theorem for 3-manifolds (Unpublished). Cf. [8] pp. 327.
[6] E. E. Moise: Affine structures in 3-manifolds I, Ann. of Math. 54 (1951), 506-533.
[7] E. E. Moise: Affine structures in 3-manifolds V, Ann. of Mah. 56 (1952), 96-114.
[8] C. D. Papakyriakopoulos: Some problems on 3-dimensional manifolds, Bull. Amer. Math. Soc. 64 (1958), 317-335.
[9] J. H. C. Whitehead: On finite cocylces and the sphere theorem, Colloquium Math. 51 (1958), 271-281.
[10] J. H. C. Whitehead: 2-spheres in 3-manifolds, Bull. Amer. Math. Soc. 64 (1958), 161-166.

[^0]: 1) $\neq 0$ means not homotopic to a constant.
 2) P^{2} is the real projective plane.
 3) 3-dimensional Klein Bottle is defined as follows: let S_{0}, S_{1} be the boundaries of $S^{2} \times[0$, 1]. Then $S_{0} S_{1}$ have the orientations induced from the orientation of $S^{2} \times[0,1]$. Let f be an orientation preseving homeorphirm from S_{0} to S_{1}. Identifying S_{0} with S_{1} by f in $S^{2} \times[0.1]$, we obtain a non-orientable closed 3 -manifold which we call 3 -dim. Klein Bottle.
 4) P^{3} is the projective space. $P^{3} \# P^{3}$ is defined as follows: Let $E^{\prime}, E^{\prime \prime}$ be two open 3cells in P^{3}, P^{3} respectively. Matching the boundaries of $P^{3}-E^{\prime}$ and $P^{3}-E^{\prime \prime}$, we obtain a new closed 3-manifold which we denote $P^{3} \# P^{3}$.
[^1]: 5) Alexander's theorem: Let S be a polygonal 2 -sphere in the 3 -sphere S^{3}. Then $S^{3}=$ $e_{1} \cup e_{2}$ and $e_{1} \cap e_{2}=\partial e_{1}=\partial e_{2}=S$ where e_{1}, e_{2} are topological 3-cells.
[^2]: 6) Poincaré Hypothesis : Every simply connected closed 3 -manifold is the 3 -sphere.
