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DUALIZING COMPLEX OF A TORIC FACE RING

RYOTA OKAZAKI and KOHJI YANAGAWA

Abstract. A toric face ring, which generalizes both Stanley-Reisner rings and

affine semigroup rings, is studied by Bruns, Römer and their coauthors recently.

In this paper, under the “normality” assumption, we describe a dualizing com-

plex of a toric face ring R in a very concise way. Since R is not a graded

ring in general, the proof is not straightforward. We also develop the square-

free module theory over R, and show that the Cohen-Macaulay, Buchsbaum,

and Gorenstein* properties of R are topological properties of its associated cell

complex.

§1. Introduction

Stanley-Reisner rings and (normal) affine semigroup rings are important

subjects of combinatorial commutative algebra. The notion of toric face

rings, which originated in Stanley [12], generalizes both of them, and has

been studied by Bruns, Römer, and their coauthors recently (e.g. [2], [5],

[8]). Contrary to Stanley-Reisner rings and affine semigroup rings, a toric

face ring does not admit a nice multi-grading in general. So, even if the

results can be easily imagined from these classical examples, the proofs

sometimes require technical argument.

Now we start the definition of a toric face ring. Let X be a finite cell

complex with ∅ ∈ X . Assume that the closure σ of each i-cell σ ∈ X is

homeomorphic to an i-dimensional ball, and for given two cells σ, τ ∈ X
there exists υ ∈ X with σ ∩ τ = υ (we allow the case υ = ∅). A simplicial

complex and the cell complex associated with a polytope are examples of

our X .

We assign a pointed polyhedral cone Cσ ⊂ R
dσ to each σ ∈ X so that

the following condition is satisfied. (We say a cone is pointed if it contains

no line.)
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(∗) dimCσ = dimσ+1, and there is a one-to-one correspondence between

{faces of Cσ} and {τ ∈ X | τ ⊂ σ}. The face of Cσ corresponding to

τ is isomorphic to Cτ by a map ισ,τ : Cτ → Cσ. These maps satisfy

ισ,σ = idCσ and ισ,τ ◦ ιτ,υ = ισ,υ for all σ, τ, υ ∈ X with σ ⊃ τ ⊃ υ.

For example, a pointed fan (i.e., a fan consisting of pointed cones) gives

such a structure. Here ισ,τ ’s are inclusion maps, and X is a “cross-section”

of the fan.

Next we define a monoidal complex M supported by {Cσ}σ∈X as fol-

lows.

(∗∗) To each σ ∈ X , we assign a finitely generated additive submonoid

Mσ ⊂ (Zdσ ∩Cσ) ⊂ R
dσ with R≥0Mσ = Cσ. For σ, τ ∈ X with σ ⊃ τ ,

the map ισ,τ : Cτ → Cσ induces an isomorphism Mτ
∼= Mσ ∩ ισ,τ (Cτ )

of monoids.

If Σ is a rational pointed fan in R
n, then {Zn∩C}C∈Σ gives a monoidal

complex.

For a monoidal complex M on a cell complex X , we set |M| :=

lim−→σ∈X
Mσ, where the direct limit is taken with respect to ισ,τ : Mτ → Mσ

for σ, τ ∈ X with σ ⊃ τ . If M comes from a fan in R
n, then |M| can be

identified with
⋃

σ∈X Mσ ⊂ Z
n. The k-vector space

k[M] :=
⊕

a∈|M|

k ta,

with the multiplication

ta · tb =

{

ta+b if a, b ∈ Mσ for some σ ∈ X ;

0 otherwise,

has a k-algebra structure. We call k[M] the toric face ring of M. If M
comes from a fan in R

n, then k[M] has a natural Z
n-grading. However, this

is not true in general (cf. Example 2.9 below).

Example 1.1. (1) Let ∆ be a simplicial complex. Attaching the

monoid N
i+1 to each i-dimensional face of ∆, we get a monoidal complex

M on ∆. In this case, k[M] coincides with the Stanley-Reisner ring k[∆].

An affine semigroup ring is also a toric face ring corresponding to the case

when X has a unique maximal cell.
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(2) Let X be a two-dimensional cell complex given by the boundary of a

cube. Assigning normal semigroup rings of the form k[x, y, z, w]/(xz − yw)

to all two-dimensional cells, we get a toric face ring k[M]. This M comes

from a fan, and k[M] has a Z
3-grading with Mσ = Z

3 ∩ Cσ for all σ ∈ X .

(Find such a grading explicitly.) Next, we assign k[x, y, z, w]/(xz − yw)

to 5 two-dimensional cells and k[x, y, z, w, v]/(xz − v2, yw − v2) to the 6th

one. Then we get a toric face ring k[M′], which is observed in [2, pp. 6–7].

While k[M′] admits a Z
3-grading and all k[M′

σ] is normal, it is impossible

to satisfy M′
σ = Z

3 ∩Cσ simultaneously for all σ. A toric face ring without

multi-grading is given in Example 2.9.
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The affine semigroup ring k[Mσ] :=
⊕

a∈Mσ
k ta can be regarded as a

quotient ring of a toric face ring R := k[M]. In the rest of this section, we

assume that k[Mσ] is normal for all σ ∈ X , and set d := dim R = dimX +1.

Theorem 1.2. In the above situation, the cochain complex I•R given by

I−i
R :=

⊕

σ∈X ,
dimσ=i−1

k[Mσ], I•R : 0 −→ I−d
R −→ I−d+1

R −→ · · · −→ I0
R −→ 0,

and

∂ : I−i
R ⊃ k[Mσ] ∋ 1σ 7−→

∑

dim k[τ ]=i−1,
τ⊂σ

±1τ ∈
⊕

dim k[τ ]=i−1,
τ⊂σ

k[Mτ ] ⊂ I−i+1
R

is quasi-isomorphic to a normalized dualizing complex D•
R of R. Here the

sign ± is given by an incidence function of the regular cell complex X .

Clearly, our I•R is analogous to the complex constructed in Ishida [9],

but, since we assume that all k[Mσ] are normal, we do not have to take the
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(graded) injective hull of k[Mσ]. If M comes from a fan in R
n, the above

theorem has been obtained in [8, Theorem 5.1] using the Z
n-grading of R.

We also introduce the notion of ZM-graded R-modules. Since R is

not a graded ring, these are not graded modules in the usual sense, but we

can consider their “Hilbert functions”. In particular, Corollary 6.3, which

recaptures a result of [1], gives a formula on the Hilbert function of the local

cohomology module H i
m(R) at the maximal ideal m := (ta | 0 6= a ∈ |M|).

In [14], [16], the second author defined squarefree modules M over a

normal semigroup ring k[Mσ], and gave corresponding constructible sheaves

M+ on the closed ball σ. We can extend this to a toric face ring R, that is,

we define squarefree R-modules and associate constructible sheaves on X
with them. In this context, the duality RHomR(−, I•R) on the derived cat-

egory of squarefree R-modules corresponds to Poincaré-Verdier duality on

the derived category of constructible sheaves on X . For example, the com-

plex I•R consists of squarefree modules, and (I•R)+ is the Verdier’s dualizing

complex of the underlying topological space of X .

Corollary 1.3. The Buchsbaum property, Cohen-Macaulay property

and Gorenstein* property are topological properties of the underlying space

of X .

While some parts/cases of Corollary 1.3 have been obtained in existing

papers, our argument gives systematic perspective.

§2. Toric face rings

First, we shall recall the definition of a regular cell complex: A finite

regular cell complex (cf. [4, Section 6.2]) is a topological space X together

with a finite set X of subsets of X such that the following conditions are

satisfied:

(1) ∅ ∈ X and X =
⋃

σ∈X σ;

(2) the subsets σ ∈ X are pairwise disjoint;

(3) for each σ ∈ X , σ 6= ∅, there exists some i ∈ N and a homeomorphism

from an i-dimensional ball {x ∈ R
i | ‖x‖ ≤ 1} to the closure σ of σ

which maps {x ∈ R
i | ‖x‖ < 1} onto σ.

(4) For any σ ∈ X , the closure σ can be written as the union of some cells

in X .
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An element σ ∈ X is called a cell. We regard X as a poset with the

order > defined as follows; σ ≥ τ if σ ⊃ τ . If σ is homeomorphic to an

i-dimensional ball, we set dim σ = i. Here dim ∅ = −1. Set dim X =

dimX := max{dim σ | σ ∈ X}.
Let σ, τ ∈ X . If dim σ = i + 1, dim τ = i − 1 and τ < σ, then there are

exactly two cells σ1, σ2 ∈ X between τ and σ. (Here dim σ1 = dim σ2 = i.) A

remarkable property of a regular cell complex is the existence of an incidence

function ε satisfying the following conditions.

(1) To each pair (σ, τ) of cells, ε assigns a number ε(σ, τ) ∈ {0,±1}.
(2) ε(σ, τ) 6= 0 if and only if dim τ = dim σ − 1 and τ < σ.

(3) If dim σ = i + 1, dim τ = i − 1 and τ < σ1, σ2 < σ, σ1 6= σ2, then we

have

ε(σ, σ1) ε(σ1, τ) + ε(σ, σ2) ε(σ2, τ) = 0.

We can compute the (co)homology groups of X using the cell decomposition

X and an incidence function ε.

Example 2.1. We shall give two typical examples of a finite regular

cell complex: one is associated with a simplicial complex ∆ on the vertex set

[n] := {1, . . . , n}, i.e., a subset of the power set 2[n] such that, for F,G ∈ 2[n],

F ⊂ G and G ∈ ∆ imply F ∈ ∆. Take its geometric realization ‖∆‖, and let

ρ be the map giving the realization (see [4] for the definition of a geometric

realization). Then X := ‖∆‖ together with {rel-int(ρ(F )) | F ∈ ∆} is

a regular cell complex, where rel-int(ρ(F )) denotes the relative interior of

ρ(F ).

The other example is a polytope P . In this case, P itself is the under-

lying topological space; the cells are the relative interiors of its faces.

Definition 2.2. A conical complex consists of the following data.

(1) A finite regular cell complex X satisfying the intersection property,

i.e., for σ, τ ∈ X , there is a cell υ ∈ X such that υ = σ ∩ τ ;

(2) A set Σ of finitely generated cones Cσ ⊂ R
dimσ+1 with σ ∈ X and

dimCσ = dim σ + 1.

(3) An injection ισ,τ : Cτ → Cσ for σ, τ ∈ X with σ ≥ τ satisfying the

following.

(a) ισ,τ can be lifted up to a linear map R
dim τ+1 → R

dimσ+1.
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(b) The image ισ,τ (Cτ ) is a face of Cσ. Conversely, for a face C ′ of

Cσ, there is a sole cell τ with τ ≤ σ such that ισ,τ (Cτ ) = C ′. Thus

we have a one-to-one correspondence between {faces of Cσ} and

{τ ∈ X | τ ≤ σ}.
(c) ισ,σ = idCσ and ισ,τ ◦ ιτ,υ = ισ,υ for σ, τ, υ ∈ X with σ ≥ τ ≥ υ.

We denote this structure by (Σ,X ) or Σ simply.

Remark 2.3. (1) We have ∅ ∈ X according to the definition of a regular

cell complex, and the corresponding cone C∅ is {0}. Thus for a conical

complex (Σ,X ), each Cσ ∈ Σ is pointed, i.e., {0} is a face of Cσ.

(2) The concept of conical complexes was first defined by Bruns-Koch-

Römer [5] in a slightly different manner, but, under the additional condition

that each cone is pointed, their definition is equivalent to ours. That is, our

conical complexes are pointed conical complexes of [5].

For grasping the image of a conical complex (Σ,X ), it is helpful to

regard the conical complex as the object given by “gluing” each cones along

the injections ισ,τ . A typical example of a conical complex is a pointed

fan, i.e., a finite collection Σ of pointed cones in R
n satisfying the following

properties:

(1) for C ′ ⊂ C ∈ Σ, C ′ is a face of C if and only if C ′ ∈ Σ;

(2) for C,C ′ ∈ Σ, C ∩ C ′ is a common face of C and C ′.

In this case, as an underlying cell complex, we can take {rel-int(C ∩ S
n−1) |

C ∈ Σ}, where S
n−1 denotes the unit sphere in R

n, and the injections ι are

inclusion maps.

Example 2.4. There exists a conical complex which is not a fan. In

fact, consider the Möbius strip as follows.
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Regarding each rectangles as the cross-sections of 3-dimensional cones, we

have a conical complex that is not a fan (see [3]).

A monoidal complex plays a role similar to the defining semigroup of

an affine semigroup ring.

Definition 2.5. ([5]) A monoidal complex M supported by a conical

complex (Σ,X ) is a set of monoids {Mσ}σ∈X with the following conditions:

(1) Mσ ⊂ Z
dimσ+1 for each σ ∈ X , and it is a finitely generated additive

submonoid (so Mσ is an affine semigroup);

(2) Mσ ⊂ Cσ and R≥0Mσ = Cσ for each σ ∈ X (hence the cone Cσ is

automatically rational);

(3) for σ, τ ∈ X with σ ≥ τ , the map ισ,τ : Cτ → Cσ induces an isomor-

phism Mτ
∼= Mσ ∩ ισ,τ (Cτ ) of monoids.

For example, let Σ be a rational pointed fan in R
n. Then {C ∩Z

n | C ∈
Σ} gives a monoidal complex. More generally, a family of affine semigroups

{MC ⊂ Z
n | C ∈ Σ} satisfying the following conditions, forms a monoidal

complex;

(1) R≥0MC = C for each C ∈ Σ;

(2) MC ∩ C ′ = MC′ for C,C ′ ∈ Σ with C ′ ⊂ C.

Remark 2.6. (1) In [2, §2], basic properties of a rational polyhedral

complex, which gives a conical complex and a monoidal complex in a natural

way, are discussed.

(2) Even if a regular cell complex X satisfies the intersection property,

there does not exist a conical complex of the form (Σ,X ) in general. For

example, there is a simplicial complex ∆ such that the geometric realization

‖∆‖ is homeomorphic to a 3-dimensional sphere, but ∆ is not the boundary

complex of any (4-dimensional) polytope. See, for example, [19, Notes of

Chap. 8]. Now take a 4-dimensional ball, and let σ be its interior. Triangu-

lating the boundary of the ball, which is a 3-dimensional sphere, according

to ∆, we obtain the cell complex X := ∆ ∪ {σ} such that σ > τ for all

τ ∈ ∆. If there is a conical complex of the form (Σ,X ), then the boundary

complex of a cross section of the cone Cσ ∈ Σ coincides with ∆. This is a

contradiction.
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On the other hand, for any 2-dimensional regular cell complex X sat-

isfying the intersection property, there is a conical complex (Σ,X ) and a

monoidal complex M supported by it as follows.

Let n ≥ 3 be an integer. It is an easy exercise to construct an affine

semigroup Mn ⊂ N
3 satisfying the following conditions.

(i) The cone C := R≥0Mn ⊂ R
3 has exactly n extremal rays, that is, its

cross section is an n-gon.

(ii) For any 2-dimensional face F of C, we have F ∩Mn
∼= N

2 as monoids.

For a 2-dimensional cell σ ∈ X , set n(σ) := #{τ | τ ≤ σ,dim τ = 1}. By the

intersection property of X , we have n(σ) ≥ 3. The assignment Mσ := Mn(σ)

for each 2-dimensional cell σ gives a monoidal complex on X .

For a conical complex (Σ,X ) and a monoidal complex M supported by

Σ, we set

|M| := lim−→
σ∈X

Mσ, |ZM| := lim−→
σ∈X

ZMσ,

where the direct limits are taken with respect to the inclusions ισ,τ : Mτ →
Mσ and induced map ZMτ → ZMσ respectively, for σ, τ ∈ X with σ ≥ τ .

Let a, b ∈ |ZM|. If there is some σ ∈ X with a, b ∈ ZMσ, by the

intersection property of X , there is a unique minimal cell among these σ’s.

Hence we can define a ± b ∈ |ZM|.

Definition 2.7. ([5]) Let (Σ,X ) be a conical complex, M a monoidal

complex supported by Σ, and k a field. Then the k-vector space

k[M] :=
⊕

a∈|M|

k ta,

where t is a variable, equipped with the following multiplication

ta · tb =

{

ta+b if a, b ∈ Mσ for some σ ∈ X ;

0 otherwise,

has a k-algebra structure. We call k[M] the toric face ring of M over k.

It is easy to see that dim R = dimX + 1. When Σ is a rational pointed

fan, k[M] coincides with a toric face ring of Ichim-Römer’s sense ([8]). More-

over, if we choose Cσ ∩Z
n as Mσ for each σ, k[M] is just an earlier version
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due to Stanley ([12]). Henceforth we refer a toric face ring of M supported

by a fan as an embedded toric face ring. Every Stanley-Reisner ring and

every affine semigroup ring (associated with a positive affine semigroup)

can be established as embedded toric face rings (see Example 1.1). The

most difference between an embedded toric face ring and a non-embedded

one, is whether it has a nice Z
n-grading or not; an embedded toric face ring

always has the natural Z
n-grading such that the dimension, as a k-vector

space, of each homogeneous component is less than or equal to 1. However

a non-embedded one does not have such a grading.

Toric face rings can be expressed as a quotient ring of a polynomial

ring. Let M be a monoidal complex supported by a conical complex (Σ,X ),

and {ae}e∈E a family of elements of |M| generating k[M] as a k-algebra,

or equivalently, {ae}e∈E ∩ Mσ generates Mσ for each σ ∈ X . Then the

polynomial ring S := k[Xe | e ∈ E] surjects on k[M]. We denote, by IM,

its kernel. Similarly we have the surjection Sσ := k[Xe | ae ∈ Mσ, e ∈
E] ։ k[Mσ], where k[Mσ] denotes the affine semigroup ring of Mσ, and

denote its kernel by IMσ .

Proposition 2.8. ([5, Proposition 2.6]) With the above notation, we

have

IM = AM +

n
∑

i=1

SIMσi
,

where σ1, . . . , σn are the maximal cells of X , and AM is the ideal of S

generated by the squarefree monomials
∏

h∈H Xh for which {ah | h ∈ H} is

not contained in Mσ for any σ ∈ X .

Example 2.9. ([5, Example 4.6]) Consider the conical complex given

in Example 2.4, and choose each rectangles to be a unit square. In this case,

we can construct a monoidal complex M such that Mσ = Cσ ∩ Z
dimCσ

for all σ, and then u, v, w, x, y, z are generators of M. We set S :=

k[Xu,Xv ,Xw,Xx,Xy,Xz ], where Xu, . . . ,Xz are variables. Clearly, k[Mσ]

is a polynomial ring if dimσ ≤ 1, and one of the following

k[Xu,Xv,Xx,Xy]/(XxXv − XuXy),

k[Xv,Xw,Xy,Xz]/(XvXz − XyXw),

k[Xu,Xw,Xx,Xz]/(XxXz − XuXw),
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if dim σ = 2. Therefore we conclude that

IM = (XxXv − XuXy, XvXz − XyXw, XxXz − XuXw,

XuXvXw, XuXvXz) ⊂ S.

We leave the reader to verify that the other squarefree monomials in AM,

e.g. XxXyXz, are indeed contained in the above ideal.

In this paper, we often assume that k[M] satisfies the following condi-

tion.

Definition 2.10. We say a toric face ring k[M] (or a monoidal com-

plex M) is cone-wise normal, if the affine semigroup ring k[Mσ] is normal

for all σ ∈ X .

If k[M] is cone-wise normal, then k[Mσ] is Cohen-Macaulay for all

σ ∈ X . Clearly, the toric face rings given in Examples 1.1 and 2.9 are

cone-wise normal.

Remark 2.11. The notion of a cone-wise normal monoidal complex M
is equivalent to that of the lattice points WF (Πrat) of a weak fan WF

introduced by Bruns and Gubeladze in [2, Definition 2.6]. In this case, our

ring k[M] is the same thing as the ring k[WF ] of [2].

An affine semigroup ring A = k[Mσ] has a graded ring structure A =
⊕

i∈N
Ai with A0 = k. The toric face ring given in Example 2.9 also has

an N-grading given by deg Xu = · · · = deg Xz = 1. This is not true in

general; there is a monoidal complex whose toric face ring does not have an

N-grading. See [2, Example 2.7].

For a commutative ring A, let Mod A (resp. mod A) denote the category

of (resp. finitely generated) A-modules.

Definition 2.12. Let R := k[M] be a toric face ring of a monoidal

complex M supported by a conical complex (Σ,X ).

(1) M ∈ Mod R is said to be ZM-graded if the following conditions are

satisfied;

(a) M =
⊕

a∈|ZM| Ma as k-vector spaces;
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(b) ta · Mb ⊂ Ma+b if a ∈ Mσ and b ∈ ZMσ for some σ ∈ X , and

ta · Mb = 0 otherwise.

(2) M ∈ Mod R is said to be M-graded if it is ZM-graded and Ma = 0

for a 6∈ |M|.

Of course, setting Ra := k ta for each a ∈ |M|, we see that R itself is

|M|-graded. Any monomial ideal, i.e., an ideal generated by elements of the

form ta for some a ∈ |M|, is M-graded, and hence ZM-graded. Conversely,

every ZM-graded ideal is a monomial ideal.

Let ModZM R (resp. modZM R) denote the subcategory of Mod R (resp.

mod R) whose objects are ZM-graded R-modules and morphisms are degree

preserving maps, i.e., R-homomorphisms f : M → N such that f(Ma) ⊂ Na

for a ∈ |ZM|. It is clear that ModZM R and modZM R are abelian.

For each σ ∈ X , the ideal pσ := (ta | a 6∈ Mσ) ⊂ R is a ZM-graded

prime ideal since R/pσ
∼= k[Mσ]. Conversely, every ZM-graded prime ideals

are of this form.

Lemma 2.13. There is a one-to-one correspondence between the cells

in X and the ZM-graded prime ideals of R.

X oo //
{

all the ZM-graded

prime ideals of R

}

∈ ∈

σ oo // pσ

Proof. The proof is quite the same as [8, Lemma 2.1].

For an ideal I of R, we denote, by I∗, the ideal of R generated by all

the monomials belonging to I. As in the case of a usual grading, we have

the following:

Lemma 2.14. For a prime ideal p of R, p∗ is also prime, and hence is

a ZM-graded prime ideal.

Proof. Since the ideal 0 can be decomposed as follows

⋂

σ∈X
σ:maximal

pσ = 0,
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{pσ | σ is a maximal cell of X} is the set of minimal primes of R. Hence

p must contain pσ for some σ ∈ X . It follows that p∗ ⊃ pσ. Consider the

images ρ(p) and ρ(p∗) by the surjection ρ : R ։ k[Mσ]. Then ρ(p) is prime

and ρ(p∗) is the ideal generated by the monomials contained in ρ(p), whence

is prime. Therefore we conclude that p∗ is also prime.

Corollary 2.15. Let a be a ZM-graded ideal of R. Then its radical

ideal
√

a is also ZM-graded.

Proof. Since a ⊂ p∗ holds for a prime ideal p with a ⊂ p, we have

⋂

p⊃a

p
∗ ⊂

⋂

p⊃a

p =
√

a ⊂
⋂

p⊃a

p
∗,

and therefore
√

a =
⋂

p⊃a
p∗.

§3. Cěch complexes and local cohomologies

Let (Σ,X ) be a conical complex, and M a monoidal complex. For σ ∈
X , set Tσ := {ta | a ∈ Mσ} ⊂ R := k[M]. Then Tσ forms a multiplicatively

closed subset consisting of monomials. Moreover, a multiplicatively closet

subset T consisting of monomials is contained in some Tσ, unless T ∋ 0.

Lemma 3.1. Let M ∈ ModZM R, and let T be a multiplicatively closed

subset of R consisting of monomials. Then T−1M ∈ ModZM R.

Proof. Take any x/ta ∈ T−1M with a ∈ |M|, b ∈ |ZM|, and x ∈ Mb.

If there is no σ ∈ X with a, b ∈ ZMσ, then x/ta = (xta)/t2a = 0; otherwise,

b − a is well-defined and in |ZM|. Now for λ ∈ |ZM|, set

(T−1M)λ :=
∑

x∈Mb, b−a=λ

k · x

ta

Then we have T−1M =
⊕

λ∈|ZM|(T
−1M)λ as k-vector spaces, which gives

T−1M a |ZM|-grading.

Well, set

Li
R :=

⊕

σ∈X
dimσ=i−1

T−1
σ R
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and define ∂ : Li
R → Li+1

R by

∂(x) =
∑

τ≥σ
dim τ=i

ε(τ, σ) · fτ,σ(x)

for x ∈ T−1
σ R ⊂ Li

R, where ε is an incidence function on X and fτ,σ is the

natural map T−1
σ R → T−1

τ R for σ ≤ τ . Then (L•
R, ∂) forms a complex in

ModZM R:

L•
R : 0 −→ L0

R
∂−→ L1

R
∂−→ · · · ∂−→ Ld

R −→ 0,

where d = dimR = dimX + 1. We set m := (ta | 0 6= a ∈ |M|). This is a

maximal ideal of R.

Proposition 3.2. (cf. [8, Theorem 4.2]) For any R-module M ,

H i
m(M) ∼= H i(L•

R ⊗R M),

for all i.

Proof. It suffices to show the following:

(1) H0(L•
R ⊗R M) ∼= H0

m(M);

(2) for a short exact sequence 0 → M1 → M2 → M3 → 0 in Mod R, the

induced one 0 → L•
R ⊗R M1 → L•

R ⊗R M2 → L•
R ⊗R M3 → 0 is also

exact;

(3) for any injective R-module I, H i(L•
R ⊗R I) = 0 for all i ≥ 1.

Let a be the ideal generated by elements ta with 0 6= a ∈ Cσ for some

1-dimensional cone Cσ. Since Ker(L0
R ⊗R M → L1

R ⊗R M) = H0
a(M), to

prove (1), we only have to show that
√

a = m. Let p be a prime containing

a. Since a is graded, we have p∗ ⊃ a. Thus there exists τ ∈ X such that

pτ ⊃ a, but then Cτ contains no 1-dimensional face. Therefore we conclude

that pτ = p∅ = m, which implies
√

a = m.

The condition (2) follows easily from the flatness of the localization. For

(3), we can apply the same argument of Ichim and Römer [8] for embedded

toric face rings (but we need to use Lemma 2.14).

Let RΓm : Db(Mod R) → Db(Mod R) be the right derived functor

of Γm := lim−→n
Hom(R/mn,−), where Db(Mod R) is the bounded derived

category of Mod R. Recall that H i(RΓm(M)) = H i
m(M) for all i and
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M ∈ Mod R. The usual spectral sequence argument of double complexes

tells us that L•
R is a flat resolution of RΓm(R), and therefore we have the

following.

Corollary 3.3. For a bounded complex M• of R-modules, RΓm(M•)

and L•
R ⊗R M• are isomorphic in Db(Mod R).

When M is ZM-graded, by Lemma 3.1, T−1
σ R ⊗R M is also ZM-

graded, and moreover the differentials of L•
R ⊗R M are in ModZM R. Thus

if M ∈ ModZM R, H i(L•
R ⊗R M) has a ZM-grading induced by L•

R ⊗ M .

Hence we have the following.

Corollary 3.4. H i
m(M) ∈ ModZM R for M ∈ ModZM R.

§4. Squarefree Modules

In this section, we assume that all the toric face rings are cone-wise

normal. Let (Σ,X ) be a conical complex, M a monoidal complex, and R

the toric face ring of M. For a ∈ |M|, there exists a unique cell σ ∈ X such

that rel-int(Cσ) ∋ a. We denote this σ by supp(a).

Definition 4.1. An R-module M ∈ modZM R is said to be squarefree

if it is M-graded and the multiplication map Ma ∋ x 7→ tbx ∈ Ma+b is an

isomorphism of k-vector spaces for all a, b ∈ |M| with supp(a+b) = supp(a).

For a monomial ideal I of R, it is a squarefree R-module, if and only if so

is R/I, if and only if I =
√

I. In particular, pσ and R/pσ are squarefree. We

denote, by Sq R, the full subcategory of modZM R consisting of squarefree

R-modules. As in the case of affine semigroup rings or Stanley-Reisner rings

(see [14], [15]), Sq R has nice properties. Since their proofs are also quite

similar to these cases, we omit some of them.

Lemma 4.2. (cf. [14], [15]) Let M ∈ Sq R. Then for a, b ∈ |M| with

supp(a) ≥ supp(b), there exists a k-linear map ϕM
a,b : Mb → Ma satisfying

the following properties:

(1) ϕM
a,b is bijective if supp(a) = supp(b);

(2) ϕM
a,a = id and ϕM

a,b ◦ ϕM
b,c = ϕM

a,c for a, b, c ∈ |M| with supp(c) ≤
supp(b) ≤ supp(a);
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(3) For a, a′, b, b′ ∈ |M| with supp(a) ≤ supp(a′) and supp(a + b) ≤
supp(a′ + b′), the following diagram

Ma
tb //

ϕM
a′,a

��

Ma+b

ϕM
a′+b′,a+b

��
Ma′

tb
′

// Ma′+b′

commutes.

Let Λ denote the incidence algebra of the regular cell complex X over

k (regarding X as a poset by its order >). That is, Λ is a finite dimen-

sional associative k-algebra with basis {eσ,τ | σ, τ ∈ X with σ ≥ τ}, and its

multiplication is defined by

eσ,τ · eτ ′,υ =

{

eσ,υ if τ = τ ′;

0 otherwise.

We write eσ := eσ,σ for σ ∈ X . Each eσ is idempotent, and moreover

Λeσ is indecomposable as a left Λ-module. It is easy to verify that eσ ·eτ = 0

if σ 6= τ and that 1 =
∑

σ∈X eσ . Hence Λ, as a left Λ-module, can be

decomposed as Λ =
⊕

σ∈X Λeσ .

Let mod Λ denote the category of finitely generated left Λ-modules. As

a k-vector space, any M ∈ mod Λ has the decomposition M =
⊕

σ∈X eσM .

Henceforth we set Mσ := eσM .

For each σ ∈ X , we can construct an indecomposable injective object

in mod Λ as follows; set

Ē(σ) :=
⊕

τ∈X , τ≤σ

k ēτ ,

where ēτ ’s are basis elements. The multiplication on Ē(σ) from the left

defined by

eυ, ω · ēτ =

{

ēυ if τ = ω and υ ≤ σ;

0 otherwise,

bring Ē(σ) a left Λ-module structure. The following is well known.

Proposition 4.3. The category mod Λ is abelian and enough injec-

tives, and any indecomposable injective object is isomorphic to Ē(σ) for

some σ ∈ X .
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As in the case of affine semigroup rings and Stanley-Reisner rings, we

have

Proposition 4.4. (cf. [14], [15]) There is an equivalence between Sq R

and mod Λ. Hence Sq R is abelian, and enough injectives. Any indecom-

posable injective object in Sq R is isomorphic to R/pσ for some σ ∈ X .

Proof. First, we will show the category equivalence. The object M ∈
Sq R corresponding to N ∈ mod Λ is given as follows. Set Ma := Nsupp(a) for

each a ∈ |M|. For a, b ∈ |M| such that a+b exists, define the multiplication

Ma ∋ x 7→ tb · x ∈ Ma+b by

Ma = Nsupp(a) ∋ x 7−→ esupp(a+b), supp(a) · x ∈ Nsupp(a+b) = Ma+b.

Then M becomes a squarefree module. See [14], [15] for details (though

right Λ-modules are treated in [14], [15], there is no essential difference).

Since R/pσ corresponds to Ē(σ) in this equivalence, the other state-

ments follow from Proposition 4.3.

Let Db(Sq R) be the bounded derived category of Sq R. We shall define

the functor D : Db(Sq R) → Db(Sq R)op. This functor will play an impor-

tant role in the next section. First, we choose elements a(σ) ∈ |M| with

supp(a(σ)) = σ for each σ ∈ X , and set ϕM
σ,τ := ϕM

a(σ), a(τ) for M ∈ Sq R

and σ, τ ∈ X with τ ≤ σ, where ϕM
a(σ), a(τ) is the map given in Lemma 4.2.

To a bounded complex M• of squarefree R-modules, we assign the complex

D(M•) defined as follows: the component of cohomological degree p is

D(M•)p :=
⊕

i+dimCσ=−p

(M i
a(σ))

∗ ⊗k R/pσ ,

where (−)∗ denotes the k-dual, but the “degree” of (M i
a(σ))

∗ is 0 ∈ |ZM|.
Define d′ : D(M•)p → D(M•)p+1 and d′′ : D(M•)p → D(M•)p+1 by

d′(y ⊗ r) =
∑

τ≤σ,
dim τ=dimσ−1

ε(σ, τ) · (ϕM i

σ,τ )∗(y) ⊗ gτ,σ(r),

d′′(y ⊗ r) = (−1)p · (∂i
M•)∗(y) ⊗ r

for y ∈ M i
a(σ) with i + dim Cσ = −p and r ∈ R/pσ. Here ε(σ, τ) is an

incidence function on X and gτ,σ : R/pσ → R/pτ is the surjection induced
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by the inclusion pσ ⊂ pτ . Clearly, (D(M•), d′+d′′) forms a bounded complex

in Sq R, and Lemma 4.2 guarantees the independence of D(M•) from the

choice of a(σ)’s.

Let Kb(Sq R) be the bounded homotopy category of Sq R. Since the

above assignment preserves mapping cones, it gives a triangulated functor of

Kb(Sq R) → Kb(Sq R)op, and an usual argument using spectral sequences

indicates that it preserves quasi-isomorphisms. Hence it induces the functor

Db(Sq R) → Db(Sq R)op, which is denoted by D again.

Up to translation, the functor D coincides with the functor D :

Db(mod Λ) → Db(mod Λ)op defined in [17], through the equivalence Sq R ∼=
mod Λ in Proposition 4.4. Hence by [17, Theorem 3.4 (1)], we have the

following.

Proposition 4.5. The functor D : Db(Sq R) → Db(Sq)op satisfies D ◦
D ∼= id.

§5. Dualizing complexes

We first recall the following useful result due to Sharp ([11]).

Theorem 5.1. (Sharp) Let A and B be commutative noetherian rings,

and f : A → B a ring homomorphism. Assume that A has a dualizing

complex D•
A and B, regarded as an A-module by f , is finitely generated.

Then HomA(B,D•
A) is a dualizing complex of B.

For a commutative ring A, we denote, by EA(−), the injective hull in

Mod A. Let (Σ,X ) be a conical complex, M a cone-wise normal monoidal

complex supported by Σ, and R := k[M] its toric face ring. Since R is a

finitely generated k-algebra, we can take a polynomial ring which surjects

onto R. Thus, Proposition 5.1 implies that R has a normalized dualizing

complex

D•
R : 0 −→

⊕

p∈Spec R,
dim R/p=d

ER(R/p) −→
⊕

p∈Spec R,
dimR/p=d−1

ER(R/p) −→ · · ·

· · · −→
⊕

p∈Spec R,
dim R/p=0

ER(R/p) −→ 0,
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where d := dim R = dimX + 1 and cohomological degrees are given by

Di
R :=

⊕

p∈Spec R,
dim R/p=−i

ER(R/p).

On the other hand, set

Ii
R :=

⊕

σ∈X
dimR/pσ=−i

R/pσ

for i = 0, . . . , d, and define I−i
R → I−i+1

R by

x 7−→
∑

dim k[τ ]=i−1
τ≤σ

ε(σ, τ) · gτ,σ(x)

for x ∈ R/pσ ⊂ I−i
R , where ε(σ, τ) denotes an incidence function of X , and

gτ,σ is the surjection R/pσ → R/pτ . Then

I•R : 0 −→ I−d
R −→ I−d+1

R −→ · · · −→ I0
R −→ 0

is a complex.

Theorem 5.2. With the above situation (in particular, R is cone-wise

normal), I•R is quasi-isomorphic to the normalized dualizing complex D•
R of

R.

For the embedded case, Theorem 5.2 was already shown by Ichim and

Römer [8], using the natural Z
n-graded structure. However, in the general

case, we cannot apply the same argument.

Proposition 5.3. With the hypothesis in Theorem 5.2, I•R is a sub-

complex of D•
R.

Proof. We shall go through some steps.

Step 1. Some observations.

For σ ∈ X , we set k[σ] := R/pσ
∼= k[Mσ] and dσ := dim Cσ =

dimk[σ] = dimσ + 1. Note that

D•
σ := HomR(k[σ],D•

R)
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is a normalized dualizing complex of k[σ] by Proposition 5.1. Since k[σ] is

Z
dσ -graded, we also have the Z

dσ -graded version of a normalized dualizing

complex

∗D•
σ : 0 −→

⊕

τ≤σ,
dim k[τ ]=dσ

∗Ek[σ](k[τ ]) −→
⊕

τ≤σ,
dim k[τ ]=dσ−1

∗Ek[σ](k[τ ]) −→ · · ·

· · · −→ ∗Ek[σ](k) −→ 0,

where ∗Ek[σ](−) denotes the injective hull in the category of Z
dσ -graded

k[σ]-modules, and cohomological degrees are given by the same way as D•
R.

It is easy to see that the positive part

⊕

a∈Mσ

[∗Ek[σ](k[τ ])]a

of ∗Ek[σ](k[τ ]) is isomorphic to k[τ ]. Set

(5.1) I•σ :=
⊕

a∈Mσ

[∗D•
σ]a ⊂ ∗D•

σ.

Clearly, I•σ is a complex with

(5.2) Ii
σ :=

⊕

τ≤σ,
dim k[τ ]=−i

k[τ ].

As is well-known, D•
σ is an injective resolution of ∗D•

σ in the category

Mod(k[σ]), and the latter can be seen as a subcomplex of the former in a

non-canonical way. By the construction, I•σ is a subcomplex of ∗D•
σ, and D•

σ

is a subcomplex of D•
R. Combining them, we have an embedding I•σ →֒ D•

R.

Thus the problem is the compatibility of the embeddings I•σ →֒ D•
R and

I•τ →֒ D•
R for σ, τ ∈ Σ.

Step 2. Canonical (up to scalar multiplication) embedding k[σ] →֒ D−dσ

R .

For σ ∈ X , let ωk[σ] be the canonical module of k[σ]. By our hypothesis

that M is cone-wise normal, we see that ωk[σ] is just the ideal generated by

{ta ∈ k[σ] | a ∈ rel-int(Cσ)∩Mσ} (cf. [4, Theorem 6.3.5]). Whence we have

the exact sequence:

0 −→ ωk[σ] −→ k[σ] −→ k[σ]/ωk[σ] −→ 0.
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Since HomR(k[σ]/ωk[σ], ER(k[σ])) = 0, applying HomR(−, ER(k[σ])) to the

above exact sequence yields the canonical isomorphism

HomR(k[σ], ER(k[σ])) ∼= HomR(ωk[σ], ER(k[σ])),

and thus the canonical embedding

HomR(ωk[σ], ER(k[σ])) ∼= {x ∈ ER(k[σ]) | pσx = 0} ⊂ ER(k[σ]).(5.3)

Since we have

HomR(ωk[σ],D
−dσ

R ) =
⊕

p∈Spec R,
dimR/p=dσ

HomR(ωk[σ], ER(R/p))

= HomR(ωk[σ], ER(k[σ])),

in conjunction with (5.3), we obtain the canonical embedding

HomR(ωk[σ],D
−dσ

R ) ⊂ ER(k[σ]) ⊂ D−dσ

R .

Since HomR(ωk[σ],D
−dσ−1
R ) = 0, it follows that

Ext−dσ

R (ωk[σ],D
•
R) = Ker(HomR(ωk[σ],D

−dσ

R ) → HomR(ωk[σ],D
−dσ+1
R ))

= {x ∈ D−dσ

R | pσx = 0 and ∂(Jσx) = 0},

where Jσ := {ta | a ∈ rel-int(Cσ) ∩ Mσ} and ∂ : D−dσ → D−dσ+1 is the

differential map. Consequently, we have

k[σ] ∼= Ext−dσ

R (ωk[σ],D
•
R) ⊂ D−dσ

R(5.4)

canonically.

Using this, we have a canonical injection

(5.5) Ii
R =

⊕

σ∈X
dim k[σ]=−i

k[σ] −֒→ Di
R

for each i.

Step 3. Compatibility.

For σ, τ ∈ X with τ ≤ σ, set

Exti
k[σ](ωk[τ ],

∗D•
σ) := H i(Hom•

k[σ](ωk[τ ],
∗D•

σ)).
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This module has a Z
dσ -grading, since so does ωk[τ ]. Applying the same

argument as in Step 2 (replacing R by k[σ] and D•
R by ∗D•

σ), we have a

canonical embedding which is the first injection of the sequence

k[τ ] ∼= Ext−dτ

k[σ] (ωk[τ ],
∗D•

σ) −֒→ ∗D−dτ
σ −֒→ D−dτ

R .(5.6)

Here the last injection is not canonical. Since the inclusions ∗D•
σ →֒ D•

σ →֒
D•

R give the isomorphisms

Ext−dτ

k[σ] (ωk[τ ],
∗D•

σ) ∼= Ext−dτ

k[σ] (ωk[τ ],D
•
σ) ∼= Ext−dτ

R (ωk[τ ],D
•
R),

the embedding k[τ ] →֒ D−dτ

R given in (5.6) coincides with the one given in

Step 2. (So the image of (5.6) does not depend on the choice of an injection
∗D−dτ

σ →֒ D−dτ

R .)

It is easy to see that the inclusion (5.1) (see also (5.2)) is same as the one

given by (5.6). Therefore, through any ∗D•
σ →֒ D•

R, the embeddings of (5.1)

and (5.5) are compatible. So under this embedding, we have Ii
σ ⊂ Ii

R ⊂ Di
R.

Since I•σ is a subcomplex of D•
R for all σ ∈ X ,

⊕

i∈Z
Ii
R forms a subcomplex

of D•
R.

We can take a generator 1σ ∈ k[σ] ⊂ I−dσ

R ⊂ D−dσ

R for each σ ∈ X
satisfying

∂D•

R
(1σ) =

∑

ε′(σ, τ) · 1τ

for some incidence function ε′ on X . Recall that we have fixed an incidence

function ε to define the differential of I•R. While ε and ε′ do not coincide in

general, their difference is well-regulated (cf. [4, p. 265]). So, after a suitable

change of {1σ}σ∈X , we have

∂D•

R
(1σ) =

∑

ε(σ, τ) · 1τ .

Therefore we conclude that I•R is a subcomplex of D•
R as is desired.

When R is a normal semigroup ring, the second author showed in

[18, Lemma 3.8] that there is a natural isomorphism between D and

RHom(−,D•
R). The next result generalizes this to toric face rings.

Proposition 5.4. There is the following commutative diagram;

Db(Sq R)
U //

D

��

Db(Mod R)

RHom(−,D•

R)

��
Db(Sq R)op

U

// Db(Mod R)op,
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where U is the functor induced by the forgetful functor Sq R → Mod R.

In particular, we have D(M•) ∼= RHomR(M•,D•
R) in Db(Mod R) for any

M• ∈ Db(Sq R), and hence ExtiR(M•,D•
R) has a ZM-grading induced by

D(M•).

Proof. Let Inj-Sq be the full subcategory of Sq R consisting of all injec-

tive objects, that is, finite direct sums of k[σ] for various σ ∈ X . As is well-

known (cf. [7, Proposition 4.7]), the bounded homotopy category Kb(Inj-Sq)

is equivalent to Db(Sq R). It is easy to see that D(k[σ]) = Hom•
R(k[σ], I•R).

Moreover, D(J•) = Hom•
R(J•, I•R) for all J• ∈ Kb(Inj-Sq). Since I•R is

a subcomplex of D•
R as shown in Proposition 5.3, we have a chain map

Hom•
R(J•, I•R) → Hom•

R(J•,D•
R). This map induces a natural transforma-

tion Ψ : U ◦ D → RHomR(−,D•
R) ◦ U. If M ∈ Sq R is a k[σ]-module,

then D(M) ∼= RHomk[σ](M,D•
σ) ∼= RHomR(M,D•

R) by [18, Lemma 3.8]. In

particular, Ψ(k[σ]) is isomorphism for all σ ∈ X . Hence applying [7, Propo-

sition 7.1], we see that Ψ(M•) is an isomorphism for all M• ∈ Db(Sq R).

The most part of the proof of Theorem 5.2 has done now.

Proof of Theorem 5.2. Since R ∈ Sq R, we have

IR = D(R) ∼= RHomR(R,D•
R) ∼= D•

R

by Proposition 5.4.

Let M ∈ ModZM R. We can construct the graded Matlis dual M∨ ∈
ModZM R of M as follows: For each a ∈ |ZM|, (M∨)a is the k-dual space

of M−a. For a, b ∈ |ZM| such that a + b exists (that is, a, b, a + b ∈ Mσ for

some σ ∈ X ), the multiplication map (M∨)a ∋ x 7→ tbx ∈ (M∨)a+b is the

k-dual of M−a−b ∋ y 7→ tby ∈ M−a. Otherwise, tbx = 0 for all x ∈ (M∨)a.

It is obvious that M∨ is actually a ZM-graded R-module. If dimk Ma <

∞ for all a ∈ |ZM| (e.g. M ∈ modZM R), then M∨∨ ∼= M . Clearly, (−)∨

defines an exact contravariant functor from ModZM R to itself. We can

extend this functor to the functors Kb(ModZM R) → Kb(ModZM R)op and

Db(ModZM R) → Db(ModZM R)op. We simply denote them by (−)∨.

Proposition 5.5. As functors from Db(Sq R) to Db(ModZM R), we

have RΓm
∼= (−)∨ ◦ U ◦ D, where U : Db(Sq R) → Db(ModZM R) is induced

by the forgetful functor Sq R → ModZM R. In particular, if M ∈ Sq R, then

H i
m(M) ∼= Ext−i

R (M,D•
R)∨ as ZM-graded modules for all i.
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Proof. We use the notation of the proofs of the above results. If M ∈
ModZM R, then the |M|-graded part

⊕

a∈|M| Ma of M is clearly an R-

submodule. For τ ∈ Σ, recall that Tτ = {ta | a ∈ Mτ} is a multiplicatively

closed set. It is easy to see that, for σ, τ ∈ Σ, the localization T−1
τ k[σ]

is non-zero if and only if τ ≤ σ. When τ ≤ σ, the |M|-graded part of

(T−1
τ k[σ])∨ is isomorphic to k[τ ].

Let L•
R be the Cěch complex of R defined in Section 3. It is easy to

see that the |M|-graded part of (L•
R ⊗R k[σ])∨ is isomorphic to D(k[σ]).

Moreover, if J• ∈ Kb(Inj-Sq), then the |M|-graded part of (L•
R ⊗R J•)∨ is

isomorphic to D(J•). Thus D(J•) is a subcomplex of (L•
R⊗RJ•)∨, and there

is a chain map L•
R⊗RJ• → D(J•)∨. Recall that L•

R⊗RJ• is quasi-isomorphic

to RΓm(J•) by Corollary 3.3. Hence we have a natural transformation

Φ : RΓm → (−)∨ ◦ U ◦ D, where we regard RΓm and (−)∨ ◦ U ◦ D as

functors from Kb(Inj-Sq) (∼= Db(Sq R)) to Db(ModZM R). Since Φ(k[σ]) is

an isomorphism for all σ ∈ X , Φ is a natural isomorphism by [7, Proposition

7.1].

§6. Sheaves associated with squarefree modules

Throughout this section, M is a cone-wise normal monoidal complex

supported by a conical complex (Σ,X ). Recall that X =
⋃

σ∈X σ is the

underlying topological space of the cell complex X . As in the previous

section, let Λ be the incidence algebra of the poset X over k, and mod Λ

the category of finitely generated left Λ-modules.

Let Sh(X) be the category of sheaves of finite dimensional k-vector

spaces on X. We say F ∈ Sh(X) is constructible with respect to the cell

decomposition X , if the restriction F|σ is a constant sheaf for all ∅ 6= σ ∈ X .

In [17], the second author constructed the functor (−)† : mod Λ →
Sh(X). (Under the convention that ∅ 6∈ X , this functor has been well-

known to specialists.) Here we give a precise construction for the reader’s

convenience.

For M ∈ mod Λ, set

Spé(M) :=
⋃

∅6=σ∈X

σ × Mσ.

Let π : Spé(M) → X be the projection map which sends (p,m) ∈ σ ×
Mσ ⊂ Spé(M) to p ∈ σ ⊂ X. For an open subset U ⊂ X and a map

s : U → Spé(M), we will consider the following conditions:
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(∗) π ◦ s = idU and sp = eσ, τ · sq for all p ∈ σ ∩ U , q ∈ τ ∩ U with σ ≥ τ .

Here sp (resp. sq) is the element of Mσ (resp. Mτ ) with s(p) = (p, sp)

(resp. s(q) = (q, sq)).

(∗∗) There is an open covering U =
⋃

i∈I Ui such that the restriction of s

to Ui satisfies (∗) for all i ∈ I.

Now we define a sheaf M † ∈ Sh(X) from M as follows. For an open set

U ⊂ X, set

M †(U) := {s | s : U → Spé(M) is a map satisfying (∗∗)}

and the restriction map M †(U) → M †(V ) is the natural one. It is easy to see

that M † is a constructible sheaf with respect to the cell decomposition X .

For σ ∈ X , let Uσ :=
⋃

τ≥σ τ be an open set of X. Then we have M †(Uσ) ∼=
Mσ. Moreover, if σ ≤ τ , then we have Uσ ⊃ Uτ and the restriction map

M †(Uσ) → M †(Uτ ) corresponds to the multiplication map Mσ ∋ x 7→
eτ, σx ∈ Mτ . For a point p ∈ σ, the stalk (M †)p of M † at p is isomorphic to

Mσ. This construction gives the exact functor (−)† : mod Λ → Sh(X). We

also remark that M∅ is irrelevant to M †.

As in the previous sections, let R = k[M] be the toric face ring, and

Sq R the category of squarefree R-modules. Through the equivalence Sq R ∼=
mod Λ, (−)† : mod Λ → Sh(X) gives the exact functor

(−)+ : Sq R −→ Sh(X).

Recall that X admits Verdier’s dualizing complex D•
X ∈ Db(Sh(X))

with coefficients in k (see [10, V. Section 2]). In [17], the second author

considered the duality functor D : Db(mod Λ) → Db(mod Λ). Through

the functor (−)† : mod Λ → Sh(X), D corresponds to Poincaré-Verdier

duality on Db(Sh(X)). More precisely, [17, Theorem 3.2] states that, for

M• ∈ Db(mod Λ), we have

D(M•)† ∼= RHom((M•)†,D•
X)

in Db(Sh(X)). On the other hand, through the equivalence mod Λ ∼= Sq R,

the duality D on Db(mod Λ) corresponds to our duality D on Db(Sq R) up

to translation. More precisely, D(−)[−1] corresponds to D(−), where the

complex M•[−1] of a complex M• denotes the degree shifting of M• with

M•[−1]i = M i−1. So we have the following.
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Theorem 6.1. For M• ∈ Db(Sq R), we have

D(M•)+[−1] ∼= RHom((M•)+,D•
X)

in Db(Sh(X)). In particular, (I•R)+[−1] ∼= D•
X , where I•R is the complex

constructed in the previous section.

By Proposition 5.5, if M ∈ Sq R, then we have

H i
m(M)∨ ∼= Ext−i

R (M,D•
R) ∈ Sq R.

Hence H i
m(M) is −|M|-graded and the next result determines the “Hilbert

function” of H i
m(M).

Theorem 6.2. If M ∈ Sq R, we have the following.

(a) There is an isomorphism

H i(X,M+) ∼= [H i+1
m (M)]0 for all i ≥ 1,

and an exact sequence

0 −→ [H0
m(M)]0 −→ M0 −→ H0(X,M+) −→ [H1

m(M)]0 −→ 0.

(b) If 0 6= a ∈ |M| with σ = supp(a), then

[H i
m(M)]−a

∼= H i−1
c (Uσ,M+|Uσ)

for all i ≥ 0. Here Uσ =
⋃

τ≥σ τ is an open set of X, and H•
c (−)

stands for the cohomology with compact support.

Proof. (a) We have H i(D(M)) ∼= ExtiR(M,D•
R) ∼= H−i

m (M)∨ by Propo-

sition 5.5. On the other hand, via the equivalence Sq R ∼= mod Λ, D(−)[−1]

corresponds to the duality D(−) = RHomΛ(−, ω•) of Db(mod Λ) introduced

in [17]. So the assertion follows from [17, Corollary 3.5, Theorem 2.2].

(b) Similarly, it follows from [17, Lemma 5.1].

In the sequel, H̃ i(X; k) denotes the ith reduced cohomology of X with

coefficients in k. That is, H̃ i(X; k) ∼= H i(X; k) for all i ≥ 1, and H̃0(X; k)⊕
k ∼= H0(X; k). Here H i(X; k) is the usual cohomology of X with coefficients

in k.
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Corollary 6.3. (cf. Brun et al. [1, Theorem 1.3]) With the above no-

tation, we have [H i
m(R)]0 ∼= H̃ i−1(X; k) and [H i

m(R)]−a
∼= H i−1

c (Uσ, kUσ
)

for all i ≥ 0 and all 0 6= a ∈ |M|. Here σ = supp(a), and kUσ
is the

k-constant sheaf on Uσ.

Proof. The second isomorphism is a direct consequence of Theorem 6.2

(b) and the fact that R+ ∼= kX . So it suffices to show the first. By the iso-

morphism of Theorem 6.2 (a), [H i
m(R)]0 ∼= H i−1(X,R+) ∼= H i−1(X, kX) ∼=

H i−1(X; k) ∼= H̃ i−1(X; k) for all i ≥ 2. Similarly, by the exact sequence

of the theorem and that H0
m(R) = 0, we have 0 → R0 → H0(X; k) →

[H1
m(R)]0 → 0. Since R0 = k, we have [H1

m(R)]0 ∼= H̃0(X; k).

We say R is a Buchsbaum ring, if Rm′ is a Buchsbaum local ring for all

maximal ideal m′. See [13] for further information.

Theorem 6.4. Set dim X = d (equivalently, dim R = d + 1). Then

R is Buchsbaum if and only if Hi(D•
X) = 0 for all i 6= −d. In particular,

the Buchsbaum property of R is a topological property of X (while it might

depend on char(k)).

Proof. Assume that Hi(D•
X) 6= 0 for some i 6= −d (equivalently, −d +

1 ≤ i ≤ 0). Then [H i−1(I•R)]a 6= 0 for some 0 6= a ∈ |M| by Theorem 6.1.

Since H i−1(I•R) is squarefree, we have dimk(H
i−1(I•R) ⊗R Rm) = ∞. Since

H i−1(I•R)⊗R Rm is the Matlis dual of H1−i
m (Rm) over the local ring Rm, we

have dimk H1−i
m (Rm) = ∞ and Rm is not Buchsbaum.

Conversely, assume that Hi(D•
X) = 0 for all i 6= −d. Then H i(I•R) =

[H i(I•R)]0 for all i 6= −d − 1, and they are k-vector spaces (that is, R/m-

modules). Hence H i(I•R) ⊗R Rm′ = 0 for all i 6= −d − 1 and all m′ with

m′ 6= m. Thus Rm′ is Cohen-Macaulay (in particular, Buchsbaum). It

remains to show that Rm is Buchsbaum. Set T • := τ−d−1I
•
R. Here, for a

complex M• and an integer r, τ−rM
• denotes the truncated complex

· · · −→ 0 −→ Im(M−r → M−r+1) −→ M−r+1 −→ M−r+2 −→ · · · .

By the assumption, we have H i(T •) = [H i(T •)]0 for all i. Since T • is a

complex of M-graded modules, U• :=
⊕

06=a∈|M|(T
•)a is a subcomplex of

T •, and a natural map T • → (T •/U•) is a quasi-isomorphism by the above

observation. Since T •/U• is a complex of k-vector spaces, Rm is Buchsbaum

by [13, II.Theorem 4.1].



DUALIZING COMPLEX OF A TORIC FACE RING 113

If dim X = d and R is Buchsbaum, we set orX := H−d(D•
X) ∈ Sh(X).

The next fact follows from [10, IX, (4.1)].

Proposition 6.5. (Poincaré duality) With the above situation, we

have H i(X; k) ∼= Hd−i(X, orX ) for all i.

If X is a d-dimensional manifold (with or without boundary), then R is

Buchsbaum and orX is the usual orientation sheaf of X with coefficients in

k (see, for example, [10, III, §8]). When X is an orientable manifold, then

orX
∼= kX . In this case, Proposition 6.5 is nothing other than the classical

Poincaré duality.

Assume that dim X = d, equivalently, dimR = d + 1. If R is Buchs-

baum, we call ωR := H−d−1(I•R) ∈ Sq R the canonical module of R. Clearly,

(ωR)+ ∼= orX .

Example 6.6. Recall the toric face ring R given in Example 2.9, whose

underlying topological space X is the Möbius strip. Clearly, X is a manifold

with boundary and R is Buchsbaum. It is easy to see that H̃2(X; k) = 0 and

orX
∼= i! kX\∂X , where kX\∂X is the k-constant sheaf on X\∂X (∂X denotes

the boundary of X), and i : X \∂X →֒ X is the embedding map. Hence the

canonical module ωR is isomorphic to the monomial ideal I with I+ ∼=
i!kX\∂X . So we have ωR

∼= (XxXu,XzXw,XvXy,XxXz,XyXw,XxXv),

where the right side is an ideal of R.

We say R is Gorenstein*, if it is Cohen-Macaulay and ωR
∼= R as ZM-

graded modules.

Theorem 6.7. Set d := dim X.

(a) (Caijun, [6]) R is Cohen-Macaulay if and only if Hi(D•
X) = 0 for all

i 6= −d, and H̃ i(X; k) = 0 for all i 6= d.

(b) Assume that d ≥ 1 and R is Cohen-Macaulay. Then R is Gorenstein*,

if and only if orX
∼= kX , if and only if (orX)p ∼= k for all p ∈ X and

Hd(X; k) 6= 0. Here kX denotes the k-constant sheaf on X and (orX)p
is the stalk of the sheaf orX at p.

Proof. (a) Since dimR = d + 1, R is Cohen-Macaulay if and only if

H i(I•R) (= ExtiR(R,D•
R)) = 0 for all i 6= −d − 1. By Theorem 6.1, the

above conditions are also equivalent to that Hi(D•
X) = 0 for all i 6= −d
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and [H i(I•R)]0 = 0 for all i 6= −d − 1. Since [H i(I•R)]0 ∼= ([H−i
m (R)]0)

∗ ∼=
H̃−i−1(X; k)∗, we are done.

(b) We show the first equivalence. If R is Gorenstein*, then orX
∼=

(ωR)+ ∼= R+ ∼= kX . So we get the necessity. Next assume that orX (=

(ωR)+) ∼= kX . Then we have that

(6.1) [ωR]a = k for all 0 6= a ∈ |M|.

On the other hand, by Proposition 6.5, we have [ωR]∨0
∼= [Hd+1

m (R)]0 ∼=
Hd(X; k) ∼= H0(X, orX ) ∼= H0(X; k) ∼= k (since R is Cohen-Macaulay

and d ≥ 1, H̃0(X; k) = 0 and X is connected). Take a non-zero element

x ∈ [ωR]0. Since ωR is a squarefree R-module, M := Rx is a squarefree

submodule of ωR. Set

Υ := {supp(a) | a ∈ |M|,Ma = [ωR]a}
= {supp(a) | a ∈ |M|,Ma 6= 0} ⊂ X .

Here the second equality follows from the condition (6.1). It is easy to see

that σ ≤ τ ∈ Υ implies σ ∈ Υ. So we have a direct sum decomposition

ωR = M ⊕ (
⊕

supp(a)∈|M|\Υ[ωR]a) as an R-module. On the other hand, ωR

is indecomposable. Hence ωR = M ∼= R as ZM-graded modules. So we get

the sufficiency.

For the second equivalence, it is enough to prove the sufficiency. Since

[ωR]0 ∼= Hd(X; k) 6= 0, we can take 0 6= x ∈ [ωR]0. By argument similar to

the above, (Rx)+ is a direct summand of orX . Note that X is connected

and kX is indecomposable. Since kX
∼= Ext−d(orX ,D•

X), orX is also inde-

composable. Hence orX
∼= (Rx)+ ∼= kX . We are done.

Corollary 6.8. The Cohen-Macaulay property and Gorenstein* prop-

erty of R are topological properties of X (while it may depend on char(k)).

Proof. Most of the statement is a direct consequence of Theorems 6.7.

It remains to consider the Gorenstein* property in the case dimR = 0.

Then R is Gorenstein* if and only if X consists of exactly two points. So

the assertion is clear.

Remark 6.9. The main result of Caijun [6] is much more general than

our Theorems 6.7 (a). However, since he worked in a wider context, his argu-

ment does not give precise information of local cohomologies and canonical

modules.
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Recall that M admits a finite subset {ae}e∈E of |M| generating k[M]

as a k-algebra. Then the polynomial ring S := k[Xe | e ∈ E] surjects on

k[M]. Let IM be its kernel (i.e., k[M] = S/IM). A remarkable result [5,

Theorem 3.8] of Bruns et al. shows that (if M is cone-wise normal) there

is a generating set {ae}e∈E and a term order ≻ on S such that the initial

ideal in≻(IM) is a radical monomial ideal. In this case, in≻(IM) equals

to the Stanley-Reisner ring I∆ of a simplicial complex ∆ which gives a

triangulation of X. Hence, by a basic fact on Gröbner bases, the sufficiency

of Theorems 6.4 and 6.7 (b) follow from their result, at least under the

additional assumption that R admits an N-grading with R0 = k.
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[1] M. Brun, W. Bruns and T. Römer, Cohomology of partially ordered sets and local

cohomology of section rings, Adv. Math., 208 (2007), 210–235.

[2] W. Bruns and J. Gubeladze, Polyhedral algebras, arrangements of toric varieties, and

their groups, Computational commutative algebra and combinatorics, Adv. Stud.

Pure Math., 33, 2001, pp. 1–51.

[3] W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory, Springer Monographs

in Mathematics, Springer, 2009.

[4] W. Bruns and J. Herzog, Cohen-Macaulay rings, revised edition, Cambridge Univer-

sity Press, 1998.
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