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ELEMENTARY QUOTIENTS OF ABELIAN GROUPS,

AND SINGULAR HOMOLOGY ON MANIFOLDS

MARSTON MORSE AND STEWART SCOTT CAIRNS

§ 0. Introduction. The topological origin of the problem. Let
there be given a compact topological manifold Mn. If Mn admits a "triangu-

lation" it is known that the fundamental invariants, namely the connectivities

of Mn over fields, the Betti numbers and torsion coefficients over Z of the

singular homology groups of Mn, are finite and calculable. However it is

not known that a "triangulaticn" of Mn always exists when n > 3.

Singular homology groups are understood in the sense of Eilenberg [1],

An alternative to triangulation of Mn. When Mn is differentiable, of at

least class C2, the alternative to the hypothesis of triangulation will be

understood to be the existence of a differentiable non-degenerate {ND) func-

tion1) / on Mn. When Mn is not known to be so differentiable the alter-

native will be understood to be the existence in the sense of [2] of a

topologically non-degenerate (TND) function1) / on Mn.

We shall be concerned with the subsets

(0.0) /e=Ipe

of Mn where c is an arbitrary value of / on Mn and shall term fc a sublevel

set of Mn.

In a series of papers which make no use of a triangulation of Mn we

shall show that the fundamental invariants of the singular homology groups J

of the sublevel sets fc of Mn are uniquely determined by suitable relative

numerical invariants associated with the respective critical points on fc of
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a ND f. We shall restrict ourselves initially, for simplicity, to the differ-

entiable case.

That the connectivities over fields of the sublevel sets fc are so deter-

mined has already been established in [3] in the differentiable case. In this

case the invariants associated with a critical point are its index and its type

as "linking" or "non-linking". See §29 of [3].

The next step is to show how the Betti numbers and torsion coefficients

of the sublevel sets fc are determined by suitable relative invariants associated

with the critical points. This will be done in [5], beginning with the

differentiable case. An abstract of the results in [5] appears as Appendix

III of [3].

The objective of the present paper is to solve two problems in abelian

group theory, essential in [5]. These group-theoretic problems will be de-

fined at the end of § 2.

The existence of ND functions in the differentiable case has been known and

used in singular homology theory since 1927. Cf. § 6 of [3]. TND functions

were introduced in [2]. Let C be the class of manifolds Mn on which TND

functions exist. The class C includes all ''combinatorial" manifolds whether

differentiable or not. See [7]. If C* is the class of all manifolds Mn which

admit combinatorial triangulations, it is clear that C*aC. That this inclusion

is proper is believed to be true but has not yet been proved. Cf. [4].

However, the principal reason for the introduction of the new methods

was more their directness and relevance than the possibility that they may

apply to more general manifolds.

The critical points of ND functions on manifolds, and critical extremals

in variational problems must be related to the homology groups of the under-

lying spaces. It is clearly preferable, when possible, to establish these

relations directly without the assumption of triangulability.

It is our ultimate aim to show how the differential or topological in-

variants, which we associate with the critical points of a ND or TND

function /, determine the singular homology groups, up to an isomorphism,

of all sublevel sets fc on MΛ.

The restriction in this introduction to compact manifolds Mn is merely

for simplicity.

Introductory r e m a r k s on abelian groups A. The generation of

subgroups of A For i on the range 1, ,r let Xi be a subset, subgroup,
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or element of A. We shall denote by

(0. 1) {Xl,X2, ,Xr]

the subgroup of A which is the intersection of those subgroups of A which

include or contain each Xίt If ai is an element of A the group

(0. 2) G = { a ί 9 — - , a 7 ]

is said to be finitely generated. By virtue of this notation, if a is an element

of A, {a} denotes the cyclic subgroup generated by a.

DEFINITION 0. 1. Free subgroups. A subset (u19 ' ,ur) of elements

is termed free, provided a relation nίuί + + nrur = 0 in which nt is an

integer is valid if and only if nλ = n2 = = nr = 0. If (u19 ,ur) is free

the subgroup G = {u19 ,&r} is termed free and (^j, ' 9ur) a έα^ for G.

It will be convenient to term the trivial group free, and say that it has an

empty base.

DEFINITION 0. 2. The torsion subgroup of A. The subset of elements of

A of finite order form a group, termed the torsion subgroup of A.

DEFINITION 0. 3. Direct sums. An ensemble A19 , An of subgroups

of A such that A = {Al9A29 ,An} will be said to have the direct sum

(0. 3) A = Λ Θ Θ An,

provided a relation xλ + x2 + + 2^ = 0, x^Ai9 is valid only if each

xi — 0. We admit null summands Aι.

If (u19 ,ur) is a base for a free subgroup j ^ of A, then

(0.4) ^ = {u,}®' ® { ^ r } .

The order of each cyclic summand is infinite. We admit the case in which

r = 0 and J% = 0.

THEOREM 0. 1. 4̂ finitely generated abelian group A is a direct sum

A = ^ © ^ ^ 0/ ίÂ  torsion subgroup ^ of A, and a free subgroup & of A

termed complementary to ^ in A [8], p. 151.

A group complementary to the torsion subgroup ^~ of A is uniquely

determined if and only if ^ = 0 or ^ = A. The most general group

complementary to ^ has the form

(0.5) b i + M ® θ { V r + U
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w h e r e (v19 ,vr) is a n a r b i t r a r y base of & a n d t19 ,tr a r b i t r a r y ele-

m e n t s in

DEFINITION 0. 4. Betti subgroups of A. When A is2) FG we shall call

a subgroup & complementary to the torsion subgroup ^ of A a Betti

subgroup of A9 and its dimension the Betti number of A.

We shall be concerned with abelian groups A which are FG.

§ 1. Sylow groups, elementary divisors, and torsion coefficients.

We shall recall certain terms and theorems associated with decomposing a

finite abelian group ^~ into a direct sum of cyclic subgroups.

DEFINITION 1. 1. Prime powers. An integer q > 1 admits a factoring

(1.1) q = Pβi1 -pβrr, (r>0)

unique except for the order of the factors, in which the p/s are distinct

positive primes and the e/s positive integers. Such a factoring will be

called a reduced prime power factoring of q. Hereafter primes are supposed

positive.

DEFINITION 1.2. p-Primary subgroups of j ^ " * . A subgroup g of ^ whose

order is a power of a prime p is called a p-primary subgroup of ^/~. A maximal

^-primary subgroup of ^ is the union, for a given prime p, of all

^-primary subgroups of ^ . It is called a Sylow p-subgroup of ^ and

will be denoted by ^ .

Two classical theorems follow.

THEOREM 1.1. A finite abelian group ^~', with an order q>l given by

(1.1), is the direct sum

(1.2) l r

of the nontriυial Sylow subgroups of ^ [9], p. 137.

THEOREM 1.2. The "cyclic primary decomposition" theorem.^ A finite non-

trivial abelian group J^~ is the direct sum

(1.3)

2 ) FG abbreviates finitely generated.
3 ) CPD shall abbreviate "cyclic primary decomposition".
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of nontrivial primary cyclic subgroups gt of j ^ ~ uniquely determined by j ^ 7 " up to

isomorphisms and order of writing of the summands. [10], p p . 60, 65.

The numerical values of the orders of the &'s are prime powers. These

prime powers form a list

(1.4) Pi 1 , -- ,pί- (e4>0)

of prime powers, not necessarily distinct. We shall say that the groups gi

of (1.3) and the prime powers (1.4) are normally ordered if

(1.5) px>p2> ^pm

and if when pt = pi+1, then ei>ei+1.

According to Theorem 1.2, the prime powers (1.4), if normally ordered, are

uniquely determined by j ^ ~ .

DEFINITION 1.3. Elementary divisors of ^~. The prime powers in (1.4)

are called the elementary divisors of ^~, and are regarded as algebraically

distinct if they have distinct indices i in (1.4). By the multiplicity of an

elementary divisor p\ι of J^Γ is meant the number of algebraically distinct

elementary divisors of J?~ with the same numerical value as p\ι. Theorem

1.2 implies that the elementary divisors of ^ , together with their multi-

plicities, are uniquely determined by

DEFINITION 1.4. Torsion coefficients of J ^ \ It is a classical theorem that

a finite non-trivial trivial abelian group J^~ is a direct sum of a finite set

of cyclic subgroups of JfΓ which have orders

(1.6) q 1 9 q 2 , ' * , q P

exceeding 1, each of which, except qp, is divisible by its successor. The

integers in the sequence (1.6) are uniquely determined by J^~. They are

termed torsion coefficients of J7~ and are said to be canonically ordered.

The matr ix Urμ. Let r be the number of distinct primes p19 , p r

in (1.1). Let these primes be taken in decreasing order. Let at be the

number4) of ED's which are powers of pi9 and let μ be the maximum of

the numbers at.

The martix Urμ shall have r rows and μ columns. The z'-th row of

Urμ shall consist of the ED's of j?~^ which are powers of pi9 arranged in

4) ED abbreviates "elementary divisor".
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monotonically decreasing order and followed by enough l's to make a row

of /^-integers. Each element ai5 of Urμ is thus an ED of ^ or 1.

The ED's of ^ and the torsion coefficients of ^~ uniquely determine

each other in accord with the following theorem.

THEOREM 1.3. The torsion coefficients of ^ are μ in number and if

"canonically" arranged, are the products of the elements in the respective columns of

Hrμ Conversely, the element a^ of Iίrμ is the maximal prime power of rpi which

is a factor of the -th torsion coefficient of ^~'.

This theorem may inferred from [9], p. 147.

DEFINITION 1.5. A "basis" for A Suppose that JΓ has a CPD

(1.7) ^ = {x,}®' - ®{%P} ( o r d e r xi>l; i = 1, - , P)

and that &> is a Betti group of A with a "base" (v19 ,vβ). The set of

elements

(1.8) v l 9 9 v β ; x 1 9 , x P

of A is called a basis for A. If & is trivial there are no z /s, and if ^

is trivial no x/s.

A basis for A is to be distinguished from a base for & which is free.

A basis for a non-trivial abelian group A is unique only if A is a cyclic

group of order 2.

If w is an arbitrary element in A then

(1.9) w = μιvι + + μβVβ + ntiXi + + mpxp

where the coefficients μi and mj are integers. If the integers πij are restricted

to integral values such that

(1.10) 0 ̂  mj < order Xj

then the coefficients mj9 as well as the coefficients μi9 are uniquely deter-

mined by w and the choice of the basis (1.8).

DEFINITION 1.6. Prime-simple abelian groups. A power pe of a

prime is termed prime-simple if e = 1. An element cue A is termed prime-

simple if (order 05) = 00, or if (order x) < 00 and each prime power factor of

(order a?) is 1 or prime-simple. A subgroup of A (including A) is termed

prime-simple if each of its elements is prime-simple.
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Subgroups of prime-simple groups are prime-simple. The abelian group

A is prime-simple if and only if each Sylow subgroup of A is prime-simple.

One readily establishes the following theorem.

THEOREM 1.4. A necessary and sufficient condition that a finitely generated

abelian group be prime-simple is that each elementary divisor of its torsion subgroup

be prime-simple.

By the length of a CPD of a finite abelian group we mean the number

of nontrivial summands in the CPD.

The following theorem gives three fundamental properties of a nontrivial

finite cyclic group.

THEOREM 1.5 (i). The elementary divisors of a finite cyclic group G are the

maximal prime powers in a reduced prime power factoring of the order of G. [14],

p. 23.

(ii) Apart from the order of its summands there is but one CPD of a nontrivial

finite cyclic group G and this CPD is a Sylow decomposition of G.

(iii) A finite nontrivial abelian group G is cyclic if and only if each of its

Sylow subgroups has a CPD of unit length.

§ 2. The invariants of group quotients AjR. The group A is the

above finitely generated abelian group A, and R a subgroup of A. The

quotient A/R is FG as we shall presently see. By the invariants of AjR we

here mean its Betti numbers, torsion coefficients and elementary divisors.

The problem of finding the invariants of A\R depends formally upon

how A and R are given. We suppose that A is an FG abelian group given

as a direct sum

(2.1) A = ^®^r

of the torsion subgroup ^ of A and a complementary free subgroup &

of A. We suppose that a "base" (u19 *,ur) of & is given and generators

# ! , • • • , # , of the respective summands of a CPD of ^ ~ , together with the

order nt of each xiβ

In a form more general than any we shall use, there is given a sub-

group R — {z19 ,za] where each generator zt is given as a sum

(2.2) [vιu1 + + vrur) + {mιx1 + + nipXp)

with integral coefficients. The general problem is to find the "invariants"
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of A/R in terms of these data and to do this by a finite well-defined algo-

rithm.

That AfR is FG is a consequence of the fact that the Λ-cosets containing

the elements u19 , ur; x19 , xp generate AjR.

The quotients A\g whose invariants will be studied in this paper readily

reduce to quotients which we term correlated and define as follows.

DEFINITION 2.1. Correlated quotients. In such quotients A is given

as a direct sum Gi© © G r of subgroups G* and g is a direct sum

9i® m 9®9r of cyclic groups gi9 where gi9 is a subgroup, possibly trivial,

of Gi- Under these conditions A/g is termed a correlated quotient.

It is a classically known and easily proved theorem that when A/g is

the above correlated quotient then

(2.3) A/g Λ Gig, ® © Gr/gr ([10], p. 57)

where the right member of (2.3) is the "external direct sum" of the quo-

tients Gil9i and the isomorphism is a "natural" isomorphism which we shall

now characterize.

External direct sums. The direct sums which we have been considering

up to this point have been direct sums of subgroups of a given group. The

group quotients on the right of (2.3) are not so given. They can be con-

sidered, a priori, as abelian groups Aί9 , Ar with no elements in common.

If i is on the range 1, ,r, and yi is an arbitrary element in Ai9

one can form a new abelian group K called the external direct sum of the

A^s. The elements in K are by definition r-tuples (yl9 ,τ/r). These

r-tuples are summed by adding their respective components yim The inverse

of (Vu ,yr) is (— yί9 •,— yr). One can identify At with the subgroup

of K of elements whose components are 0 except the f-th. The f-th com-

ponent shall be an element in At.

An isomorphism (2.3), termed "natural", can be characterized as fol-

lows: Let xi be an arbitrary element in Gi9 and xt = xt + gi the coset of

gt containing xim In the isomorphism (2.3) the coset (xx + x2 + + xn) + 9

in A shall go into the r-tuple (xί9 x2, 9&r) in the external direct sum of

the r quotients GJ&.

Because of the isomorphism (2.3), the problem of finding the "invariants"

of "correlated" quotients A/g reduces to the problem of finding the invariants

of quotients of the type which we call elementary and define as follows.
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DEFINITION 2.2 Elementary quotients AjW. In such quotients W

is a cyclic subgroup {w} of A.

We "shall recall a special type of group quotient, and the mode of

reduction of such quotients to quotients of "correlated" type.

Quotients A/R with A free. In such quotients A is a free group given as

a direct sum

(2.4) A = {v,}®' -®{vσ} (σ>0)

of σ infinite cyclic groups. R is given as a subgroup of A of the form

(2.5) R = {zu - -,zr} (r>0)

with generators zi which are integral linear combinations

(2.6) zt = aijvj {i = 1, ,r)

of the base elements (v19 ,vσ). The terms aiSVj are summed over the

range 1,2, ,σ for /.

The diagonal matrix | |do | | . Let p>0 be the rank of the matrix ||ay|.

It is well known that by a finite sequence of "elementary" operations on

the rows and columns of U^H, the matrix | |α o || can be reduced to an

"equivalent" matrix \\da\\ with the same number of rows and columns, and

with all elements zero, except positive diagonal elements

(2.7) dί9d2,"',dp (

of which each di9 except the last, divides its successor. The J/s obtained

in this way are termed invariant factors of ||α,Zj|| and are uniquely determined

by Ik ll. [12] p. 308.

The invariants Dj. The numbers di can be determined as follows. For

j = ι9 . . . 9 p let Dj be the absolute value of the HCF of the /-rowed sub-

determinants of the matrix Wa^W. It is known that

(2.8) d l = D l t d ί = J£-t....,df = - , £ = - ([13] p . 178)

Torsion coefficients of AjR. Let T be the torsion subgroup of A/R. We

shall show how to determine the torsion coefficients of T.

The reduction by elementary operations of the matrix ||«ίt7 || to the

matrix \\dij\\ implies the existence of a unimodular transformation of the
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b a s e (vί9 ,vσ) i n t o a b a s e (v[, 9vί), a n d o f a u n i m o d u l a r t r a n s f o r m a t i o n

of t h e se t (zί9 ,zr) i n t o a n e w se t (z[9 • , £ ' ) g e n e r a t i n g R s u c h t h a t

(2.9)5) z'l^dijv'j (i = 1,2, , r ) .

Because of the diagonal character of \\dij\\9 A/R is represented by a "cor-

related" quotient

1 ' υ ; {d,v[}® ® {^}©{0} ® ®{θ} [

By virtue of the natural isomorphism (2.3) AjR is thus isomorphic to

the external direct sum

(2.11)

where C(ί/J is a cyclic group of order ^ and the remaining summands in

(2.11) have infinite orders.

This result implies a classical theorem:

T H E O R E M 2.1 . When A is free the Betti number of A/R equals σ — p, where

σ is the dimension of A and p the rank of | |^y||, while the invariant factors of

which exceed 1 are the torsion coefficients of A/R. [12] p . 308.

We state a useful corollary.

COROLLARY 2.1. Given an abelian group

(2.12) ^r =(;(*!)©• ®C(ί r)

where t19 9tr are finite integers exceeding 1, the torsion coefficients of ^ are the

invariant factors exceeding 1 of the r-square diagonal matrix \\ta\\ with diagonal

M> * * * i I r

The problems of this paper. In sections 3 and 4 we shall give, in simplified

matrix form, an algorithm showing how to compute the invariants of ele-

mentary quotients A/W when the invariants of A are given and a generator

w of W is given in form (1.9).

In § 5 we shall show how the hypothesis of prime-simplicity of A

simplifies the problem of determining the invariants of Λ/W. Necessary and

sufficient conditions that Λ/W be prime-simple when A is prime-simple are

given.

5) Summing as to j on the range 1, 2, , σ.



ELEMENTARY QUOTIENTS OF ABELIAN GROUPS, 177

§3. The elementary quotients AjW. The group A is "given" as

A was given in §2. Moreover W = {w}9 where w&A. The giving of w

should be such that the data on w, together with the invariants of A,

determine the invariants of AJW.

We shall begin by assigning to each w^A an integer sZ>0 termed the

free index of w. When w&j^", this integer s is characterized in Lemma

3.1.

Notation. In formulating Lemma 3.1 we write x = y mod ̂ ~ whenever

x and y are elements in A such that x — y is in

LEMMA 3.1 (i). Corresponding to a w^A of infinite order, there exists an

integer s > 0, suck that a prescribed Betti group J%? of A has a base with first

element uB such that

(3.1) w = suBmod^.

(ii) If there is given a second Betti group ^ f of A and a positive integer sf,

such that for some element uB, in a base for £$>\

(3.2) w = sfuB, mod ^',

then s = sf.

Proof of ( i ) . L e t t h e p r e s c r i b e d Bet t i s u b g r o u p ^ of A h a v e a b a s e

{v19 '9vr)9 r > 0 . F o r s u i t a b l e choices of i n t e g e r s tί9 , ί r , n o t all z e r o ,

(3.3) w = txvx+ + trυrmoά^.

Let s be the GCD of t19 , tr. There then exist integers Jc19 , Jcr9

whose GCD equals 1, and which are such that

(3.4) w = βiJcM + + krvr)

It follows from the lemma in [8], p. 145, that

(3.5) uB = k1v1 + + krυr

is an element ux in a base (uί9 9ur) for J%f, thereby proving (i).

Proof of (ii). Suppose that (3.1) and (3.2) both hold so that

(3.6) suB = 8ruBf niod ^ .

In terms of the base (u19 , ur) of &? 9 for suitable integers μ19
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(3.6) takes the form

(3.7) sux = 8'ίμiUχ + + μrur)modj^,

from which we infer that s = s'μ19 and hence that s'^Ls. Similarly

so that s = β\

The proof of (ii) is complete.

To each non-trivial element w&A we now assign indices s and t as

follows.

DEFINITION 3.1. The free index s of w. If w^J^ set s = 0. If

let s>0 be the integer affirmed to exist in Lemma 3.1.

By virtue of this definition of s

(3.8) w = suB + τB (τB<Ξ^~)

where uB is either 0 or the first element in a base for £$ 9 according as

order w is finite or infinite.

DEFINITION 3.2. The torsion index t of w. Set

(3.9) order τB = tB

and

(3.10) min tB = t
B

where & ranges over all Betti groups complementary to ^~ in A. We

term t the torsion index of w. When s = 0, t = tB for every choice of &f.

There are three theorems corresponding to the three cases s = 0, s = 1

and s ^ l , showing how the invariants of A are related to those of A/W.

We begin with the simplest case, β = 1.

THEOREM 3.1. If s = 1 the torsion subgroup of A/W is isomorpkic to

the torsion subgroup of A, and the Betti number of AjW is one less than that of

A.

Proof If & is a Betti subgroup of A, Lemma 3.1 (i) implies that

there exists a base (u19 ,ur) of & such that w — uB + τB, where uB = ux.

A new Betti group &'y complementary to ^~, can be introduced with a

base

(3.11) (vl9 , vr) = {uB + ΓB, U29 , ur).
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Then w = υx and A\W has the form

{ } W ί^}®{6}©...®{0}®{0}

of a "correlated" quotient. We infer from (2.3) that

(3.13) -ψ~~{v2}®- -®{vr}®^ .

Theorem 3.1 follows.

The case s^.1. The data. A is "given" as is A in § 2. A presc-

ribed Betti group & of Λ has a base (u19 - ,ur) such that when β : > l

(3.14) α? =

We begin with the case JίΓ ψ 0, and suppose that ^ has a CPD,

(3.15)

for which the orders of the respective generators xt are the elementary-

divisors

(3.16) n19 - , n p

o f J^~. The element τB has a representation

(3.17) ?£ = mxXι + + nipXp

with

(3.18) 0^mi<ni (i = 1,2, , /o).

We say that the set (wj, 9mp) is coordinated with the set (n1? 9np) in

that mi multiplies xt in (3.17), while rti is the order of xim

The set (m^ ,mp) depends upon the choice of &9 upon the ordering

of the summands in (3.15) and upon the choice of the generators x19 , xpf

as well as upon τB. By rechoosing the generators xi we shall, in §4,

obtain sets {m19 9mp)9 termed canonical, such that mi = 0 or divides nt.

Theorem 3.2, below, and Corollary 3.1 reduce the problem of determin-

ing the invariants of AjW to the problem of determining the invariant factors

of a {p + l)-square matrix with a diagonal,

n19n2, , n p 9 8

and a last row,
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m19 m2, , mp9 s,

with other elements 0.

Theorem 3.2 and Corollary 3.1 include the case s = 1 even though the

case s = 1 has already been disposed of in a simpler way,

THEOREM 3.2. The case s^.1, JfφO. If the data for A and w are

conditioned as above, Λ/W has a Betti number, one less than that of A, and a

torsion subgroup f isomorphic to a quotient group AjR, where A is a free group,

(3.19) A = {y,}®' -®{yP}®{v]

and R a subgroup oj A of the form

(3.20) R = {ntfu - - -,npyp; sv + mιyι + + mpyp}.

In proving Theorem 3.2 we shall make use of several lemmas. The
{'natural6) homomorphism"

(3.21) Ψ : A >AjW

with its kernel W = {w} is needed. [10] p. 26.

LEMMA 3.2. When s^l, the "natural homomorphism" Ψ maps the torsion

subgroup ^~ of A isomorphically onto the subgroup Ψ(^~) of A/W, and maps the

subgroup

(3.22) ^ = {u2}® ®{ur]

of & isomorphically onto F ( ^ ) .

Proof. Lemma 3.2 follows on noting that when s i > l

(3.23) k e r O Π ^ ) = ̂  Πker Ψ = ̂  n [w] = 0 .

since each non-trivial element of {w} then has an infinite order, and noting

that

(3.24) ker(?Π^ί) = ̂ nkeτψ = &n{w] = 0.

LEMMA 3.3. When β ^ l , the group A/W is a direct sum,

(3.25) AIW = Ψ{^)®Ψ{u19^} = B@f (u.from (3.14))

6) The "natural" homomorphism Ψ maps an element x^A into the element in AjW
which represents the W-coset containing x.
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in which Ψ{u19^~] is the torsion subgroup f of AjW, and Ψ{&λ) is a Betti

subgroup B of AjW.

To establish Lemma 3.3 it is sufficient to recall that W(A) = AjW and

to verify successively the relations,

(3.26) A

(3.27) W{A) = {

(3.28) f

(3.29) Q

from which Lemma 3.3 follows.

Of these relations the first two are immediately verified.

Proof of (3.28). When s > 1

(3.30)

Recall that order τB in j^Γ has been denoted by tB. The application of

Ψ to both members of (3.30) shows that

(3.31) 0 = sΨ(uί) + Ψ(τB).

Since order Ψ{τB) divides order τB9 we see that stB annihilates Ψ(u^). Hence

Ψ{ux) is in f and (3.28) follows.

Proof of (3.29). Relation (3.29) holds, since each element in t has a

finite order and each element in Ψ{J%?λ), other than 0, has an infinite order.

Lemma 3.3 follows.

We refer to the torsion subgroup f of AjW.

LEMMA 3.4. When s > : l , there is a surjective isomorphism

(3.32) t ~ ψ

in which W-cosets in A which are elements of f are mapped into the W-cosets in

partitioning {u^®^" with which they are identical as subsets of A.

Proof Recall that f = Ψ{uu^} and note that, as subsets of A,

(3.33) {u
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Moreover W is a subgroup, both of A and of {u^ ® J^Γ and f is the group

of PF-cosets in A of elements in {ul9J7~}. Lemma 3.4 follows.

Notation for Lemma 3.5. Lemma 3.5, below, gives the final isomorphism

leading to the isomorphism t^A/R of Theorem 3.2. In Lemma 3.5

is given by a CPD as in (3.15).

A is the free group (3.19)

W is the subgroup {su1 + mix1 + + mpxp] of A

R is the subgroup (3.20) of A

The statement and proof of Lemma 3.5 will be abbreviated by setting

f (xί9 - 9 x p ) = x (see (3.15))

(2/i, -,Vp) = U ( " (3.19))

(mί9 , mp) = m ( // (3.17))
(3.34) I

(nί9 ,n,) = n ( // (3.16))

1 , npyp) =

etc. We term x and # element sets. The set (n#) is an element set. We

shall introduce arbitrary sets of integers,

(Qi> * * >qP) = Q

(ru , rp) = r

Q[p,q) and P{p,q). For arbitrary integer p and set g of

/t> integers, we shall denote by Q{p,q), the R-coset in ^1 of the element

pv + q-y in A We similarly denote by P{p9q), the W-coset in {nλ\®^

of the element p^j + g jc in

LEMMA 3.5. When s^l there exists a surjectiυe isomorphism

(3 35) Θ ' A

iw which the R-coset^ Q(p9q) in A9 goes into the W-coset, P{p9q) in {u^}

To prove Lemma 3.5 we note first that Θ is a homomorphism. That

is, for arbitrary integers p and pf and arbitrary sets q and qr of p integers

(3.36) Θ(Q(p9q) + Q(p',q')) = O(Q(p9q)) + Θ{Q{p'9q')).
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The mapping Θ is surjective, since the ensemble of T^-cosets P{p9q) contains

each W-coset in {u^®^. It ts crucial to establish Prop 3.1.

PROPOSITION 3.1. The mapping Θ is biunique.

Note first that, if 0 is a set of p zeros, then

(3.37) P(0,0) = W, Q{0,0)=R.

Let Q{p9q) and Q(pf

9q
f) be arbitrary distinct jR-cosets in A. To establish

Prop 3.1 we must show that the equality

(3.38) P(v,q) = P(v\q/)

of the β-images of Q(p9q) and Q{pr,qf) is then impossible.

The equality (3.38) would imply that

(3.39) P(Ί>-p', q~qf) = P(0,0),

and hence that

(3.40) Θ(Q(p - p r

9 q - q')) = P ( 0 , 0 ) .

Moreover the hypothesis

(3.41) Q(p9q)ψQ(p\q')

implies that

(3.42) Q(p~pf

9 q-q')¥=Q(090).

Prop 3.2 below implies that (3.40) and (3.42) are incompatible, and hence

that Prop 3.1 is true.

Let p be an arbitrary integer and q an arbitrary set of p integers.

PROPOSITION 3.2. The only R-coset Q{p9q) in A whose image under Θ is

the W-coset P(0,0) in [u^®^ is the R-coset 0(0,0) in A.

Proof of Prop 3.2. The <9-image of Q(p9q) is P{p,q) by definition of

β, and by hypothesis of Prop 3.2

(3.43) P(p,q) = P(0,0) = W.

For (3.43) to hold it is necessary that for some integer N

(3.44) pux + q x = N(suί + m x)

since sux + m x is a generator of the cyclic group W. Since
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(3.45) M®- Θ{«r}θ{*i}Θ •©{#„}

is a direct sum, and order xt = nt for i = 1, , p, (3.44) holds only if

(3.46) p = Ns, q = Nm + {rn)

for some set r of p integers. It follows from (3.46) that

pv + q y = N(sυ + m y) + (rn) y,

that is, that pv + q* y is in R.

Thus Prop 3.2 is true, <9 is biunique, and Lemma 3.5 follows.

Completion of proof of Theorem 3.2. It follows from Lemmas 3.2 and

3.3 that, when s^l, the Betti number of A/W is one less than the Betti

number of A. That the torsion subgroup f of A/W is isomorphic to the

quotient A/R of Theorem 3.2 follows from Lemmas 3.4 and 3.5.

Theorem 3.2 is thereby established. Theorem 3.2 is supplemented as

follows.

The case j ^ 7 " " = 0. In stating and proving Theorem 3.2 we have ex-

cluded this special case. In this case τB = 0 in (3.14), so that

n Λ7) _A_ = M®^}®- * ®{ur]
{ } W {β«i}Θ{0}® ®{0} β

This is a "correlated" quotient. By (2.3)

(3.48) -~^C(s)@{u2}® -®[ur] (when β > l )

where C{s) is a cyclic group of order s. The torsion subgroup of A/W is

thus isomorphic to C(s) when ^~ = 0 and β > 1, and trivial when s is 1

or 0.

From (3.47) and (3.48) one can infer the following:

THEOREM 3.3. When A is torsion free A/W is torsion free unless s > 1, and

when s > 1 the first and only torsion coefficient of A/W is s.

The torsion coefficients of A/W when s>l. The subgroup R of

the free group A is defined by a set of generators z19

 m,zp+1 given in

Theorem 3.2 as the respective linear combinations,

(3.49) nxy19 , npyp, sv + mιyί 4- 4- mpyp

of the elements
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(3.50) y l 9 9 y p 9 v

of the base of A. Cf. (2.3), (2.4) and (2.5). The matrix \\aj\ of the

integral" linear representation of z19 9zp+ί in terms of the elements (3.50)

has the form

I Hi

(3.51) Hotyll = I

ί w ,
! ^iWί2 ' mp s

where unspecified elements are 0.

The rank of the matrix (3.51) is p + 1. The integers m^ 9mp were

introduced in (3.17). They satisfy the conditions

(3.52) 0 ^ w t < W t (ί = 1, •• ,/o)

and are c'coordinated" with the elementary divisors n19 9np of A.

From Theorem 2.1 we infer a fundamental corollary of Theorem 3.2.

COROLLARY 3.1. When «:>1 ^ rα/z/t 0/ £& matrix ||α^|| w /? + 1

/ invariant factors of this matrix which exceed 1 are the torsion coefficients

of A/W.

Making use of this corollary it is possible to make many comparisons

between the elementary divisors of A and those of AjW when s > 1, or

equivalently the torsion coefficients of A and those of AjW.

A first result of this type follows.

COROLLARY 3.2. Suppose s^.1.

(i) If each πii in the representation (3.17) of τB is a multiple {possibly null)

of s, then the torsion coefficients of A/W are the invariant factors which exceed 1 of

the diagonal matrix J with diagonal

(3.53) n19 fnp,8.

(ii) Equivalently under the hypotheses of (i) the elementary divisors of A/W

are those of A supplemented by the prime power factors of s.

Proof of (i). Matrices which can be obtained, one from the other, by

elementary operations are termed equivalent. Equivalent matrices have the

same invariant factors.
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It is clear that under the hypotheses of (i), the matrices ||<zίj7 || and /

are equivalent.

Statement (i) follows.

Proof of (ii). There exists an abstract abelian group A* which is the

external direct sum of abelian groups with the orders (3.53). By Corollary

2.1, the torsion coefficients of A* are the invariant factors exceeding one of

the matrix /, and hence by (i) the torsion coefficients of A/W. The ele-

mentary divisors of A* are clearly the integers n19 , np, supplemented by

the prime power factors of s. Since A* and A/W have the same torsion

coefficients they have the same elementary divisors.

Statement (ii) follows.

In case s^.1 the quotient A/W has more torsion than A in the sense of

the following corollary.

COROLLARY 3.3. When s ;> 1 the product of the torsion coefficients of A/W

(or elementary divisors of A/W) is s times the corresponding product for A.

Proof We have seen in § 1 that the product of the elementary divisors

of A equals the product of the torsion coefficients of A. Cf. Theorem 1.3.

In the case at hand this product is nx np by hypothesis. According to

Corollary 3.1 the product, when s ^ l , of the torsion coefficients of A/W is

the product of the invariant factors of the matrix ||α^ ||. Hence this product

equals

det

Thus Corollary 3.3 is true.

In § 5 an explicit comparison of the elementary divisors of A and A/W

is made when both A and AjW are prime-simple groups. See Definition 1.6.

§ 4. The elementary quotients A/W when s = 0. We continue with

the analysis of § 3. As in § 3, A is finitely generated, W a subgroup of A

of form W = {w}, with w ψ 0 in ^~, the torsion subgroup of A.

We begin with a lemma.

LEMMA 4.1. If s = 0 the Betti number of A/W equals the Betti number of

A, and if To is the torsion subgroup of A/W, then

(4.0) T0^^!W.
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Let & be a Betti subgroup of A Then A = & © ^ and one has

the correlated quotient

since W is a subgroup of J^ when « = 0. By (2.3)

(4.2)

The quotient ^~\W is a jfcίte group and hence the torsion subgroup of the

right member of (4.2). The isomorphism (4.0) follows from the isomorphism

(4.2).

Note. One should contrast the equality of the Betti numbers of A and

A/W when 8 = 0, with the fact that the Betti number of A exceeds the

Betti number of A\W by 1 when s > 0. See Theorems 3.1 and 3.2.

We now prepare for Theorem 4.1.

The data when 8 = 0. A is given as is A of (2.1). Since s = 0

(4.3) w = τB ( r ^ e j n ,

where τB ψ 0, since we are assuming that W =• {w\ψθ. We suppose that

J?~ is given by a CPD of form (3.15) and that {n19 9np) is the corres-

ponding set of7) ED's of j?~. We suppose that τB is given a representa-

tion (3.17) with a set of integral coefficients (m19 9mp) subject to (3.18),

and "coordinated" with the ordered set (nί9 -,np) of ED's of

T H E O R E M 4 . 1 . The case 8 = 0. Under the conditions of the preceding para-

graph the torsion subgroup To of A/W is isomorphic to a quotient group AJR0,

where Ao is a free groups

(4.4)' Ao = {y,}@ ®{yp], (p>0)

and Ro is a subgroup of Ao of the form

(4.4)" Ro = [nxyl9 -,npyp; mγyλ + + mpvp}.

Proof By virtue of Lemma 4.1, it is sufficient to show that

(4.5) _ ^ _ ~ . ^ k .

Proof of (4.5). For arbitrary sets q of p integers, let Q{q) denote the

7) ED abbreviates "elementary divisor".
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i?0-coset in Λo of the element q y in Λo (employing the notation introduced

in (3.34)). Similarly let P(q) denote the T7-coset in ^~ of the element q-x

in ^ . Let Φ be the surjective homomorphism,

(4.6) Φ :

As in the proof of Theorem 3.2 the principal step is to prove Φ biunique.

Just as Proposition 3.1 followed from Proposition 3.2, so here the biuniqueness

of Φ follows from the analogue, Proposition 4.1, of Proposition 3.2.

PROPOSITION 4.1. The only R0-coset, Q(q) in A09 whose image under Φ is

the W-coset P(ΰ) in ^ 9 is the Ro-coset Q(0) in Ao.

Proof of Proposition 4.1. As in the proof of Proposition 3.2, by defini-

tion and hypothesis,

(4.7) Φ(Q(q)) = P(q) = P(0) = {w}.

For (4.7) to hold, it is necessary that for some integer N

(4.8) q x = N(m x) (in

since m-x = w by (3.17) and (3.14). The relation (4.8) implies that

(4.9) q = Nm+ (rn)

for some set r of p integers. It follows from (4.9) that

q y = N{m y) + (rn) y,

that is, that q y is in Ro.

Thus Proposition 4.1 is true, hence Φ is biunique. It is a surjective

isomorphism.

This completes the proof of Theorem 4.1.

The torsion coefficients of Λ/W when β = 0. The subgroup Ro of

the free group Λo of Theorem 4.1 is defined by a set of generators

z19 9zp+1, given in Theorem 4.1 as the respective linear combinations

(4.10) ntfju -,npyp; m1y1+ Λ-mpyp

of the elements y19 9yp of the base of Ao. The matrix \\bij\\ of these

integral linear combinations of the elements y19 , yp9 has the form
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(4.11) IIM =

mίm2' m0

where unspecified elements are 0.

From Theorem 2.1 we infer the following corollary of Theorem 4.1.

COROLLARY 4.1. When s = 0 the rank of the matrix \\bij\\ is p and the

invariant factors of \\bij\\ which exceed 1 are the torsion coefficients of AJR0 and

hence of A/W.

Canonical sets {nιί9 9mp). We refer to the representation

(4.12) τB = niίXi + + mpxp [τB^^)

of τB. The coefficients mi which are not zero will be altered, in general,

by a change of the generators xt of the summands {â } of the CPD (3.15)

of ^ . However, one does not alter {#;} if xi is replaced by rxi9 pro-

vided r is relatively prime to order {α }̂. The following lemma shows how

this freedom of choice of the generators can simplify the set (m19 9mp).

LEMMA 4.2. If generators xt of the summands {α }̂ of the CPD (3.15) of τB

are suitably chosen, each coefficient, πii ψ 0, in the representation (4.12) of τB will

become a proper divisor {termed canonical) of ni9 the associated ED of j ^ ~ and as

such will be unique.

Proof The ED rii equals φl1 for some prime factor

and positive integer eit If nti ψ 0 there exists a GCD

of order

(4.13) (ni9mi) =

of Hi and mi9 such that §<ai< e^. Hence mt = μtpf, where μi and φi

are relatively prime. The generator xt can be replaced by a generator

Then in (4.12) one has

(4.14)

so that one can replace xi by x[ as generator of {

in (3.17).

When nii=?=Q9 and ^ is conditioned as above,

prime to fpi so that

(with pf canonical).

s} and m% by m[ = p^

= μ^ where μi is
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(4.15) order (w^) = order (μtP^Xi) = order pfrxi = pi*'"*.

Hence the replacement ml — p** of mt is uniquely determined by the

requirement that {α̂ } = {x[}, m^i = mix I and that ml be a proper divisor

of nim

The computation of the ED's of A/W when 8 = 0. As has been

seen in § 1 the ED's of A/W are immediate if the torsion coefficients of A/W

are known. According to Corollary 4.1, when s = 0 the torsion coefficients

of A/W are the invariant factors exceeding 1 of the matrix \\bij\\ of (4.11).

However, this computation of the EDh of A/W can be simplified as follows.

Let p19 -,pr be the distinct primes which are factors of (order ^")

when 8 = 0. The subgroup W of j ^ can be given a Sylow decomposition

W = Wι ® Θ Wr into a direct sum of the Sylow p^-subgroups Wt of W,

some of which can be trivial. If S^P. is the Sylow p^-subgroup of ^ then

(A i a) J^~ r^ Vχ G) G) ^ V r

(4.1b) ^w^^^—{$ ty- r̂r-

We infer the following.

LEMMA 4.3. When 8 = 0 the set of ED's of ^~\W is the union of the

ED's of such of the quotients S^JWμ in (4.16) as are nontrivial groups.

Matrices Jμ. We are accordingly led to the problem of computation of

the torsion quotients of a non-trivial quotient £SpJWμ taken from the quo-

tients in the right member of (4.16). With such a quotient we associate

that submatrix Jμ of the matrix \\bij\\ which consists of the columns of \\ba\\

whose non-null elements are powers of Pμ. If the rows of Jμ are properly

rearranged Jμ will have the general form of II^ H with a diagonal composed

of ED's of S^>μ, say ω in number, and an (ω + l)-th row of integers

wι19 , mω each of which is 0 or divides the ED of S^vμ in the same column.

The invariant factors of Jμ. The computation of the invariant factors

dί9 , dω of Jμ is very simple by virtue of the fact that

(4.17) dx = A, d2 = -^ , , dω = -£- (cf. (2.8))

where for i on the range, 1, , ω, Di is the smallest in absolute value of

the non-vanishing /-rowed subdeterminants At of Jμ. One observes that

each non-vanishing Δi is the product of i elements of Jμ.
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DEFINITION 4.1. Profiles of w. If the generator w of W is given as

in (1.9), subject to (1.10), the set of integers

(4.18) μί9 - - ,μβ, ml9 - ,mp

will be called the profile of w relative to the ίcbasis" (1.8) of A.

We shall prove the following theorem.

THEOREM 4.2. A "profile" of a non-null element w&A uniquely determines

the "free index" s9 and together with the coordinated ED^s of ^~ uniquely determines

the "torsion index" of w when s = 0.

To establish this theorem a second definition is needed.

DEFINITION 4.2. If the generators %i of the summands of the CPD of

^ are suitably chosen the non-null integers m^ in the set mx, , mp are

"canonical" in the sense of Lemma 4.2, and the "profile" (4.18) relative

to the basis (1.8) will be termed canonical.

According to Lemma 4.2 a profile (4.18) of w relative to a "basis"

(1.8) uniquely determines a "canonical profile" of w relative to a modified

basis (1.8). Theorem 4.2 is accordingly equivalent to the following lemma.

LEMMA 4.4. A canonical profile

(4.19) μ19 ,μβ; mί9 '9mp

of a non-null element w^A uniquely determines the free index s of w and together

with the coordinated ED's of ^ uniquely determines order w when s = 0.

The free index s. If β = 0 in (4.19), or if μι = = μβ = 0, then s = 0.

In any other case s is the GCD of the elements μl9 , μβ9 as the proof

of Lemma 3.1 (i) shows.

The torsion index t. If s = 0, t = order w in accord with the definition

of t. If J7~ = 0 , or if mλ = = mp = 0, t = 1.

Suppose then that s = 0 and w ψ 0. Let n19 , np be the ED's of

Suppose first that ^Γ is a Sylow p-subgroup of A. The ED's of

then form a list

(4.20) p \ « ,PC> (ei>0)

of powers of p. By hypothesis (4.19) is a "canonical profile" of w relative
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to a basis (1.8) of A. We suppose that the ED's (4.20) are so ordered that

for some integer r such that l^r^p, m19 ,rnr is the subset of the m/s

in (4.19) which do not vanish. Since (4.19) is by hypothesis a "canonical

profile" of w the first r elements in the reordered list ml9 ,mp have the

form

(4.21) p α i , « , p α r (Q^Laj<ej)

where j has the range 1,2, , r.

Moreover

(4.22) w = paix1 + + pa*xr.

We shall show that

(4.23) order w = max peJ~aJ = pe,
j

introducing pe.

Proof of (4.23). One establishes (4.23) by verifying the following.

(a) The order of paJXj in {Xj} is peJ~aJ.

(b) The integer pe annihilates w.

(c) The order t of w is a divisor pa of p\

(d) Were 0^a<e, pa could not annihilate w.

Statements (a), (b) and (c) are readily verified. Were a< e and pa

an annihilator of w it would follow from the representation (4.22) of (w)

that

{x
19

could not be a direct sum {x^®- ®{# r}. From this contradiction (d)

follows.

Thus (4.23) is true and Lemma 4.4 follows when ^ is a Sylow ^-sub-

group of A.

In any case ^~ is a direct sum of its Sylow subgroups. The order of

w is then the product of the orders of its non-null components in the res-

pective Sylow subgroups of j ^ ~ .

Lemma 4.4 follows and implies Theorem 4.2.

§ 5. AjW when A is prime-simple We shall give an explicit

determination in this section of how the EDh of A/W differ from those of
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A when both A and AjW are prime-simple in the sense of Def 1.6. To

this end a general lemma with no assumption of prime-simplicity will be

useful.

Notation for Lemma 5.1. We refer again to the natural homomorphism

Ψ : A-—>A/W of A onto A/W, where W = {w}, and as in (3.8),

(5.1) w = 8UB + τB {TJB^^).

Here uB is an element in A which is 0 or a first element in a base for a

Betti group of A, according as w is in Jj7~ or not in

LEMMA 5.1. If order τB in A is denoted by tB9 order Ψ{uB) in AjW equals

stB or 1 according as uBψ0 or uB = 0.

The lemma is trivial if uB = 0.

Suppose then that uB^0 and s>0. Since k e r ^ = {w} it follows from

(5.1) that

(5.2) Ψ(w) = 8W{US) + V{TB) = 0.

Moreover, tBΨ{τB) = 0, since tBτB = 0. Hence stBΨ{uB) = 0, so that order

Ψ(uB) is a divisor m of stB.

Since mΨ{uB) = 0, muB must be in ker Ψ. Hence

(5.3) muB = μ{suB + τB)

for some integer μ. Since uBψ0 by hypothesis, m = μs. Hence μτB = 0.

It follows that μ is a multiple of tB. We conclude that m must be a

multiple of sί£ and so equal stB.

This establishes Lemma 5.1.

We now suppose that A is prime-simple. When A is finitely generated

and W = {w}, we have seen in Lemma 4.1 that the torsion subgroup, To

of A/W, when 8 = 0, is such that

(5.4) Toπjr/W

while Lemma 3.4 implies that the torsion subgroup, t of A/W, when

is such that

(5.5) f a { w

We include the case 8 = 1, although this case is adequately covered by

Theorem 3.1.
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Corresponding to the cases s = 0 and s > l , Theorems 5.1 and 5.2 are

the principal results of this section. We are assuming that A is finitely

generated and that W = {w} is non-trivial. By hypothesis each ED of A

is a prime.

A convention. To say that a prime p is an ED of A/W of multiplicity 0

shall mean that p is not an ED of A\W.

THEOREM 5.1. When s = 0 fl/zrf Λ w prime-simple, each ED of A which is

not a factor of (order w) is an ED of A]W, while each ED of A, of multiplicity

μ which is a factor of (order w) is an ED of A/W of multiplicity μ — 1.

These are the only ED's of AlW and A/W is accordingly prime-simple (Th 1.4).

We refer to the "torsion index" t of w. Def 3.2.

THEOREM 5.2. When s > : l and A is prime-simple, the following is true:

(i) Necessary and sufficient conditions that A\W be prime-simple are that s be

prime-simple and that t — 1.

(ii) When s is prime-simple and t = 1, the ED's of A, supplemented by the

prime factors of s, are the ED's of A/W.

Proof of Theorem 5.1. It follows from Def 1.6 of a prime-simple

group that each subgroup of a prime-simple group is prime-simple. Hence

W = [w] is prime-simple. Since s = 0 by hypothesis, w has a finite order.

Since W is nontrivial by hypothesis and is finite and prime-simple, order w

is a product

(5.6) ViVz--"Pr (r>ϋ)

of distinct primes. Lemma 5.2 is needed.

Notation for Lemma 5.2. Let p be one of the primes in the product

(5.6). The Sylow subgroup £fp of A is prime-simple since A is prime-

simple. Let μ be the "length" of £*,. Each ED of ^ must equal p in

magnitude. cfv must then have a CPD of the form

(5.7) £'p = {e1}@- ΘU,}

where each generator e4 has the order p.

We shall verify the following lemma.
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LEMMA 5.2. If an element a^W has the prime order p and ^ v has the

length μ, then the quotient group £fvl{a) has exactly μ — 1 ED's, each numerically

$.

Proof. If the generators et of the cyclic groups {̂ } in (5.7) are properly

chosen and ordered, then

(5.8) a = ex + e2 + * + en (cf. Lemma 4.2)

for some integer n such that l^Ln^Lμ. The subgroups

(5.9) {a}, {e2}, .,{*,}

of S^p generate jy^v. They also sum directly to S^v\ for a nontrivial relation

of integral linear dependence between the generators a, e2, , eμ would

imply a nontrivial relation of integral linear dependence between the ele-

ments e19 , eμ. Hence

(5 10)
{a} {α}®{0}@. ®{0} *

This is a ''correlated quotient". It follows from (2.3) that

thereby establishing Lemma 5.2.

Completion of proof of Theorem 5.1. Starting with the primes (5.6) let

(5.H) p l f ',Pr', Pr + 1, * * * ,Ί>m

be the list of distinct primes which are the ED's of the torsion subgroup

of A. The complete set of ED's of ^ is obtained by listing each of the

primes in (5.11) a number of times equal to its multiplicity. One has the

Sylow decomposition

(5.12) ι

of ^ . The subgroup W of A admits a CPD

(5.13) W = {a,}®- ®{ar}

where the generator at has the order pi% From (5.12) and (5.13) we obtain

a correlated quotient
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^L = 1

W M®- ®Ur}®{o}Θ Θ{0}

It follows from (5.14) and (5.4) that To is isomorphic to the external direct

sum

(5.15)

Theorem 5.1 follows on applying Lemma 5.2 to each of the quotients in

(5.15).

Proof of Theorem 5.2. It follows from Def 3.2 of the "torsion index"

t of w that when s > 0, there exists a Betti subgroup ^ of A with a base

{u19 - ,ur) such t h a t

(5.16) w = suB + τ £ (us = u19 order τB = t).

If Ψ : A —> AjW is the natural homomorphism of A onto A[W it follows

from Lemma 5.1 that

(5.17) order Ψ(uB) = st (when order τB = t).

HYPOTHESIS. We assume that when s ^ l , w is given a representation of

form (5.16). This is a condition on τB and not on w.

The following lemma is needed to establish the necessity of the condi-

tions of Theorem 5.2 (i).

LEMMA 5.3. If the free index s and torsion index t of w are relatively prime

and s > 0, then t = 1.

Starting with (5.16) we note that

(5.18) τB^{τB] = {sτB}czs^r.

The equality in (5.18) is valid since s is prime to (order τB). From (5.18)

we infer the existence of an element x ^ ^ such that τB = sx. We rewrite

(5.16) in the form

(5.19) w = s{uB + x) + {τB — sx) = s{uB + x).

From the given Betti group & one can obtain a second Betti group

&' of A by replacing the generator uB of & by uB + x = uBf. In terms

of uBr> w = suB,. This shows that t = 1.

Thus Lemma 5.3 is true.
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Proof of (ii) of Theorem 5.2. According to Lemma 3.4, when s ^ l the

torsion subgroup T of A\W satisfies the relation,

(5.20) f~f J M L . (W = {w})

Since t = 1 by hypothesis of (ii), (5.16) gives w the form w — suB =

Hence

(5.21) f~ {8u]}%ζ}^C{s)®^ ( b y ( 2 3 ) )

where C{s) is a cyclic group of order s.

Statement (ii) of Theorem 5.2 follows from (5.21).

Necessity of the conditions of Theorem 5.2 (i). By Lemma 5.1, Ψ{uB) is an

element of Λ/W of order st. Hence if Λ/W is a prime-simple group, st is

a prime-simple number, that is, s must be prime-simple and relatively prime

to /. According to Lemma 5.3 it is accordingly necessary that t = 1.

Sufficiency of the conditions of Theorem 5.2 (i). The sufficiency follows from

Theorem 5.2 (ii) and Theorem 1.4.

This completes the proof of Theorem 5.2.
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