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NONEXISTENCE OF POSITIVE FINITE MORSE INDEX

SOLUTIONS TO AN ELLIPTIC PROBLEM WITH SINGULAR

NONLINEARITY∗

YUXIA GUO† AND JUNCHENG WEI‡

Abstract. We consider the following elliptic problem

∆u = |y|αuτ in R
N,

where N ≥ 2, α ≥ 0 and τ < 0. We prove that if 2 ≤ N < 2 + 2(2+α)
τ−1

(τ −
p

τ(τ − 1)), there is no

positive smooth solution with finite Morse index.
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1. Introduction. We consider the positive smooth solutions of the following
equation:

(1.1) ∆u = |y|αuτ in R
N, with N ≥ 2, α ≥ 0, τ < 0.

The motivation to study equation (1.1) comes the fact that this equation appears in
many branches of applied science, such as in mechanics and in physics. In particular,
it can be the steady states of thin films. In the literatures, the following equations

(1.2) ut = −∇ · (f(u)∇∆u) −∇ · (g(u)∇u)

have been used to model the dynamics of thin films of viscous fluids, where u(x, t)
is the height of the air (liquid) interface. The zero set

∑

u = {u = 0} is the liquid
(solid) interface and is sometimes called set of ruptures, which plays a very important
role in the study of thin films. The coefficient f(u) reflects surface tension effects,
a typical choice is f(u) = u3. And the coefficient g(u) of the second-order term
reflects additional forces such as gravity g(u) = u3, and Van der Waals interactions
g(u) = um,m < 0. For more information on the background of the equation (1.2), we
refer to [2, 3, 19, 20] and the references therein. If we choose f(u) = ul, g(u) = um,
where l,m ∈ R, and we consider the steady state of (1.2), we see that if u satisfies
the following equation

ul∇∆u+ um∇u = C,

then u is a steady state of (1.2), where C = (C1, C2, ..., Cn) is some constant vector.
By assuming C = 0 (which prevents linear terms on x), we obtain

(1.3) ∆u+
uk

k
− C = 0

with k = m − l + 1 and C is some constant. Here we have assumed that k 6= 0,

otherwise we replaced uk

k
by lnu. If we choose f(u) = u3, g(u) = −um with m < 1,
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and take k = m− 2 < −1. Then by choosing C = 0 and a simple scaling we get the
equation

(1.4) ∆u = up, p < −1.

Note that solutions to (1.1) can explain the behaviors of steady states for equa-
tion (1.2) in some special cases but the reverse is not true. We mention that when
τ = −2, the equation (1.1) also arises in the study of a simple electrostatic Micro-
Electromechanical System (MEMS) device consisting of a thin dielectric elastic mem-
brane with boundary supported at 0 below a rigid plate located at +1. We refer
to [6, 9, 10, 11, 14, 15] and the references therein. When τ = −1, our equation is
related to the study of singular minimal hypersurfaces with symmetry, see [21, 24]
and references therein.

When Ω = R
N, the radially symmetry solutions to (1.3) has been studied in [14].

The quantitative properties of solutions to (1.1) including the gradient estimates, L1−
estimates, global upper bounds, Liouville properties, classifications of stable solutions
and symmetry properties have been studied in [22];

From the variational point of view, it is also very interesting to discuss positive
solution with finite Morse index to (1.1). The nonexistence results of finite morse
index solutions in an unbounded domain plays a crucial role to obtain a priori L∞

bounds for solutions of semilinear boundary value problems in bounded domain (see
[12] for the case of positive solutions and [1] for solutions with finite Morse index). On
the other hand, nonlinear forms of Liouville type’s results, combined with degree type
arguments, are very useful to obtain the existence of solutions of semilinear boundary
value problem in bounded domain (see for instance [8]). In this paper, we are going to
study the nonexistence of finite Morse index solutions in R

N. Assume that u ∈ C2(RN)
is a positive solution to (1.1), we define

E(ϕ) =

∫

RN

(|∇ϕ|2 + τ |y|αuτ−1ϕ2), ϕ ∈ C1
c (RN ).

By definition, we say that the positive solution u to (1.1) with finite Morse index
K ≥ 1 if there exist L2 orthogonal nontrivial functions {ϕj}K

j=1 ⊂ C1
c (RN) such that

E(ϕ) < 0 for ϕ ∈ W := span{ϕj} \ {θ}, and E(ϕ) ≥ 0 for ϕ ⊥ W ; We say that the
solution u is stable if E(ϕ) ≥ 0 for any ϕ ∈ C1

c (RN); We say that the solution is stable
outside of a compact set Ω ⊂ R

N if E(ϕ) ≥ 0 for any ϕ ∈ C1
c (RN \ Ω).

Remark 1.1. From the above definitions, one can easily see that any finite
Morse index solution u is stable outside of a compact set Ω. In fact, assume that
u is a solution with finite Morse index K ≥ 1 such that E(ϕ) < 0 for any ϕ ∈
W = span{ϕ1, ..., ϕk} ⊂ C1

c (RN). Hence E(ψ) ≥ 0 for any ψ ∈ C1
c (RN \ Ω), where

Ω :=
⋃K

j=1 supp(ϕi).

Our main results are:

Theorem 1.2. If 2 ≤ N ≤ 2 + 2(2+α)
τ−1 (τ −

√

τ(τ − 1)), then there are no finite

Morse index positive solutions to (1.1) in R
N.

Remark 1.3. The case of α = 0, N = 2 has been proved by Ma and Wei ([22]).

Remark 1.4. Esposito ([5]) considered the following problem

(1.5) ∆u = λ|x|αu−2 in Ω, u = 1 on ∂Ω
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where Ω is a bounded domain. Result similar to Theorem 1.2 was proved.

Remark 1.5. Farina ([7]) proved that there are no finite Morse index solution
to the purely critical exponent

∆u+ up = 0, u > 0 in RN

when 1 < p < pJL, where pJL is the Joseph-Lungren exponent. Dancer and Farina
[4] extended the result to exponential nonlinearity. We shall follow the proofs in [4]
and [7].

The paper is organized as follows. In section 2, for simple and clear reason, we
first prove some inequalities for the solution of the equation (1.1) with α = 0, which
are crucial for the present work. In Section 3, we prove Theorem 1.2 with α = 0 by a
contrary argument. Finally, in Section 4, we discuss the general equation with α ≥ 0.

Acknowledgements. This paper was done while the first author was visiting
the Department of Mathematics, Chinese University of Hong Kong. She would like to
thank the Department for its hospitality. She also thanks Professor Dong Ye for many
useful discussions. The second author thanks Professor Dancer for many interesting
discussions.

2. Preliminaries. In this section, we are going to prove some inequalities for
the positive solutions of the following equation:

(2.1) ∆u = uτ , in R
N, N ≥ 2, τ < 0.

Our first result is :

Proposition 2.1. Let Ω be a domain (bounded or not) of R
N. Suppose that u is

a positive stable solution of (2.1), then for any γ ∈ [1, 1− 2τ + 2
√

τ(τ − 1)) and any
integer m ≥ max{ τ−γ

τ−1 , 2}, there exists a constant C = C(τ,m, γ) > 0 depending on
τ,m and γ such that

∫

Ω

(|∇(u
−γ+1

2 )|2 + uτ−γ)ψ2m ≤ C(τ,m, γ)

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|)
τ−γ
τ−1 ,

for any test functions ψ ∈ C2
c (Ω) satisfying |ψ| ≤ 1 in Ω.

Proof. The proof is consist in the following steps.
Step 1: We prove for any ϕ ∈ C2

c (Ω)

(2.2)

∫

Ω

(|∇(u
−γ+1

2 )|2ϕ2 =
(−γ + 1)2

4γ

∫

Ω

uτ−γϕ2 − (−γ + 1)

4γ

∫

Ω

u−γ+1∆(ϕ2).

To prove (2.2), we multiply the equation ∆u = uτ by u−γϕ2 and integrate by
parts to obtain

γ

∫

Ω

|∇u|2u−γ−1ϕ2 −
∫

Ω

∇u∇(ϕ2)u−γ =

∫

Ω

uτ−γϕ2.

This deduces that

γ

(−γ+1
2 )2

∫

Ω

|∇(u
−γ+1

2 )|2ϕ2 −
∫

Ω

∇(
u−γ+1

−γ + 1
)∇(ϕ2)

=
γ

(−γ+1
2 )2

∫

Ω

|∇(u
−γ+1

2 )|2ϕ2 +

∫

Ω

(
u−γ+1

−γ + 1
)∆(ϕ2)

=

∫

Ω

uτ−γϕ2.
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Hence we obtain, by multiplying the constant (−γ+1)2

4γ
on the two sides of the above

last equality,

∫

Ω

(|∇(u
−γ+1

2 )|2ϕ2 =
(−γ + 1)2

4γ

∫

Ω

uτ−γϕ2 − (−γ + 1)

4γ

∫

Ω

u−γ+1∆(ϕ2).

Step 2: We prove that for any ϕ ∈ C2
c (Ω)

(2.3)

(−τ − (−γ + 1)2

4γ
)

∫

Ω

uτ−γϕ2 ≤
∫

Ω

u−γ+1|∇ϕ|2 − (
(−γ + 1)

4γ
+

1

2
)

∫

Ω

u−γ+1∆(ϕ2).

Since u is stable, by definition, we have for any ϕ ∈ C1
c (Ω)

∫

Ω

|∇ϕ|2 + τuτ−1ϕ2 ≥ 0.

Note that for any ϕ ∈ C2
c (Ω), ψ = u

−γ+1
2 ϕ ∈ C1

c (Ω), thus we can use it as a test
function in the above inequality, then we obtain :

−τ
∫

Ω

uτ−γϕ2 ≤
∫

Ω

|∇(u
−γ+1

2 ϕ)|2

=

∫

Ω

|∇(u
−γ+1

2 )|2ϕ2 +

∫

Ω

(u
−γ+1

2 )2|∇ϕ|2 +

∫

Ω

2∇(u
−γ+1

2 )∇ϕu−γ+1
2 ϕ

=

∫

Ω

|∇(u
−γ+1

2 )|2ϕ2 +

∫

Ω

(u
−γ+1

2 )2|∇ϕ|2 − 1

2

∫

Ω

u−γ+1∆(ϕ2).

Inserting the formula (2.2) into the above last inequality, we get

−τ
∫

Ω

uτ−γϕ2 ≤ (−γ + 1)2

4γ

∫

Ω

uτ−γϕ2 − −γ + 1

4γ

∫

Ω

u−γ+1∆(ϕ2)

+

∫

Ω

u−γ+1|∇ϕ|2 − 1

2

∫

Ω

u−γ+1∆(ϕ2).

It follows that

(−τ − (−γ + 1)2

4γ
)

∫

Ω

uτ−γϕ2 ≤
∫

Ω

u−γ+1|∇ϕ|2 − (
(−γ + 1)

4γ
+

1

2
)

∫

Ω

u−γ+1∆(ϕ2)

Step 3: We prove that for any γ ∈ [1, 1 − 2τ + 2
√

τ(τ − 1)) and any integer
m ≥ { τ−γ

τ−1 , 2} there exists a constant C = C(τ,m, γ) such that for any ψ ∈ C2
c (Ω)

satisfying |ψ| ≤ 1 in Ω, it holds that

(2.4)

∫

Ω

uτ−γψ2m ≤ C(τ,m, γ)

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|) τ−γ
τ−1 ,

(2.5)

∫

Ω

|∇(u
−γ+1

2 )|2ψ2m ≤ C(τ,m, γ)

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|)
τ−γ
τ−1 .

Moreover, the constants C(τ,m, γ) can be explicitly computed.
Indeed, from (2.3), we have for any ϕ ∈ C2

c (Ω)

(2.6) α

∫

Ω

uτ−γϕ2 ≤
∫

Ω

u−γ+1|∇ϕ|2 + β

∫

Ω

u−γ+1ϕ∆ϕ,



NONEXISTENCE OF POSITIVE FINITE MORSE INDEX SOLUTIONS 395

where α = (−τ − (−γ+1)2

4γ
) ≥ 0, β = −( (−γ+1)

4γ
+ 1

2 ) < 0. Now for any ψ ∈ C2
c (Ω) with

|ψ| ≤ 1 in Ω. Let ϕ = ψm, where m ≥ max{ τ−γ
τ−1 , 2}, then ϕ ∈ C2

c (Ω). Hence we have:

α

∫

Ω

uτ−γψ2m ≤
∫

Ω

u−γ+1|∇(ψm)|2 + β

∫

Ω

|u|−γ+1ψm∆ψm

=

∫

Ω

u−γ+1ψ2m−2[m2|∇ψ|2 + βm(m− 1)|∇ψ|2 + βmψ∆ψ].

It follows that
∫

Ω

uτ−γψ2m ≤ C1

∫

Ω

u−γ+1|ψ|2m−2[|∇ψ|2 + |ψ∆ψ|],

with C1 = m2+βm(m−1)
α

> −βm
α

≥ 0.

Note that m ≥ max{ τ−γ
τ−1 , 2}, and (2m − 2)( τ−γ

1−γ
) ≥ 2m, hence |ψ|(2m−2)( τ−γ

1−γ
) ≤

|ψ|2m. By using Hölder inequality, we have:
∫

Ω

uτ−γψ2m ≤ C1

∫

Ω

u−γ+1|ψ|2m−2[|∇ψ|2 + |ψ∆ψ|]

≤ C1(

∫

Ω

(u−γ+1|ψ|2m−2)
τ−γ
1−γ )

1−γ
τ−γ (

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|)
τ−γ
τ−1 )

τ−1
τ−γ

≤ C1(

∫

Ω

uτ−γ|ψ|2m)
1−γ
τ−γ (

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|) τ−γ
τ−1 )

τ−1
τ−γ

≤ C
τ−γ
τ−1

1 (

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|)
τ−γ
τ−1 ).

This proves (2.4) with C = C
τ−γ
τ−1

1 .

Now we prove (2.5). Combine (2.2) and (2.6) and we get for any ϕ ∈ C2
c (Ω)

∫

Ω

|∇(u
−γ+1

2 )|2ϕ2

≤ (−γ + 1)2

4γ
[
1

α

∫

Ω

u−γ+1|∇ϕ|2 +
β

α

∫

Ω

u−γ+1ϕ∆ϕ] − −γ + 1

4γ

∫

Ω

u−γ+1∆ϕ2

=
(−γ + 1)2

4γ
[
1

α

∫

Ω

u−γ+1|∇ϕ|2 +
β

α

∫

Ω

u−γ+1ϕ∆ϕ]

−−γ + 1

2γ
[

∫

Ω

u−γ+1|∇ϕ|2 +

∫

Ω

u−γ+1ϕ∆ϕ]

= A

∫

Ω

u−γ+1|∇ϕ|2 +B

∫

Ω

u−γ+1ϕ∆ϕ,

where A = (−γ+1)2

4γα
− (−γ+1)

2γ
> 0, B = (−γ+1)2β

4γα
− (−γ+1)

2γ
∈ R. We insert the test

function ϕ = ψ2m in the later inequality to get
∫

Ω

|∇(u
−γ+1

2 )|2ψ2m ≤
∫

Ω

u−γ+1ψ2m[Am2|∇ψ|2 +Bm(m− 1)|∇ψ|2 +Bmψ∆ψ]

≤ C2

∫

Ω

u−γ+1|ψ|2m−2[|∇ψ|2 + |ψ∆ψ|],

with C2 = max{|Am2 + Bm(m − 1)|, |Bm|} > 0. By using Hölder inequality in the
above last inequality, we have
∫

Ω

|∇(u
−γ+1

2 )|2ψ2m ≤ C2(

∫

Ω

(u−γ+1|ψ|2m−2)
τ−γ
1−γ )

1−γ
τ−γ (

∫

Ω

(|∇ψ|2 + |ψ∆ψ|) τ−γ
τ−1 )

τ−1
τ−γ

≤ C2(

∫

Ω

uτ−γ|ψ|2m)
1−γ
τ−γ (

∫

Ω

(|∇ψ|2 + |ψ∆ψ|)
τ−γ
τ−1 )

τ−1
τ−γ
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In the above, we used again the facts that |ψ|(2m−2) τ−γ
1−γ ≤ |ψ|2m.

Finally, we insert (2.4) into the later inequality and obtain
∫

Ω

|∇u−γ+1
2 |2ψ2m ≤ C2C

1−γ
τ−1

1

∫

Ω

(|∇ψ|2 + |ψ||∆ψ|)
τ−γ
τ−1 .

This proves (2.5) with C = C2C
1−γ
τ−1

1 .

Lemma 2.2. Suppose that u is a positive solution of (2.1), which is stable outside
a compact set of R

N, then there exists R0 = R0(u) > 0 such that
(i) for every γ ∈ [1, 1 − 2τ + 2

√

τ(τ − 1)) and every r > R0 + 3, we have

(2.7)

∫

R0+2<|x|<r

(|∇(u
−γ+1

2 )|2 + uτ−γ)dx ≤ A+BrN−2( τ−γ
τ−1 ),

where A,B are positive constants depending on τ, γ,N,R0 but not r.
(ii) for every γ ∈ [1, 1− 2τ + 2

√

τ(τ − 1)) and every open ball BR(y) centered at
y with radius R such that B2R(y) ⊂ {x ∈ R

N : |x| > R0},we have

(2.8)

∫

R0+2<|x|<r

(|∇(u
−γ+1

2 )|2 + uτ−γ)dx ≤ CRN−2( τ−γ
τ−1 ),

where C is a positive constant independent of R and y.

Proof. Since u is stable outside a compact set of R
N. There exists a R0 > 0 such

that Proposition 2.1 is true with Ω = R
N \ BR0(0). We choose ϕ ∈ C2

c (R) satisfying
0 ≤ ϕ ≤ 1 everywhere on R and

ϕ(t) =

{

1 if |t| ≤ 1,
0 if |t| ≥ 2,

for s > 0, we take a function θs ∈ C2
c (R) such that 0 ≤ θs ≤ 1 and

θs(t) =

{

0 if |t| ≤ s+ 1,
1 if |t| ≥ s+ 2.

Now for every r > R0 + 3, we define a function ξr(x) ∈ C2
c (RN) by

ξr(x) =

{

θR0(|x|) if |x| ≤ R0 + 3,

ϕ( |x|
r

) if |x| ≥ R0 + 3,

then one can easily see that ξr ∈ C2
c (RN \BR0(0)) and satisfies 0 ≤ ξr ≤ 1 on R

N. We
choose m = 1 + INT[max{ τ−γ

τ−1 , 2}], where INT[s] denotes the integer part of the real

number s. We apply Proposition 2.1 with Ω = R
N \BR0(0) and obtain:

∫

{R0+2<|x|<r}
(|∇(u

−γ+1
2 )|2 + uτ−γ)dx

≤ C(τ,m, γ)

∫

{R0+2<|x|<r}
(|∇ξr |2 + |ξr||∆ξr |)

τ−γ
τ−1 dx

≤ C(τ,m, γ)[

∫

|x|≤R0+3

(|∇θR0 |2 + |θR0 ||∆θR0 |)
τ−γ
τ−1

+

∫

{r≤|x|≤2r}
(|∇ξr |2 + |ξr||∆ξr |)

τ−γ
τ−1 ]

≤ C1(τ, γ,m,N, θ,R0) + C2(τ, γ,m,N, ϕ)rN−2( τ−γ
τ−1 )dx,
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for all r > R0 + 3 and all γ ∈ [1, 1− 2τ + 2
√

τ(τ − 1)), hence the desired estimate (i)
follows.

To prove (ii), we fix m = 1 + INT[max{ τ−γ
τ−1 , 2}], and we take the test function ψ

in Proposition 2.1 as ψR,y = ϕ( |x−y|
R

), it leads to
∫

BR(y)

(|∇(u
−γ+1

2 )|2 + uτ−γ) ≤ C(τ,m, γ)

∫

RN

(|∇ψR,y|2 + |ψR,y||∆ψR,y|)
τ−γ
τ−1

= C(τ,m, γ)

∫

B2R(0)

(|∇ψR0,0|2 + |ψR0,0||∆ψR0,0|)
τ−γ
τ−1

≤ C(τ,m, γ,N, ϕ)RN−2( τ−γ
τ−1 ).

And this completes the proof of the estimates (ii).

3. Proof of the Theorem 1.2 with α = 0. With the help of Proposition 2.1
and Lemma 2.2, in this section we are concerned with the proof of Theorem 1.2 with
α = 0. We first prove the following:

Lemma 3.1. Let η > 0 and R0 be chosen as in Lemma 2.2. Assume u is a
solution which is stable outside a compact set in R

N, if 2 < N < 10, τ < Pc :=
(N−2)2−4N+8

√
N−1

(N−10)(N−2) , then ∃R1 = R1(τ,N, η, u) > R0 such that

(i)

∫

|x|≥R1

u(τ−1) N
2 < η,

(ii)There are constants C1 and C2 such that C1|x|−
2

τ−1 ≤ u(x) ≤ C2(1+ |x|− 2τ
τ−1 ).

Proof. We first prove (i). We observe that 2 ≤ N implies

(3.1) (τ − 1)
N

2
≤ (τ − 1).

On the other hand, let γM = 1 − 2τ +
√

τ(τ − 1), then limτ→−∞
τ−γM

τ−1 = 5 and

limτ→0−

τ−γM

τ−1 = 1, thus there must be a number τ0 such that N
2 = τ0−γM (τ0)

τ0−1 . We
claim τ0 = Pc. Indeed, a direct computation shows that τ0 satisfies

(N − 10)(N − 2)τ2
0 − 2[N2 − 8N + 4]τ0 + (N − 2)2 = 0.

The roots of the above equations are

τ1,2 =
(N − 2)2 − 4N ± 8

√
N − 1

(N − 10)(N − 2)
.

Since τ0 < 0 and (N−2)2−4N−8
√

N−1
(N−10)(N−2) > 0, we get τ0 = Pc. Note that the function τ−γ

τ−1

is strictly decreasing in τ , it follows that

(3.2) (τ − γM ) ≤ (τ − 1)
N

2
, for τ ≤ Pc.

At last, combine the inequalities (3.1) and (3.2) together with the continuity of
the function f(γ) = (τ − 1)N

2 − (τ − γ), we obtain that there exists γ1 ∈ [1, 1 − 2τ +

2
√

τ(τ − 1)) such that (τ − 1)N
2 = τ − γ1. Moreover the continuity of the function

g(γ, ǫ) = (τ − 1) N
2−ǫ

− (τ − γ) implies that ∃ǫ ∈ (0, 1] such that

(3.3) 1 ≤ (τ − 1)
N

2 − ǫ
− τ < 1 − 2τ + 2

√

τ(τ − 1).
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Hence by Lemma 2.2 (i), we have

∫

{R0+2<|x|<r}
u(τ−1) N

2 dx =

∫

{R0+2<|x|<r}
uτ−γ1dx

≤ A+BrN−2(
τ−γ1
τ−1 )

= A+Br0, for r > R0 + 3,

thus
∫

{|x|≥R0+2}
u(τ−1) N

2 < +∞.

Therefore there exists R1 = R1(τ,N, η, u) > R0 such that for any η > 0,

∫

{|x|≥R1}
u(τ−1)N

2 < η.

In order to prove (ii), we will need the following known results due to Gibarg and
Trudinger, see also Han [17].

Lemma 3.2 Let u ∈ H1
0 (Ω) be a positive smooth subsolution of

−∆u = d(x)u,

with d(x) ∈ Lα(Ω) for α > N
2 . Then for any y ∈ R

N,

sup
BR(y)

≤ C[R−N

∫

B2R(y)

up]
1
p ,

where C is dependent on |d(x)|L∞(Ω) and α,N.

Proof. This is more or less standard elliptic regularity, see Theorem 8.17 in [16].

Now we consider points y ∈ R
N such that |y| > 10R1, and let R = |y|

4 . Where
R1 > R0, and obviously we have

B2R(y) ⊂ {x ∈ R
N : |x| > R1} ⊂ {x ∈ R

N : |x| > R0}.

Observe that from (3.3) there exist ǫ ∈ (0, 1] such that ∃γ2 ∈ [1, 1 − 2τ +
√

τ(τ − 1))
such that (τ − 1) N

2−ǫ
= τ − γ2. We fix η > 0, and let w = 1

u
, then we have

∆w = [2
|∇u|2
u2

− uτ−1]w.

It deduces that

∆w + uτ−1w ≥ 0.

We apply Lemma 3.2 to the above inequality equation with d(x) = uτ−1 and

p = 2. Note that |d(x)| ∈ L
N

2−ǫ (B2R(y)). Thus

sup
BR(y)

|w| ≤ C(R−N
2 )||w||L2(B2R(y)).
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Using Hölder inequality, we get

sup
BR(y)

w ≤ C1R
N

(τ−1) N
2 ||w||

L
−(τ−1) N

2
(B2R(y))

= C1R
2

τ−1 ||w||
L

−(τ−1) N
2

(B2R(y).

It follows from (i) that ||w||
L

−(τ−1) N
2

(B2R(y) ≤ η, insert this result into the above

last inequality, we obtain |w(y)| ≤ C1R
2

τ−1 η = C2|y|
2

τ−1 , this implies that u(x) ≥
C|x|− 2

τ−1 . On the other hand by Theorem 18 in [22], we have u(x) ≥ C(1 + |x|− 2τ
τ−1 ).

This completes the proof of Lemma 3.1.

Proof of Theorem 1.2. We prove the theorem by contrary. We perform the
following Emden-fowler transformation

v(t, θ) = r
2

τ−1u(r, θ), t = ln r, r = |x|,

then v satisfies the following equation

vtt +Avt + ∆SN−1v +Bv − vτ = 0 in R × SN−1,

where A = (N − 2 − 4
τ−1), B = −[ 2

τ−1 (N − 2 − 2
τ−1)] and SN−1 is the unit sphere of

R
N, ∆SN−1 denotes the Laplace-Beltrami operator on SN−1. By Lemma 3.1 (ii), we

conclude that v(t, θ) ≥ C.

We state the following claim whose proof will be given later.

Claim. v(t, θ) ≤ C.

By the results of L. Simon [23], we have v(t, θ) → V (θ), and v(θ) satisfies

∆SN−1v +Bv − vτ = 0.

We consider the following ODE, namely

(3.4) ψtt +Aψt + (1 − τ)Bψ = 0.

Then a simple calculation implies that A2 − 4(1 − τ)B < 0 provided that 2 ≤ N <

2+ 4
τ−1(τ−

√

τ(τ − 1)). Thus one can easily deduce that the solution ψ of the equation
(3.4) has infinitely many zero points Ti, i = 1, 2, .... We choose two neighborhoods of
such Ti, i = 1, 2, ..., namely Ti, Ti+1 such that Ri = eTi , Ri+1 = eTi+1 large enough (at
least larger than R0). Suppose ϕi is the solution of the following problem:

∆ϕi +
τB

r2
ϕi = 0, ϕi(Ri) = ϕi(Ri+1) = 0.

Let ψi(x) be the function defined to be ϕi for |x| between Ri and Ri+1 and to be zero
otherwise, then ψi ∈ C2

c (RN \BR(0)) and ψi are orthogonal in L2(RN), using the fact

that u = r−
2

τ−1 v + o(1), we have

E(ψi) =

∫

RN\BR(0)

|∇ψi|2 + τ

∫

RN\BR(0)

uτ−1ψ2
i

=

∫

RN\BR(0)

|∇ψi|2 + τ

∫

RN\BR(0)

r−2vτ−1ψ2
i + o(1)

=

∫

RN\BR(0)

|∇ψi|2 +

∫ Ri+1

Ri

ψ2
i

r2

∫

SN−1

τvτ−1 + o(1).
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Now we multiply the equation of v: ∆SN−1v + Bv − vτ = 0 by v−1 and integrate by
parts to find

∫

SN−1

vτ−1 =

∫

SN−1

|∇v|2
v2

+B|SN−1| ≥ B|SN−1|,

insert this result into the above last equality we obtain

E(ψi) =

∫

RN\BR(0)

|∇ψi|2 + τ

∫

RN\BR(0)

uτ−1ψ2
i

=

∫

RN\BR(0)

|∇ψi|2 +

∫ Ri+1

Ri

ψ2
i

r2

∫

SN−1

τvτ−1 + o(1)

<

∫

RN\BR(0)

|∇ψi|2 +

∫ Ri+1

Ri

ψ2
i

r2

∫

SN−1

τB + o(1)

=

∫ Ri+1

Ri

|∇ψi|2|SN−1| +
∫ Ri+1

Ri

τB
ψ2

i

r2
|SN−1| + o(1)

= |SN1 |
∫ Ri+1

Ri

(|∇ψi|2 +
τB

r2
ψ2

i ) + o(1)

= 0.

This shows that

E(ψi) < 0.

Since there are infinitely many of such Ti, i = 1, 2, ..., consequently we can choose
infinitely many of such test function ψi ∈ C2

c (RN \ BR(0)) and ψi are orthogonal in
L2(RN) such that

E(ψi) =

∫

|∇ψi|2 + τ

∫

uτ−1ψ2
i < 0

and hence the Morse index of u must be infinity, a contradiction with our assumption.
Finally, we prove the Claim. In fact, suppose the claim is not true. Then there

exists (ti, θi) such that v(ti, θi) → +∞. Since v satisfies a linear equation

vtt +Avt + ∆SN−1v + V v = 0 in R × SN−1,

where |V | ≤ C. By Harnack inequality, we can find δ small, and T large such that
vτ−1(t, θ) < δ for t ∈ [ti, ti + T ].

We complete the proof of Theorem 1.2 with α = 0.

4. Proof of Theorem 1.2 with α > 0. In this section, we are concerned with
the more general equation:

(4.1) ∆u = |x|αuτ , α > 0, τ < 0 in R
N.

Since we are considering the solution which is stable outside a compact set in R
N. The

critical step is to prove the following integral inequality:

Lemma 4.1. Let η > 0 and R0 be chosen large enough. Assume that u is a
solution of (4.1), which is stable outside a compact set in R

N. If 2 ≤ N < 2 +
4+2α
τ−1 (τ −

√

τ(τ − 1)), then ∃R1 = R1(τ,N, η, u, α) > R0 such that



NONEXISTENCE OF POSITIVE FINITE MORSE INDEX SOLUTIONS 401

(i)

∫

|x|≥R1

|x|N
2 αu(τ−1) N

2 < η.

(ii)There exists constant C such that u(x) ≥ C|x|− 2+α
τ−1 .

Proof. Let û = R
α

τ−1 u, then û satisfies the following equation

(4.2) ∆û = (
|x|
R

)αû2.

Since we are going to consider a solution which is sable outside of a compact set in R
N,

it is sufficient to consider the equation in an annul domain, that C1R ≤ |x| ≤ C2R.

Hence, up to a constant, we apply Lemma 3.1 to the equation (4.2) to get:

(i)

∫

|x|≥R1

û(τ−1) N
2 < η.

(ii) There exists constant C such that û(x) ≥ C|x|− 2
τ−1 .

Note that û = R
α

τ−1u, and R = C|x|, the desired inequalities follows immediately.

Proof of Theorem 1.2 with α > 0. The idea is the same as in the case of α = 0
but with necessary modifications. We sketch it below. We perform the following
Emden-fowler transformation

v(t, θ) = r
2+α
τ−1 u(r, θ), t = ln r, r = |x|,

then v satisfies the following equation

vtt + Ãvt + ∆SN−1v + B̃v − vτ = 0 in R × SN−1,

where Ã = (N − 2 − 4+2α
τ−1 ), B̃ = −[ 2+α

τ−1 (N − 2 − 2+α
τ−1 )] and SN−1 is the unit sphere

of R
N, ∆SN−1 denotes the Laplace-Beltrami operator on SN−1. By Lemma 4.1 (ii),

we conclude that v(t, θ) ≥ C. And by the same arguments as in Section 3, we get
v(t, θ) ≤ C. Hence By the results of L.Simon [23], we have v(t, θ) → V (θ), and v(θ)
satisfies

∆SN−1v + B̃v − vτ = 0.

We consider the following ODE, namely

(4.3) ψtt + Ãψt + (1 − τ)B̃ψ = 0.

Then a simple calculation implies that Ã2−4(1−τ)B̃ < 0 provided that 2 ≤ N < 2+
4+2α
τ−1 (τ −

√

τ(τ − 1)). Thus one can easily deduce that the solution ψ of the equation
(4.3) has infinitely many zero points Ti, i = 1, 2, .... We choose two neighborhoods of
such Ti, i = 1, 2, ..., namely Ti, Ti+1 such that Ri = eTi , Ri+1 = eTi+1 large enough (at
least larger than R0). Suppose ϕi is the solution of the following problem:

∆ϕi +
τB̃

r2
ϕi = 0, ϕi(Ri) = ϕi(Ri+1) = 0.

Let ψi(x) be the function defined to be ϕi for |x| between Ri and Ri+1 and to be zero
otherwise, then ψi ∈ C2

c (RN \BR(0)) and ψi are orthogonal in L2(RN), using the fact

that u = r−
2+α
τ−1 v + o(1), we have
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E(ψi) =

∫

RN\BR(0)

|∇ψi|2 + τ

∫

RN\BR(0)

|x|αuτ−1ψ2
i

=

∫

RN\BR(0)

|∇ψi|2 + τ

∫

RN\BR(0)

r−2vτ−1ψ2
i + o(1)

=

∫

RN\BR(0)

|∇ψi|2 +

∫ Ri+1

Ri

ψ2
i

r2

∫

SN−1

τvτ−1 + o(1).

Now we multiply the equation of v: ∆SN−1v + B̃v − vτ = 0 by v−1 and integrate by
parts to find

∫

SN−1

vτ−1 =

∫

SN−1

|∇v|2
v2

+ B̃|SN−1| > B̃|SN−1|,

insert this result into the above last equality we obtain

E(ψi) =

∫

RN\BR(0)

|∇ψi|2 + τ

∫

RN\BR(0)

|x|αuτ−1ψ2
i

=

∫

RN\BR(0)

|∇ψi|2 +

∫ Ri+1

Ri

ψ2
i

r2

∫

SN−1

τvτ−1 + o(1)

<

∫

RN\BR(0)

|∇ψi|2 +

∫ Ri+1

Ri

ψ2
i

r2

∫

SN−1

τB̃ + o(1)

=

∫ Ri+1

Ri

|∇ψi|2|SN−1| +
∫ Ri+1

Ri

τB̃
ψ2

i

r2
|SN−1| + o(1)

= |SN1 |
∫ Ri+1

Ri

(|∇ψi|2 +
τB̃

r2
ψ2

i ) + o(1)

= 0.

This shows that

E(ψi) < 0.

Since there are infinitely many of such Ti, i = 1, 2, ..., consequently we can choose
infinitely many of such test function ψi ∈ C2

c (RN \ BR(0)) and ψi are orthogonal in
L2(RN) such that

E(ψi) =

∫

|∇ψi|2 + τ

∫

|x|αuτ−1ψ2
i < 0,

and hence the Morse index of u must be infinity, a contradiction with our assumption.
We complete the proof.
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