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Abstract. In this paper, we generalize the technique of anti-diffusive flux corrections for high
order finite difference WENO schemes solving conservation laws in [21], to solve Hamilton-Jacobi
equations. The objective is to obtain sharp resolution for kinks, which are derivative discontinuities
in the viscosity solutions of Hamilton-Jacobi equations. We would like to resolve kinks better while
maintaining high order accuracy in smooth regions. Numerical examples for one and two space
dimensional problems demonstrate the good quality of these Hamiltonian corrected WENO schemes.
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1. Introduction. In this paper, we consider the numerical solutions of the
Hamilton-Jacobi equations

ut +H(ux1, · · · , uxn
) = 0, u(x, 0) = u0(x). (1.1)

As is well known, solutions to (1.1) are Lipschitz continuous but could contain discon-
tinuous derivatives, even when the initial conditions are smooth. Derivative disconti-
nuities are observed as kinks in geometric structures. The nonuniqueness of solutions
to (1.1) also makes it necessary to define the concept of a viscosity solution, to single
out a unique, practically relevant solution. See Crandall and Lions [4].

In [5], Crandall and Lions proved convergence for first order monotone finite dif-
ference schemes to the viscosity solutions of (1.1). To solve (1.1) with higher order
accuracy, Osher and Sethian in [15] and Osher and Shu in [16] introduced a class
of high order essentially non-oscillatory (ENO) schemes, which are adapted from the
methodologies for hyperbolic conservation laws [7, 19, 20]. Weighted ENO (WENO)
schemes for conservation laws [14, 10] are adapted to solve the Hamilton-Jacobi equa-
tions in [9] for the rectangular meshes and in [22] for the triangular meshes. Runge-
Kutta discontinuous Galerkin methods for conservation laws [3, 2] are also adapted
to solve the Hamilton-Jacobi equations in [8, 11, 13]. Numerical results produced
by these high order schemes indicate convergence to the viscosity solutions of (1.1)
with high order accuracy in smooth regions and sharp resolutions of the derivative
discontinuities.

We now concentrate on the issue of sharp resolutions of the derivative disconti-
nuities, which is the main theme of this paper. High order finite difference WENO
schemes for solving Hamilton-Jacobi equations [9] do produce better resolutions for
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the derivative discontinuities than a low order scheme, especially for nonlinear prob-
lems. However, for linear problems, numerical results by high order schemes still
suffer from relatively poor resolutions of discontinuous derivatives comparing with
the resolution for nonlinear problems. This is a more serious issue for long time evo-
lution, when the resolution of kinks becomes progressively worse. Considering the
close link between Hamilton-Jacobi equations and conservation laws, it is natural to
adapt techniques of sharpening contact discontinuities for conservation laws to obtain
sharper resolution of derivative discontinuities for Hamilton-Jacobi equations. In this
paper, we extend our work in [21] of anti-diffusive flux corrections for high order finite
difference WENO schemes for conservation laws to solve Hamilton-Jacobi equations.
The technique we explored in [21] for sharpening contact discontinuities is adapted
to resolve derivative discontinuities for linear Hamilton-Jacobi equations both in one
space dimension and in two space dimensions.

This paper is organized as follows. In Section 2, we review briefly the anti-
diffusive flux correction technique developed in [21], in a finite volume framework
rather than in a finite difference framework as in [21]. This technique in a finite
volume framework for solving conservation law equations is then adapted to solve
one dimensional Hamilton-Jacobi equations in Section 3. In Section 4, we generalize
this Hamiltonian correction method to two (or higher) dimensional Hamilton-Jacobi
equations. We demonstrate the good numerical quality achieved by this Hamiltonian
correction method through extensive numerical examples in Section 5. Concluding
remarks are given in Section 6.

2. Flux corrections for high order finite volume WENO schemes. In this
section, we briefly review the flux correction technique developed and applied in [21]
for solving conservation law equations both in one dimension and in two dimensions.
However, instead of describing the technique in a finite difference framework as in
[21], we present the technique in a finite volume framework which is easier to adapt
to solve the Hamilton-Jacobi equations in next section.

2.1. Flux corrections for finite volume WENO schemes in one dimen-

sion. We consider the one dimensional conservation law

ut + f(u)x = 0 (2.1)

with f ′(u) > 0, for simplicity. The case with f ′(u) < 0 can be considered symmet-
rically. We reintroduce the flux correction technique in [21] by a third order TVD
Runge-Kutta method in time and a fifth order finite volume WENO discretization in
space, instead of the finite difference WENO discretization adopted in [21]. Notice
that the choice of fifth order WENO discretization in space and third order Runge-
Kutta method in time is just for the convenience of presentation: the flux correction
technique can be applied to WENO schemes of any order and also to other Runge-
Kutta methods. The full algorithm has the following form

ū(1) = ūn + ∆tL(ūn)

ū(2) = ūn +
1

4
∆tL(ūn) +

1

4
∆tL(ū(1)) (2.2)

ūn+1 = ūn +
1

6
∆tL(ūn) +

1

6
∆tL(ū(1)) +

2

3
∆tL(ū(2))

where ū denotes the cell average of the solution u, ∆t is the time step which can be
changed from step to step, and L denotes the spatial WENO operator to be described
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in detail below. In order to maintain the moving traveling wave solutions for piecewise
constant functions containing contact discontinuities, we modified the scheme (2.2) in
[21] by

ū(1) = ūn + ∆tL(ūn)

ū(2) = ūn +
1

4
∆tL′(ūn) +

1

4
∆tL(ū(1)) (2.3)

ūn+1 = ūn +
1

6
∆tL′′(ūn) +

1

6
∆tL(ū(1)) +

2

3
∆tL(ū(2))

where the operator L is defined by

L(ū)i = −λi

(

f̂a
i+ 1

2
− f̂a

i− 1
2

)

, (2.4)

with λi = ∆t
∆xi

, where ∆xi is the local mesh size of cell i, and the anti-diffusive

numerical flux f̂a is given by

f̂
a

i+ 1
2

= f
�
u
−

i+ 1
2

�
+ϕi minmod

�
ūi − ūi−1

λi

+ f
�
u
−

i− 1
2

�
− f

�
u
−

i+ 1
2

�
, f
�
u

+

i+ 1
2

�
− f

�
u
−

i+ 1
2

��
where u±

i+ 1
2

are the high order WENO reconstructions of the point values of u from

its cell averages ū, with stencils biasing to the left and to the right respectively, see
[10, 18] for details. The minmod function is defined as usual

minmod (a, b) =











0 a b ≤ 0

a a b > 0, |a| ≤ |b|
b a b > 0, |a| > |b|

The operator L′ is defined by

L
′

(ū)i = −λi

(

f̄a
i+ 1

2
− f̄a

i− 1
2

)

(2.5)

with the modified anti-diffusive flux f̄a given by

f̄a

i+ 1
2

=

8<:f

�
u−

i+ 1
2

�
+ ϕi minmod

�
4(ūi−ūi−1)

λi
+ f

�
u−

i− 1
2

�
− f

�
u−

i+ 1
2

�
, f

�
u+

i+ 1
2

�
− f

�
u−

i+ 1
2

��
f̂a

corresponding to the cases

{

b c > 0, |b| < |c|
otherwise

(2.6)

respectively, and the operator L′′ is defined by

L′′(ū)i = −λi

(

f̃a
i+ 1

2
− f̃a

i− 1
2

)

(2.7)

with the modified anti-diffusive flux f̃a given by

f̃
a

i+ 1
2

=

8<:f(u−

i+ 1
2

) + ϕi minmod
�

6(ūi−ūi−1)

λi
+ f

�
u−

i− 1
2

�
− f

�
u−

i+ 1
2

�
, f
�
u+

i+ 1
2

�
− f

�
u−

i+ 1
2

��
f̂a
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corresponding to the cases (2.6) respectively. Here b and c are defined as b = ūi−ūi−1

λi
+

f
(

u−
i− 1

2

)

− f
(

u−
i+ 1

2

)

, c = f
(

u+
i+ 1

2

)

− f
(

u−
i+ 1

2

)

and ϕi is a discontinuity indicator

with its value between 0 and 1. Ideally, ϕi should be close to 0 in smooth regions and
close to 1 near a discontinuity. Our original choice of ϕi can be found in [21] and a
somewhat improved choice is described in Section 2.2. We remark that the scheme
(2.3) with L, L′ and L′′ defined by (2.4), (2.5) and (2.7) is fifth order accurate in
space and third order accurate in time. The correction to the original WENO scheme

is no larger in magnitude than that of f
(

u+
i+ 1

2

)

− f
(

u−
i+ 1

2

)

, which is on the level of

truncation errors for the WENO schemes because both u+
i+ 1

2

and u−
i+ 1

2

are high order

approximations to the same point value u(xi+ 1
2
). This ensures that the high order

accuracy of the finite volume WENO schemes is achieved. The purpose of the extra
factor 4 in the first argument of the minmod function in the definition of f̄a and the
extra factor 6 in the first argument of the minmod function in the definition of f̃a is
to compensate for the coefficients 1

4 and 1
6 in front of L′ and L′′ respectively, so that

the final scheme could still maintain exactly traveling wave solutions of a piecewise
constant function. We refer to [21] for more details.

For the upwind WENO-Roe schemes [10], the numerical flux is chosen as f
(

u−
i+ 1

2

)

when f ′(u) > 0 and as f
(

u+
i+ 1

2

)

when f ′(u) ≤ 0. The scheme described above is

therefore a flux corrected WENO-Roe scheme. Due to the entropy violating possi-
bility of the Roe scheme, we only apply this technique on linear problems or linearly
degenerate fields of systems.

2.2. The discontinuity indicator. The discontinuity indicator ϕi is designed
such that it is close to 0 in smooth regions and close to 1 near a discontinuity. Out
of symmetry consideration and for the objective of a better description of the dis-
continuity positions, we modify the definition of ϕi in [21] slightly to the following
form:

ϕi =
βi

βi + γi

. (2.8)

with

αi = |ūi−1 − ūi|2 + ε, ξi = |ūi−1 − ūi+1|2 + ε, (2.9)

βi =
ξi

αi−1
+

ξi

αi+2
, γi =

|ūmax − ūmin|2
αi

.

Here ε is a small positive number taken as 10−6 in our numerical experiments, and
ūmax and ūmin are the maximum and minimum values of ūj for all cells. Clearly,
0 ≤ ϕi ≤ 1, and ϕi = O(∆x2) in smooth regions. Near a strong discontinuity,
γi ≪ βi, ϕi is close to 1.

2.3. Flux corrections for finite volume WENO schemes in two dimen-

sions. Two dimensional finite volume WENO schemes are similar to the schemes for
one dimension described above, with reconstruction from two dimensional cell aver-
ages to point values, which can be performed sequentially one dimension after another
for rectangular meshes. We refer to [17, 18] for more details. Thus, for example, af-
ter the reconstruction of the point values ui+ 1

2 ,j and ui,j+ 1
2

at the interfaces, for the
equation

ut + f(u)x + g(u)y = 0, f ′(u) > 0, g′(u) > 0,
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we present the anti-diffusive flux by

f̂
a

i+ 1
2

,j
= f

�
u
−

i+ 1
2

,j

�
+ ϕi,j minmod

�
ūi,j − ūi−1,j

dλx
i

+ f
�
u
−

i− 1
2

,j

�
− f

�
u
−

i+ 1
2

,j

�
, f
�
u

+

i+ 1
2

,j

�
− f

�
u
−

i+ 1
2

,j

��
where d = 2 is the dimension. For fixed j, ϕi,j has the same definition as in (2.8) in
one dimension. Symmetrically for the y direction, we have

ĝ
a

i,j+ 1
2

= g
�
u
−

i,j+ 1
2

�
+ ψi,j minmod

�
ūi,j − ūi,j−1

d λ
y
j

+ g
�
u
−

i,j− 1
2

�
− g

�
u
−

i,j+ 1
2

�
, g
�
u

+

i,j+ 1
2

�
− g

�
u
−

i,j+ 1
2

��
with the discontinuity indicator ψi,j defined similarly to the one dimensional case in
(2.8) in the y direction with fixed xi. The procedure described above applies to each
quadrature point along the cell interfaces to compute the numerical fluxes.

3. Hamiltonian corrected method for one dimensional Hamilton-Jacobi

equations. In this section, we consider the one dimensional Hamilton-Jacobi equa-
tion

ut +H(ux) = 0 (3.1)

with H ′(u) > 0, for simplicity. The other case H ′(u) < 0 can be considered symmet-
rically. The tight link between the Hamilton-Jacobi equation and the conservation
law equation (2.1) in one dimension makes it easy to adapt schemes for conservation
laws to schemes for Hamilton-Jacobi equations [15]. We will adapt the flux correc-
tion technique, developed in [21] and reviewed in the previous section, for sharpening
contact discontinuities of high order WENO schemes for solving conservation laws,
to sharpen kinks in the solutions of linear Hamilton-Jacobi equations. We start with
the adaptation of the first order scheme in [6] to the Hamilton-Jacobi equation.

3.1. First order Hamiltonian corrected method. We use the explicit form,
interpreted in [1], of the limited down-wind scheme reintroduced in [6]. We refer
the details of the limited down-wind scheme to [6]. Its simple explicit equivalent
finite volume scheme for the conservation law (2.1) with f ′(u) > 0 has the following
definition for the numerical flux

f̂a
i+ 1

2
= f(ūi) + minmod

(

ūi − ūi−1

λi

+ f(ūi−1) − f(ūi), f(ūi+1) − f(ūi)

)

. (3.2)

A relaxed version of (3.2) we have used is

f̂a
i+ 1

2
= f(ūi) + ϕi minmod

(

ūi − ūi−1

λi

+ f(ūi−1) − f(ūi), f(ūi+1) − f(ūi)

)

, (3.3)

where ϕi is the discontinuity indicator given by (2.8).
This first order anti-diffusive scheme has the following property, which was proved

in [6, 1].

Proposition 3.1. Assume that the CFL condition λi f
′(u) ≤ 1 holds, and the

numerical flux is defined by (3.3), then the scheme

ūn+1
i − ūn

i + λi

(

f̂n
i+ 1

2
− f̂n

i− 1
2

)

= 0 (3.4)
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satisfies the maximum principle

min
k
ūn

k ≤ ūn+1
i ≤ max

k
ūn

k .

To solve the Hamilton-Jacobi equation (3.1), we define the first order divided
difference operator D− by

D−ui =
ui − ui−1

∆x
,

where ui = u(xi) is the point value of the solution u and for simplicity we assume
that the mesh size ∆x is a constant. This operator actually defines a cell average for
ux as it equals 1

∆x

∫ xi

xi−1
ux dx. We adapt the finite volume scheme (3.4) and obtain

the following corrected numerical Hamiltonian

Ĥ
a
i = H(D−ui) (3.5)

+ ϕi minmod

�
D−ui −D−ui−1

λi

+H(D−ui−1) −H(D−ui),H(D−ui+1) −H(D−ui)

�
to form the following scheme

un+1
i − un

i + ∆tĤa
i = 0 (3.6)

for solving the Hamilton-Jacobi equation (3.1). Parallel to Proposition 3.1, we have
the following property for this first order Hamiltonian corrected scheme:

Proposition 3.2. Assume that the CFL condition λi H
′(u) ≤ 1 holds, and

the numerical Hamiltonian is defined as in (3.5), then the scheme (3.6) satisfies the
maximum principle for the first order divided difference

min
k
D−u

n
k ≤ D−u

n+1
i ≤ max

k
D−u

n
k . (3.7)

For the proof, we simply need to take the operator D− on (3.6) and then use
Proposition 3.1.

An immediate conclusion we can reach from Proposition 3.2 is

Proposition 3.3. Assume that the CFL condition λiH
′(u) ≤ 1 holds, and the

numerical Hamiltonian is defined as in (3.5), then the scheme (3.6) is total variation
bounded (TVB)

N
∑

i=1

|un
i − un

i−1| ≤ Lmax
i

|D−u
0
i | (3.8)

for any time level n, where L is the length of the domain for computation.
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3.2. High order Hamiltonian corrected method. Using the first order di-
vided differences D−ui and using the standard WENO procedure, we can reconstruct
D−

−ui and D+
−ui as the left and right high order approximations of ux(xi). This

WENO reconstruction is given in details in [9]. We then adapt our anti-diffusive fifth
order finite volume WENO scheme, presented in Section 2, to the following Hamil-
tonian corrected method for solving the Hamilton-Jacobi equation (3.1):

u(1) = un + ∆tL(un)

u(2) = un +
1

4
∆tL′(un) +

1

4
∆tL(u(1)) (3.9)

un+1 = un +
1

6
∆tL′′(un) +

1

6
∆tL(u(1)) +

2

3
∆tL(u(2))

where the operator L is defined by

L(u)i = −Ĥa
i (3.10)

with the numerical Hamiltonian Ĥa given by

Ĥa
i = H(D−

−ui)

+ ϕi minmod

(

D−ui −D−ui−1

λi

+H(D−
−ui−1) −H(D−

−ui), H(D+
−ui) −H(D−

−ui)

)

The operator L′ is defined by

L
′

(u)i = −H̄a
i (3.11)

with the numerical Hamiltonian H̄a given by

H̄
a
i =

(
H(D−

−
ui) + ϕi minmod

�
4(D

−
ui−D

−
ui−1)

λi
+ H(D−

−
ui−1) − H(D−

−
ui), H(D+

−
ui) − H(D−

−
ui)

�
Ĥa

corresponding to the cases (2.6) respectively; the operator L′′ is defined by

L′′(u)i = −H̃a
i (3.12)

with the numerical Hamiltonian H̃a given by

H̃
a
i =

(
H(D−

−
ui) + ϕi minmod

�
6(D

−
ui−D

−
ui−1)

λi
+ H(D−

−
ui−1) − H(D−

−
ui), H(D+

−
ui) − H(D−

−
ui)

�
Ĥa

corresponding to the cases (2.6) respectively, with b = D−ui−D−ui−1

λi
+H(D−

−ui−1)−
H(D−

−ui) and c = H(D+
−ui) − H(D−

−ui). Finally, the kink indicator ϕi is again
given by (2.8), with the cell averages ū in (2.9) replaced by the first order divided
differences D−u. This relaxation coefficient ϕi, which is a number between 0 and 1,
is again introduced to give correction to the numerical Hamiltonians around kinks,
and meanwhile to inherit the original WENO scheme in smooth regions.

Once again, we remark that the scheme (3.9) is fifth order accurate in space
(when the WENO reconstruction is fifth order accurate) and third order accurate in
time. The correction to the original WENO Hamiltonian is no larger in magnitude
than that of H(D+

−ui) −H(D−
−ui), which is on the level of truncation errors for the

WENO schemes because both D+
−ui and D−

−ui are high order approximations to the
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point value ux at the same location xi. This guarantees that the high order accuracy
of the WENO scheme is maintained. As before, the choice of fifth order WENO
discretization in space and third order Runge-Kutta method in time is just for the
convenience of presentation: the Hamiltonian correction technique can be applied to
WENO schemes of any order and also to other Runge-Kutta methods.

4. Hamiltonian corrected method for two dimensional Hamilton-Jacobi

equations. We have presented the flux corrected methods for high order finite dif-
ference and finite volume WENO schemes for solving two dimensional conservation
laws in [21] and in Section 2, respectively. In this section, we directly adapt the
anti-diffusive WENO schemes for two dimensional conservation law equations to two
dimensional Hamilton-Jacobi equations

ut +H(x, y, ux, uy) = 0. (4.1)

For simplicity, we assume ∂H
∂ux

> 0 and ∂H
∂uy

> 0. Other cases can be treated symmet-

rically. Our Hamiltonian corrected scheme is given as follows

u(1) = un + ∆tL(un)

u(2) = un +
1

4
∆tL′(un) +

1

4
∆tL(u(1)) (4.2)

un+1 = un +
1

6
∆tL′′(un) +

1

6
∆tL(u(1)) +

2

3
∆tL(u(2))

with the operator L(u) defined by

L(u)ij = −(Ĥi,j + Cx
i,j + C

y
i,j) (4.3)

where Ĥ is the upwind numerical Hamiltonian

Ĥi,j = H(xi, yj , D
−
x ui,j , D

−
y ui,j),

andCx
i,j andCy

i,j are the Hamiltonian corrections in the x and y directions respectively,
defined by

C
x
i,j = ϕi,j minmod

�
Dxui,j −Dxui−1,j

d · λx
i

+ Ĥi−1,j − Ĥi,j , H(xi, yj ,D
+
x ui,j ,D

−
y ui,j) − Ĥi,j

�
C

y
i,j = ψi,j minmod

�
Dyui,j −Dyui,j−1

d · λ
y
j

+ Ĥi,j−1 − Ĥi,j ,H(xi, yj ,D
−
x ui,j ,D

+
y ui,j) − Ĥi,j

�
where d = 2 is the dimension. Same as in the one dimensional case, we fix j to define
Dxui,j as

Dxui,j =
ui,j − ui−1,j

∆x
i

and symmetrically, we fix i to define Dyui,j as

Dyui,j =
ui,j − ui,j−1

∆y
j

.

We define the relaxation coefficients ϕi,j and ψi,j exactly the same way as in the one
dimensional case in Section 3 by fixing j and i respectively. Finally, the modified
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Table 5.1

Errors and numerical orders of accuracy of the fifth order Hamiltonian corrected fifth order
WENO scheme and the original fifth order WENO scheme for the one dimensional linear Hamilton-
Jacobi equation (5.1).

Hamiltonian corrected WENO original WENO
N L1 error order L∞ error order L1 error order L∞ error order
40 3.33E-6 5.34E-6 4.46E-5 7.72E-5
80 1.39E-6 4.58 2.20E-6 4.60 1.48E-6 4.91 2.41E-6 5.00
160 4.66E-8 4.89 7.35E-8 4.78 4.73E-8 4.97 7.51E-8 5.00
320 1.48E-9 4.97 2.34E-9 4.97 1.49E-9 4.99 2.35E-9 4.99
640 4.66E-11 4.98 7.33E-11 4.99 4.66E-11 5.00 7.34E-11 5.00

operators L′ and L′′ can be defined similarly as before with the extra factors 4 and 6
in the first arguments of the minmod functions respectively under the condition (2.6).

Again, this is a high order scheme according to the same observation that the
Hamiltonian correction is no larger in magnitude than the truncation error of the
WENO reconstruction as in the one dimensional case. We will display numerical
effect of this scheme in next section, especially its quality in capturing kinks.

5. Numerical results. We give extensive numerical examples in this section to
demonstrate the effect of the schemes we have developed in previous sections. Notice
that all PDEs in this section are understood to be the Hamilton-Jacobi equations
and we seek approximations to the viscosity solutions, which are continuous but may
contain discontinuous derivatives. The CFL number is taken as 0.3, except for the
accuracy tests where the CFL numbers are taken smaller for more refined meshes to
guarantee that spatial errors dominate.

5.1. One dimensional problems. In this subsection we test our schemes on
one dimensional scalar linear Hamilton-Jacobi equations. The computational domain
is −1 < x ≤ 1 and periodic boundary conditions are used for all problems in this
subsection.

Example 5.1. We test the accuracy of the Hamiltonian corrected fifth order
WENO scheme for the linear Hamilton-Jacobi equation

ut + ux = 0 (5.1)

with the initial condition

u(x, 0) = sin(πx)

up to t = 2. The results and a comparison with the original fifth order WENO scheme
[9] are given in Table 5.1. We can clearly see that fifth order accuracy is achieved and
the errors of the fifth order Hamiltonian corrected WENO scheme are comparable
with that of the original fifth order WENO scheme.

Example 5.2. We solve the linear Hamilton-Jacobi equation (5.1) with the initial
condition

u(x, 0) =











0, x ≤ −0.5

0.5− | x | | x |< 0.5

0 x > 0.5.

(5.2)
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Fig. 5.1. Example 5.2. One dimensional linear Hamilton-Jacobi equation. 80 uniform mesh
points. Solid lines: the exact solution; solid rectangle symbols: numerical solution. Left: original
fifth order WENO; right: Hamiltonian corrected fifth order WENO. Top: t = 10, bottom: t = 100.

The results at t = 10 (after 5 time periods) and t = 100 (after 50 time periods) are
shown in Figure 5.1. We can see clearly that the regular fifth order WENO scheme
progressively smears the kink, while the Hamiltonian corrected fifth order WENO
scheme has a sharp resolution for the kink.

Example 5.3. We solve the linear Hamilton-Jacobi equation (5.1) with the initial
condition u(x, 0) = v(x− 0.5) where

v(x) = −
(√

3

2
+ 4.5 +

2 π

3

)

(x+1)+



















2 cos
(

3 π
2 x

2 −
√

3
)

, −1 < x ≤ − 1
3

1.5 + 3 cos(2πx), − 1
3 < x ≤ 0

7.5 − 3 cos(2πx), 0 < x ≤ 1
3

28+4 π+cos(3πx)
3 + 6πx(x − 1) otherwise.

The initial condition of this problem contains kinks and smooth structures. The
results at t = 10 (after 5 time periods) and t = 100 (after 50 time periods) are shown in
Figure 5.2. We can again see better resolution achieved by the Hamiltonian corrected
fifth order WENO scheme than that by the regular fifth order WENO scheme.
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Fig. 5.2. Example 5.3. One dimensional linear Hamilton-Jacobi equation. 200 uniform mesh
points. Solid lines: the exact solution; solid rectangle symbols: numerical solution. Left: original
fifth order WENO; right: Hamiltonian corrected fifth order WENO. Top: t = 10, bottom: t = 100.

5.2. Two dimensional problems. In this subsection we test our schemes on
two dimensional linear Hamilton-Jacobi equations. The computational domain is
(x, y) ∈ [−1, 1]2 with periodic boundary conditions.

Example 5.4. We solve the two dimensional linear Hamilton-Jacobi equation

ut + ux + uy = 0 (5.3)

with the initial condition given by:

u(x, y, 0) =











0, 0.7 ≤ r

0.7 − r, 0.2 < r < 0.7

0.5 r ≤ 0.2

with r =
√

x2 + y2. The results at t = 2 (after 1 time period) and at t = 20 (after
10 time periods) are given in Figures 5.3 and 5.4 for the one dimensional cuts and in
Figure 5.5 for the two dimensional surfaces. We can observe a significant improvement
of the Hamiltonian corrected fifth order WENO scheme over the regular fifth order
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Fig. 5.3. Example 5.4. 80 × 80 uniform mesh. t = 2. Solid line: the exact solution; Filled
rectangles: the numerical solution. Top: one dimensional cut of 45◦ with the x-axis; bottom: one
dimensional cut of 0◦ with the y-axis. Left: regular fifth order WENO scheme; Right: Hamiltonian
corrected fifth order WENO scheme.

WENO scheme around the resolution of the kinks, especially for longer time. This
improvement can be seen most clearly in the zoomed surface plots in Figure 5.5.

Example 5.5. We solve the two dimensional linear Hamilton-Jacobi equation
with variable coefficients

ut − yux + xuy = 0 (5.4)

with an initial condition

u(x, y, 0) =











0, 0.3 ≤ r

0.3 − r, 0.1 < r < 0.3

0.2 r ≤ 0.1

with r =
√

(x− 0.4)2 + (y − 0.4)2. This is a solid body rotation around the origin.
The computational result at t = 2π (after one rotation) is given in Figures 5.6 and
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Fig. 5.4. Example 5.4. 80 × 80 uniform mesh. t = 20. Solid line: the exact solution; Filled
rectangles: the numerical solution. Top: one dimensional cut of 45◦ with the x-axis; bottom: one
dimensional cut of 0◦ with the y-axis. Left: regular fifth order WENO scheme; Right: Hamiltonian
corrected fifth order WENO scheme.

5.7. We can observe a significant improvement of the Hamiltonian corrected fifth
order WENO scheme over the regular fifth order WENO scheme in the resolution of
the kinks.

Example 5.6. We solve the two dimensional linear Hamilton-Jacobi equation
with variable coefficients

ut + f(x, y, t)ux + g(x, y, t)uy = 0 (5.5)

with an initial condition

u(x, y, 0) =











0, 0.3 ≤ r

0.3 − r, 0.1 < r < 0.3

0.2 r ≤ 0.1

where r =
√

(x− 0.4)2 + (y − 0.4)2. The velocity of the advection depends
on x, y and t as f(x, y, t) = sin2(πx) sin(2πy) cos( t

T
π) and g(x, y, t) =
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− sin2(πy) sin(2πx) cos( t
T
π). The period of deformation is T = 1.5. This is a nu-

merical test for incompressible flow first introduced by LeVeque in [12]. During the
evolution, the initial data is severely deformed, and we can see this in Figure 5.8 at
t = 3.75 (after 2.5 periods). The computational results at t = 1.5 (after one period)
and t = 6.0 (after four periods) are given in Figures 5.9, 5.10 and 5.11. We can
again observe a significant improvement of the Hamiltonian flux corrected fifth order
WENO scheme over the regular fifth order WENO scheme in the resolution of the
kinks.

6. Concluding remarks. We have generalized the anti-diffusive flux correction
techniques developed in [21] for conservation law equations to Hamilton-Jacobi equa-
tions. Numerical results both in one space dimension and two space dimensions are
given. High order of accuracy of regular WENO schemes for Hamilton-Jacobi equation
is maintained, and a sharp resolution of kinks in the solution of linear Hamilton-Jacobi
equations is obtained.
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Fig. 5.5. Example 5.4. Surface of 80 × 80 uniform mesh. t = 20. Top: the exact solution;
middle: regular fifth order WENO; bottom: Hamiltonian corrected fifth order WENO. Left: full view
of the surface; Right: zoomed view of the angle with the x-y plane.
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Fig. 5.6. Example 5.5. 160 × 160 uniform mesh. t = 2π. Solid line: the exact solution; Filled
rectangles: the numerical solution. Top: one dimensional cut of 45◦ with the x-axis; bottom: one
dimensional cut of 0◦ with the y-axis. Left: regular fifth order WENO scheme; Right: Hamiltonian
corrected fifth order WENO scheme.
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Fig. 5.7. Example 5.5. Surface of 160 × 160 uniform mesh. t = 2π. Top: the exact solution;

middle: regular fifth order WENO; bottom: Hamiltonian corrected fifth order WENO. Left: full view
of the surface; Right: zoomed view of the angle with the x-y plane.
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Fig. 5.8. Example 5.6. Contours at t = 3.75. Left: the regular fifth order WENO scheme;
Right: Hamiltonian corrected fifth order WENO scheme.
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Fig. 5.9. Example 5.6. 160 × 160 uniform mesh. t = 1.5. Solid line: the exact solution; Filled
rectangles: the numerical solution. Top: one dimensional cut of 45◦ with the x-axis; bottom: one
dimensional cut of 0◦ with the y-axis. Left: regular fifth order WENO scheme; Right: Hamiltonian
corrected fifth order WENO scheme.
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Fig. 5.10. Example 5.6. 160×160 uniform mesh. t = 6.0. Solid line: the exact solution; Filled
rectangles: the numerical solution. Top: one dimensional cut of 45◦ with the x-axis; bottom: one
dimensional cut of 0◦ with the y-axis. Left: regular fifth order WENO scheme; Right: Hamiltonian
corrected fifth order WENO scheme.
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Fig. 5.11. Example 5.6. Surface of 160 × 160 uniform mesh. t = 6.0. Top: the exact solution;
middle: regular fifth order WENO; bottom: Hamiltonian corrected fifth order WENO. Left: full view
of the surface; Right: zoomed view of the angle with the x-y plane.


