
Japan J. Indust. Appl. Math., 23 (2006), 127–138 Area 〈3〉

A Sweep-Line Algorithm for the Inclusion

Hierarchy among Circles

Deok-Soo Kim†1,∗, Byunghoon Lee†2 and Kokichi Sugihara†3

†1Department of Industrial Engineering, Hanyang University,
17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
E-mail: dskim@hanyang.ac.kr

†2Voronoi Diagram Research Center,

Department of Industrial Engineering, Hanyang University,
17 Haengdang-dong, Seongdong-gu, Seoul 133-791, Korea
E-mail: bhlee@voronoi.hanyang.ac.kr

†3Department of Mathematical Informatics,
Graduate School of Information Science and Technology,
University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
E-mail: sugihara@mist.i.u-tokyo.ac.jp

Received January 24, 2005

Revised October 31, 2005

Suppose that there are a number of circles in a plane and some of them may contain several
smaller circles. In this case, it is necessary to find the inclusion hierarchy among circles
for the various applications such as the simulation of emulsion and diameter estimation

for wire bundles. In this paper, we present a plane-sweep algorithm that can identify
the inclusion hierarchy among the circles in O(n log n) time in the worst-case. Also,
the proposed algorithm uses the sweep-line method and a red-black tree for the efficient
computation.

Key words: nesting of circles, plane sweep, red-black, interval search, computational ge-
ometry

1. Introduction

Suppose that a set of circles C = {c1, c2, . . . , cn} are given, where ci is the
circle centered at (xi, yi) with radius ri. We assume that a circle may contain
other circles while the intersections between circles on their circumferences are
not allowed. Given such a set C, we want to construct the hierarchy of inclusion
relationship among the circles. We propose a worst case O(n log n) time algorithm
based on a sweep-line approach and a red-black tree as a primal data structure.

Such a problem occurs in many applications. An emulsion, for example, usually
consists of two different kinds of liquids where one with a less total volume is
distributed in the other in the form of small particles [12] [14]. In the emulsion,
particles attract each other via a governing force which is usually represented by a
function of two factors: the radii of both particles and the distance between them.
Note that the force of attraction is inversely proportional to the distance.

Due to the attraction, small particles in the earlier state get closer to each other
to collide and eventually agglomerate to form a larger particle. Hence, a product

∗Corresponding author.



128 D.-S. Kim, B. Lee and K. Sugihara

in an emulsion state may change its properties and qualities over time. Therefore,
the particle dynamics in an emulsion are closely related to the proximity among
particles.

Fig. 1 (a) illustrates a photograph of an emulsion, and Fig. 1 (b) shows an
enlargement of the particle in the square in Fig. 1 (a). As illustrated in the Fig. 1 (b),
the particle contains several smaller particles inside which are also in the state
of emulsion. It turns out that the agglomeration behavior of the subsystem for
the smaller particles in a larger particle is identical to the higher level system
among larger particles. However, both systems work independently. Note that the
emulsion nested as described in the above is called a multiple emulsion.

In the analysis of such a multiple emulsion, the initial state of the system is
usually identified by a photograph taken by a microscope and therefore the obtained
data is 2D rather than 3D. Hence, in order to perform the analysis, it is necessary to
extract the hierarchy of inclusion relationship among the circles and calculate inter-
and intra-attractive forces among the circular particles. Fig. 1 (b) shows particles
as circles in a plane and the centers and radii of these circles can be obtained by
an image processing technique such as [9] [10].

(a) (b)

Fig. 1. An example of a multiple emulsion, (a) the top-most level,

(b) the details inside a particle.

A similar phenomenon exists in other engineering disciplines such as colloids
and ceramics, and their time behavior can be analyzed in a similar manner [5].
Even though such products are very common in an everyday life, there has not
been a convenient computational tool to analyze the time behavior effectively and
efficiently. Since physical experiments are usually expensive and time consuming,
a computational simulation is getting rather important alternative for the compet-
itiveness in the product development.

To devise an efficient simulation tool for such cases, algorithms and data struc-
tures for computing and storing the proximity among particles in an appropriate
form are inevitable. One of the best alternative for such a proximity representation



Sweep-Line Algorithm for the Inclusion Hierarchy among Circles 129

is Voronoi diagram of particles. In particular, the Euclidean Voronoi diagrams of
circles, often called an additively weighted Voronoi diagram, can be most appropri-
ate for such a problem. Once a Voronoi diagram is constructed, various problems
such as finding the shortest path and avoiding circular obstacles can be efficiently
solved [13] [15, p. 214].

Algorithms for constructing a Euclidean Voronoi diagram of circles and a Eu-
clidean Voronoi diagram of circles contained in a larger circle have been developed
very recently [6] [7] [8]. Fig. 2 (a) shows an example of the Euclidean Voronoi dia-
gram of circles contained in a larger circle. To construct the diagram efficiently for
a multiple emulsion, it is necessary to identify the hierarchy of inclusion relation-
ship among particles in the photograph. Then, the Euclidean Voronoi diagrams for
circular particles can be constructed for each level in the hierarchy independently.
Fig. 2 (b) shows a Euclidean Voronoi diagram of circles in four different levels in a
hierarchy.

(a) (b)

Fig. 2. Voronoi diagrams for circles in a large circle. (a) a single depth case,

(b) a multiple depth case.

2. Inclusion Hierarchy and the Sweep-Line Approach

Suppose that we are given with nine circles as shown in Fig. 3 (a), and the
inclusion hierarchy among the circles is represented as a tree shown in Fig. 3 (b).
Note that the circumferences of the circles do not intersect each other, but some
circles are completely contained in some others. In the tree in Fig. 3 (b), c1, c4, and
c9 are the top-most circles in the hierarchy and placed in the node of the highest
level, except the root. In this example, c9 does not contain any other circle while
c1 contains two circles which do not contain any other circle. In the case of c4, it
contains two circles where one of them again contains two other circles.

To construct the inclusion hierarchy among circles, we propose an algorithm
with O(n log n) time in the worst case based on a plane-sweep technique which is











134 D.-S. Kim, B. Lee and K. Sugihara

Algorithm (Construction of inclusion hierarchy)

Input : A set of circles C = {c1, c2, . . . , cn} in the plane.
Output : An inclusion hierarchy among the circles.

Procedure:
1. Initialize the interval list I as I = (i0). I is maintained in a red-black tree.
2. Calculate the extreme points of the circles in C, and store them in an array E.
3. Sort the extreme points in E in the nondecreasing order of their x coordinates,

and let P = (p1, p2, . . . , p2n) be the resulting event list.
4. For j ← 1 until 2n do

if pj is an opening event, then do
begin
find the interval i = (y, y′) including pj from the red-black tree I;
if there is a circle ck that includes i,

report ��the circle ck includes the circle c(pj)′′;
else

report ��no circle includes the circle c(pj)′′;
generate two new intervals i′ = (y, y(pi)), i′′ = (y(pi), y′), and

insert them in the list I;
end

else
delete from I the two intervals associated with the circle c(pj);

3. Data Structure

Since the design of appropriate data structure is essential for the design of the
algorithm, we explain the data structures for representing the inclusion hierarchy.
For the efficiency of our algorithm, we have used a red-black tree as the primary
data structure for the intervals and some secondary data structures for circles,
extreme points and intervals.

A circle is associated with its center, the radius, the left and right extreme
points. In addition, an extreme point, either Li or Ri, is represented by its X-
coordinate value, a pointer to its generating circle, and a pointer to an interval
created at the extreme point as a zero-interval. Note that an extreme point is
also pointed from the corresponding generating circle. However, the Y -coordinate
value of an extreme point needs not be explicitly stored since it is identical to the
Y -coordinate of the center of the generating circle.

An interval is represented by a lower value, an upper value, and three pointers
to related circles. There is a pointer, denoted as CC_PTR, to a containing circle
from an interval in which the interval is contained and the value of this pointer
is determined when the interval is created. When the interval is split by a new
leftmost extreme point, this pointer is duplicated to the non-zero-interval. Two



Sweep-Line Algorithm for the Inclusion Hierarchy among Circles 135

more pointers are UC_PTR and BC_PTR pointing to circles which yield the upper and
the lower values of the interval, respectively.

In Fig. 6 (b), for example, both i2 and i5 point to c1, while i4 points to c2 as
their containing circles, in their CC_PTR pointers. The CC_PTR pointer of an interval
to its containing circle is used to determine the hierarchical relationship between
two circles in O(1) time. For example, since L2 lies in the interval i2 which points
c1 as its generating circle, the decision that c1 contains c2 can be made immediately
at L2 by simply checking which circle i2 points as a containing circle. Due to two
more pointers UC_PTR and BC_PTR, new values of the upper and the lower of an
interval can be also computed in O(1) time for the sweep-line at each new event.

On the other hand, the intervals are maintained in two different data structures
simultaneously: a doubly-linked list and a red-black tree. Intervals are stored in
a doubly-linked list in the ascending or descending order of the interval values so
that the immediate lower and upper interval values can be determined in O(1) time.
This is necessary for the constant time update of new interval values. In addition,
an extreme point and the generating circle for the extreme point are pointed from
each other. At the closing event, therefore, we can also find the interval to be
deleted in O(1) time.

At the same time, the intervals are also maintained in a red-black tree to
facilitate faster operations on the intervals. In the red-black tree, operations such
as insertion, search and deletion have O(log n) time complexity in the worst-case.

4. Red-Black Tree

The intervals created by the sweep-line play the major role in the construction
of inclusion hierarchy among circles. Since the efficient representation intervals is
of importance and the intervals are already ordered according to their Y -coordinate
values, the binary search tree is naturally considered as a primary data structure.
Among various binary search trees including AVL and (2,4) trees, we employed a
red-black tree to store the interval list [3, p. 253] [4, p. 379]. Even though AVL
and (2,4) trees also provide search, insert, and delete operations having O(log n)
worst-case time complexity like a red-black tree, they have some drawbacks.

In the case of the AVL tree, when an insertion occurs, one tri-node restructur-
ing operation, called a rotation, is sufficient to restore the height-balance property
globally. After deletion of an element deletion, however, it is necessary for an AVL-
tree to do O(log n) restructuring to restore the height-balance property globally.
Similarly, the (2,4) tree may require several fusing and split operations to be con-
ducted after an insertion or deletion. On the other hand, a red-black tree, requires
only O(1) operation after insertion or deletion to make the tree balanced [4, p. 416].

4.1. Interval search
Each time the sweep-line hits a new circle, a new leftmost extreme point is

produced and consequently we need to locate in which interval the extreme point
lies. Since this search decides the hierarchical relationship between two circles, it



136 D.-S. Kim, B. Lee and K. Sugihara

should be done efficiently. Since the intervals are stored in a red-black tree using
the interval values as keys, the appropriate interval can be found in O(log n) time.

Note, however, that the upper and the lower values of an interval, in particular
the interval that the current extreme point lies in, are computed from the old sweep-
line at the previous event. Hence, it is necessary to update the interval values before
the search for an interval containing a current extreme point.

4.2. Interval insertion
When the sweep-line hits a leftmost extreme point Lm of a circle at Sm, two

new intervals are created. Let ik+1 and ik+2 be those new intervals and suppose
that ik contains Lm.

Then, ik+1 and ik+2 should be inserted below the interval ik containing the
corresponding leftmost extreme point Lm. Using the standard insertion operation
for a red-black tree, these new intervals can be inserted into the tree in O(log n)
time. After the interval ik is found in O(log n) time in the tree, new intervals are
also maintained in the linked list in O(1) time.

4.3. Interval deletion
When a closing event occurs at the rightmost extreme point Rm, appropriate

intervals corresponding to Lm have to be deleted from the data structure. Since the
closing event at Rm means that the corresponding circle cm is now being closed,
two intervals related to the circle should be removed from the interval set. Note
that Rm has a pointer to cm, and cm has also a pointer to those intervals. Hence,
those intervals can be deleted from the interval list in O(1) time and can be also
deleted from the interval tree using the standard delete operation for a red-black
tree in O(log n) time in the worst-case. However, it should be cautioned that the
interval values of the intervals immediately before and after the deleted intervals
should be updated by merging two intervals into one. Note that it can be done in
O(1) time.

5. Time Complexity

Given n circles in the plane, the time complexity of the proposed algorithm
is O(n log n) time in the worst-case. In the first step, a sorted extreme point list
can be constructed in O(n log n) time in the worst-case. In addition, the proposed
algorithm traverses each point in the sorted extreme point list only once.

At each leftmost extreme point in the extreme point list, two intervals are
created and inserted to the interval tree, stored in a red-black tree, as explained
in the previous section. Then, an interval search operation should be performed
so that two new intervals can be inserted underneath the interval found in the
tree. On the other hand, at each rightmost extreme point, two intervals are deleted
from the interval tree. Both of insertion and deletion are done in O(log n) time
in the worst-case. The tree restructuring operation which has to be done after
the insertion or deletion takes only O(1) time in the worst-case for a red-black tree.
Hence, all three operations, the interval insertion, search, and deletion, can be done



Sweep-Line Algorithm for the Inclusion Hierarchy among Circles 137

in O(log n) time in the worst-case. In addition, a circle containing another can be
determined in O(1) time since each interval has a pointer to its generating circle.

Therefore, the proposed algorithm guarantees O(n log n) time complexity in
the worst-case to construct the hierarchy of inclusion among n circles in the plane.

6. Conclusions

In this paper, we have presented a plane-sweep algorithm to construct the
inclusion hierarchy among circles in the plane, where circles have different radii
and do not intersect at their circumferences. Since there are various applications
for this problem such as the simulation of physical and chemical processes, the
development of an efficient algorithm for this problem is importance.

The presented algorithm, based on the sweep-line concept in the plane, cre-
ates a sorted list of extreme points for the circles and then takes care of events
at those extreme points by creating appropriate data structures. The algorithm
uses a red-black tree to maintain intervals created at each event so that efficient
search, insertion, and deletion can be done. The presented algorithm constructs
the hierarchy among n circles in the plane in O(n log n) time in the worst-case.

Acknowledgements. The first two authors were supported by the Creative
Research Initiatives from Ministry of Science and Technology in Korea, and the
third author was supported by Grant-in-Aid for Scientific Research of the Japan
Society for the Promotion of Science.

References

[ 1 ] M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf, Computational Geometry
(2nd Ed.). Springer, 2000.

[ 2 ] S. Christensen, L.M. Kristensen and T. Mailund, A sweep-line method for state space ex-
ploration. Lecture Notes in Computer Science 2031, 2001, 450–464.

[ 3 ] T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein, Introduction to Algorithms (2nd
Ed.). Vol. 2, The MIT Press, 2001.

[ 4 ] M.T. Goodrich and R. Tamassia, Data Structures and Algorithms in Java (2nd Ed.). Wiley,
2001.

[ 5 ] C.-W. Hong, From long-range interaction to solid-body contact between colloidal surfaces
during forming. Journal of the European Ceramic Society, 18 (1998), 2159–2167.

[ 6 ] D.-S. Kim, D. Kim and K. Sugihara, Voronoi diagram of a circle set from Voronoi diagram

of a point set: I. Topology. Computer Aided Geometric Design, 18 (2001), 541–562.
[ 7 ] D.-S. Kim, D. Kim and K. Sugihara, Voronoi diagram of a circle set from Voronoi diagram

of a point set: II. Geometry. Computer Aided Geometric Design, 18 (2001), 563–585.
[ 8 ] D.-S. Kim, D. Kim and K. Sugihara, Voronoi diagram of circles in a large circle. Lecture

Notes in Computer Science 2669, 2003, 847–855.
[ 9 ] C. Kimme, D. Ballard and J. Sklansky, Finding circles by an array of accumulators. Com-

munication of ACM, 18, No.2 (1975), 120–122.
[10] M.D. McIlroy, Best approximate circles on integer grids. ACM Transactions on Graphics,

2, No.4 (1983), 237–263.
[11] J. Nievergelt and F.P. Preparata, Plane-sweep algorithms for intersecting geometric figures.

Communication of ACM, 25, Issue 10 (1982), 739–747.

[12] C. Oh, J.-H. Park, S.-I. Shin and S.-G. Oh, O/W/O multiple emulsions via one-step emul-
sification process. Journal of Dispersion Science and Technology, 25, No.1 (2004), 53–62.



138 D.-S. Kim, B. Lee and K. Sugihara

[13] A. Okabe, B. Boots, K. Sugihara and S.N. Chiu, Spatial Tessellations: Concepts and Ap-
plications of Voronoi Diagrams (2nd Ed.). John Wiley and Sons, 2000.

[14] J.-H. Park, C. Oh, S.-I. Shin, S.-K. Moon and S.-G. Oh, Preparation of hollow silica mi-

crospheres in W/O emulsions with polymers. Journal of Colloid and Interface Science, 266
(2003), 107–114.

[15] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction. Springer-

Verlag, 1985.


