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Abstract. The endomorphism semigroup End(M) of an infinite factor M is
endowed with a natural conjugation (modulo inner automorphisms) p = p'1^,
where γ is the canonical endomorphism of M into p(M). In Quantum Field
Theory conjugate endomorphisms are shown to correspond to conjugate
superselection sectors in the description of Doplicher, Haag and Roberts. On
the other hand one easily sees that conjugate endomorphisms correspond to
conjugate correspondences in the setting of A. Connes. In particular we identify
the canonical tower associated with the inclusion p{stf(Θ))<^s#(Θ) relative
to a sector p. As a corollary, making use of our previously established
index-statistics correspondence, we completely describe, in low dimensional
theories, the statistics of a selfconjugate superselection sector p with 3 or less
channels, in particular of sectors with statistical dimension d(ρ)<2, by
obtaining the braid group representations of V. Jones and Birman, Wenzl and
Murakami. The statistics is thus described in these cases by the polynomial
invariants for knots and links of Jones and Kauffman. Selfconjugate sectors
are subdivided into real and pseudoreal ones and the effect of this distinction
on the statistics is analyzed. The FYHLMO polynomial describes arbitrary
2-channels sectors.

1. Introduction

In a previous paper [19,18] we established a link between the index theory of
subfactors [12] and the statistics of a local quantum field [5]: if a superselection
sector is represented by a localized endomorphism p of the quasi-local C*-algebra
s/= vs/(Θ)-, then

Here Ind (p) is the index of p that may be locally defined as the minimal index of
in <stf(Θ) as soon as p is localized in 0 and d(ρ) is the statistical dimension

* Supported in part by Ministero della Pubblica Istruzione and CNR-GNAFA



286 R. Longo

of p, a physical invariant obtained by locality and henceforth reflecting the geometry
of the Minkowski space-time and the localization region of p.

Our index formula relates an analytical quantity to a physical quantity and
one may use this result to carry information from one structure to the other; in
particular one immediately has new restrictions on the values of the statistical
dimension in low dimensional theories1.

This result was proposed as a first step in the structure analysis of the statistics
of the sector p, further information being contained in the Jones tower associated
with the inclusion ρ(s/(Θ)) a srf(Θ\ as in [20], and in the quantum field braid
group representation given by the statistics, as indicated by the case of fields with
a compact gauge group of the first kind where the braid group symmetry reduces
to the usual permutation symmetry and the tower structure is easily seen to
correspond to the tensor product tower π ® π ® π.. . , where π is the representation
of the gauge group giving the sector and π the contragradient representation,
cf.[5,33].

An analysis of the corresponding structure in low dimensional theories requires
however a clarification of the general picture. Also the similarity between the tower
structure in [5] and in [12,16] indicates that some deeper connection should exist.

Independently of our work two recent papers [6,25] have provided a related
analysis.

In the first and more closely related paper, Fredenhagen, Rehren and Schroer
[6] have considered the braid group symmetry arising in low dimensional quantum
field theory. They noticed in particular that in the special but significant case (as
shown in particular by conformal models) of a "two-channel" sector p, namely p2

has two irreducible components, since the statistics operator εp has at most two
eigenvalues, the statistics is described by known analysis, see [24].

On the other hand Witten [25], see also [32], has proposed a 3-dimensional
Lagrangian model that suggests a quantum field theory interpretation of the Jones
link invariant polynomial [13] via a formal path integration.

In this paper we shall develop an analysis of the endomorphism semigroup of a
factor that is directly motivated and applicable to the quantuam field theory context.

In the case of a selfconjugate two channel sector we shall use our index formula
to identify the braid group BΠ representation εp

n) giving the statistics of the sector
p with the Jones braid group representation constructed from subfactors [14].
Since the latter is used to define the Jones polynomial [13], as a corollary we have
a rigorous connection between the Jones polynomial VL and the statistics of p:

VL(q) = ( - d(p)Γ *( - ωp)-ιφn-\έ;\θL)).

Here ωp is the phase of the statistics parameter λp, d(p) = \λp\~ι is the statistical
dimension of p, φ is the left inverse of p, L is the link represented by the element
αeBw with exponent sum / and qeΎ satisfies q + q~1 + 2 = d(p)2.

More generally, if p is selfconjugate with 3 channels we identify ε£° with a
representation of Birman-Wenzl and Murakami [26,28]; as a consequence

κL(t, s) = (-

1 A certain analogy with the Atiyah-Singer index theorem may provide further insight here
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where K is the Kauffman link invariant polynomial [29] at values ί, s that depend
only on λp, on the real-pseudoreal alternative, see below, and on a signature.

In particular we have a complete description of the statistics of sectors of the
"minimal series," namely with statistical dimension d(p) < 2.

The right-hand side of the above formulas always define a link invariant
associated with an irreducible sector [6]. Extensions of this formula needs more
general link invariants that we only mention here. The general 2-channel sectors
give the two variable polynomial [7].

Rather surprisingly the structure of the superselection sectors in quantum
field theory is already present in a large portion in the abstract analysis of
endomorphisms of factors; the essential point making the field theory structure
richer being the appearance of the braid-permutation symmetry. A deeper role of
locality, that makes the superselection semigroup abelian, ought to manifest itself.

We explain now our basic results. This paper is centered around a key formula
for the conjugate sector by the canonical endomorphism [16,17].

Let M be an infinite factor (always with separable predual) and peEnd(M) an
irreducible endomorphism of M. We shall show that p admits an irreducible
conjugate peEnd (M), in the sense that both pp and pp contain the identity, namely
there exists non-zero v,weM such that

if and only if p has finite index; p is unique modulo inner automorphisms and

PP = 7>

where γ is the canonical endomorphism associated with the inclusion p(M) c= M
(the latter is also defined modulo inner automorphisms of ρ(M)).

Conjugate endomorphisms in the sense of formulas (1.1) appear in the analysis
of Doplicher, Haag and Roberts in quantum field theory [5] where they describe
the particle-antiparticle symmetry and correspond to the contragradient map in
the dual of a compact group. The formula

P = p-1 y (1.2)

provides an intrinsic general contragradient map in End(M) (modulo inner
automorphisms) that seems to cover all possible generalizations (locally compact
groups, infinite statistics, quantum groups, braid group statistics). A better
understanding of this point is obtained by the Connes concept of correspondence
where the contragradient map may be defined by a natural flip on the coefficients,
an operation equivalent to our one (1.2) in the endomorphism approach; most of
this paper can be thus read from the correspondence point of view.

It follows that the tower (or tunnel) associated with the inclusion p(M) <= M is

M =3 ρ(M) => ρp(M) => ppp(M)

In particular for a self-conjugate sector the tower is

M => p(M) z> p2(M) => p3(M) ,
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providing a further link between inclusions of von Neumann algebras and quantum
field theory.

The calculus of intertwiners associated with an action of a compact (gauge)
group [5] is then extended to this general setting that specializes to the low
dimensional field theoretical situation.

In particular one has the notion of real and pseudoreal sector, hence one has
an extension of (the algebraic part of) Carruther's theorem. More generally we
define invariants for endomorphisms that extend the Connes invariants for periodic
automorphisms. The meaning of these invariants is explained in the normal
statistics case.

As already mentioned, if we specialize to selfconjugate two channel sectors, the
braid group representation of V. Jones coincides with the field theoretical braid
group representation. Unitarity of the latter then implies that the statistical
dimension is less or equal to 2 in this case; in other words a selfconjugate sector
with statistical dimension greater than 2 must generate at least 3 sectors (with
multiplicity) when composed with itself.

It follows that if p as above has statistical dimension d(p) = χ/n, neN, the
statistics is essentially described by finite groups, namely the braid group
representations ε^} giving the statistics, modulo tensoring with a one-dimensional
representation, factors through finite groups [14]. These groups are in fact the
monodromy groups of the Wightman functions that have been studied in conformal
models, cf. [8].

2. Preliminaries on Connes Correspondences

Let M,N be von Neumann algebras, that we always assume to have separable
preduals, and tf a M-N correspondence [4], namely Jf is a (separable) Hubert
space, where M acts on the left, N acts on the right and the actions are normal.
We denote by

xξy, xeM, yeN,

the relative actions.
Alternatively a correspondence may be defined as a binormal representation

of M®maxΛf°, where iV° is the von Neumann algebra opposite to N and the
concepts of representation theory makes sense: we shall use the relative terminology
without mentioning it further.

The trivial M-M correspondence is the Hubert space L?(M) with the standard
actions given by the modular theory

xξy = xJy*Jξ x,yeM, ξeL2(M),

where J is the modular conjugation of M; the trivial correspondence is well defined
modulo unitary equivalence.

If p is a normal homomorphism of M into N we let J^p be the Hubert space
L2(N) with actions

, yeN, ξeL2(N).



Index of Subfactors and Statistics of Quantum Fields 289

The following proposition, and likely all this section, is due to A. Connes.

2.1 Proposition. // M and N are properly infinite, then any M-N correspondence
2tf is equivalent to an 34?p for some p as above. If the right action of N is faithful,
then p is unital.

Proof. Assume for simplcity that N acts faithfully on the right. Since M,N are
properly infinite we may identify 3tf with L2(N), N has its right action on L2(N).
Since M acts on the left on L2(N), M acts as a subalgebra of N, namely M is
embedded in N. Call this embedding p; then J f = Jfp. •

Denote by Corr (M) the set of all M — M correspondences.

2.2 Corollary. Let M be an infinite factor. There exists a bijection between End(M)
and Corr(M). Given ρ,ρ'eEnd(M), Jtp is equivalent to 3f? p, iff there exists a unitary
ueM with p'(x) = up(x)u*.

Proof. If u is a unitary that implements the equivalence of 2tfp with 2tfp. then u
commutes with the right action of M, thus ueM (acting on the left). The rest is
clear. •

Let Sect (M) denote the quotient of End (M) modulo unitary equivalence in M
as in Corollary 2.2. We call sectors the elements of the semigroup Sect(M); if
peEnd(M) we denote by [p] its class in Sect(M). By Corollary 2.2 Sect(M) may
be naturally identified with Corr(M)/~ the quotient of Corr (M) modulo unitary
equivalence.

Given an M-N correspondence Jf, the conjugate correspondence Jf is the
N-M correspondence obtained by considering the complex conjugate Hubert
space $t with actions

yξ x = x*ξy*, xeM, yeN, ξeM,

where ξe JF is the conjugate vector of
Recall that the coefficients of the M-N correspondence Jf are the functions

xeM, yeN,

where ξ,ηeJίf. The coefficient of jf are then given by

Bφ, x) = < x*ξy\ η} = (η,x*ξy*) = ( xηy, ξ > = Bηξ(x, y).

Thus we have:

2.3 Proposition. Jf7 is the unique N-M correspondence, modulo unitary equivalence,
such that its coefficients B(y, x), yeN, xeM are those ones given by B(y, x) = B(x, y),
where B is a coefficient on 3tf.

Proof. The coefficients of & are flipped by those of Jf by the above elementary
calculation. Now the coefficients of J f correspond to the vector functionals of the
associated representation of M®m a xiV, thus they characterize the representation
modulo equivalence. •

It follows that Sect (M), with M a properly infinite von Neumann algebra, is
endowed with a natural involution θ -• θ that commutes with all natural operations
of direct sum, tensor product and other (the tensor product of correspondences
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corresponds to the composition of sectors). We shall discuss later how the
conjugation may lift to a natural conjugation in End(M). If peEnd(M) and
peEnd (M) gives the conjugate sector, i.e. [p] = [p], then we say that p is conjugate
to p.

2.4 Corollary. Let peEnd(M), where M is a properly infinite von Neumann algebra,
and peEnd(M) be conjugate to p. Then Jίfβ is given by L2(M) with actions

Proof. We compute the coefficients B' of this correspondence according to
Corollary 2.3. We have

= (η\JxJp(y*)ξ'y = W,

where B is the coefficient of J^p associated with the vectors ξ' = Jξ9 η' = Jη. •

If we specialize to cyclic correspondences, we see by the above corollary
that if ΩeL2{M)+ is a cyclic vector for ρ\M) v JMJ and M v Jp(M)J9 with
p,p'eEnd(M) (in particular if p and p' are irreducible), then p' is a conjugate of
p iff the function B(x,y) = (ρ'(y)Ωx9Ω} is a coefficient of J f p.

Note that if M is a von Neumann algebra and ωeM+ is a faithful state with
modular group σω, the bilinear form Bω{-, ) in M and M° giving L2(M) is

Bω(x> y°) = anal. cont. ω(xσ?(y)% x,yeM,
ί-i/2

while J^p, peEnd(M), is given by the bilinear form

B>ω(x9y
0) = BMx\y°) (2.1)

It follows that in the cyclic case peEnd(M) is conjugate to p iff

is a coefficient of ^f p.

3. The Basic Formula for the Conjugate Sector

Let N ci M be an inclusion of properly infinite von Neumann algebras and ω a
bicyclic state for N, M namely ω is a faithful normal state of M # represented by
a vector ΩeL2(M) cyclic for both N and M. The canonical endomorphism
γω:M-+N is the endomorphism of M into JV,

yω(x) = ΓxΓ*, XEM,

where Γ = J N J M is the product of the modular conjugations of N and M with
repsect to Ω. Since yωeEnd(M) it gives a class [yω]eSect(M) that does not depend
on ω; in fact γω depends on ω only up to a perturbation yω->wyω()w* with u a
unitary of N [17]; the same applies if we choose JN and JM not necessarily with
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respect to the same vector and we work with canonical endomorphisms in this
generality.

If 0eSect(M) choose peEnd(M) with [p] = θ and ω a bicyclic state for ρ(M)
and M; then yω:M->p(M) gives a class yθ = [yω]eSect(M) that does not depend
on ω and p, in fact it depends only on the inner conjugacy class of ρ(M) in M.

3.1 Theorem. Let M be a properly infinite von Neumann algebra and 0eSect(M).
Then θ is the unique sector 0eSect(M) such that

More explicitly if peEnd(M) then all conjugates peEnd(M) of p are given by

P = P~XΊ>

where γ is a canonical endomorphism of M into ρ(M).

Proof. By Corollary 2.4 Jf p is given by L2(M) with left and right multiplications
given by

χ'ξ-y = χξp(y), ξeL2(M).

Let J be the modular conjugation of M with respect to a vector ΩeL2(M)+ and
choose a unitary U implementing p

UxU* = p(x), XEM.

Then Jp = UJU* is a modular conjugation for p(M). Set Γ = JpJ and γ(x) = ΓxΓ*9

x e M s o that [y] = y[pV We have

{p-\y{x))Ωy, Ω) = (U*JpJxJJpUJy*JΩ, Ω)

= {U*JpJxJUy*U*UJΩ, Ω)

= (U*JpJxJp(y*)JJUJΩ, Ω) = (JU*JxJp(y*)JJUJΩ,Ω)

with ξ = JUJΩ, hence p~ι-y is a conjugate of p by Proposition 2.3.
Reversing the calculation we see that all conjugates arise in this way. •

3.2 Corollary. Let yc=Sect(M) be a selfconjugate semigroup (θeS=>θe^) and
£f = {peEnd(M), [ p ] e ^ } . Suppose that one the following holds:
a) There exists a cyclic separating vector Ω for all p(M\ ρe&, and M.
b) c9̂  is countable.
Then there exists a canonical lifting (associated to Ω) for the conjugation operation

Proof.
(a) Define
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where yp is the canonical endomorphism of M onto p(M) with respect to Ω.
(b) We are in case (a) by the Dixmier-Marechal theorem. •

Corollary 3.2, together with the next Theorem 5.2, applies in quantum field
theory by the Reeh-Schlieder property of the vacuum Ω; after localizing sectors
in a given region one obtains a canonical conjugation in the field bundle [5].

Before closing this section we mention that if p:M-+M is a completely positive
normal map then the formula (2.1) defines a M-M correspondence tf p. It is easily
seen that, since M is properly infinite, Jtp is equivalent to Jίfβ9 where peEnd(M)
is the Stinespring dilation of p.

If peEnd(M), a left inverse φ of p is a completely positive map of M in M
such that φ-p = id.

3.3 Proposition. / / N c z M is an inclusion of infinite factors and εeC(M9N) is a
normal conditional expectation of M onto N9 then J^ε is equivalent J f y, where y is
a canonical endomorphism of M in N.

If N = ρ(M) with peEnd(M) and φ — p~1 ε is a normal left inverse of φ then
Jfφ is equivalent to Jtp. In particular #f ε (respectively Jίfφ) does not depend on
ε (respectively φ\ but only on N and M (respectively and p).

Proof. The first statement is a consequence of Proposition 4.3 that will exhibit γ
as the Stinespring dilation of ε. The second statement follows from the first one
and Theorem 3.1. •

Note that if M has a semifinite normal trace τ and peEnd(M) is irreducible,

then, cf. [18],

modτ (p) modτ(p) = mod t (pp) = modτ (yp) = Ind (p),

therefore modτ(p) = lnd(p)modτ(p)~1. If p and p leaves τ invariant, then p is an
automorphism; in particular in a II j factor p exists only as a completely positive
map. Endomorphisms of II x factors are considered in [22].

4. Endomorphisms with Finite Index

Let N czM be an inclusion of factors and denote by C(M, N) the space of the
normal conditional expectations of M onto N. Given a faithful εeC(M9N) the
index of N in M with respect to ε [11,18] is denoted by Indε(JV, M) and Ind (JV, M)
denotes the minimum index. With peEnd(M) the index of p is defined as

Ind (p) = Ind (p(M),M).

One immediately sees that Ind(p) depends only on the class [p]eSect(M). Denote
by Endo(M) the semigroup of all peEnd(M) with finite index. If peEnd(M) we
denote by

H(p) = {veM/p(x)v = we, VxeM}

the linear space of the intertwiners between p and the identity.
We now characterize the conjugate sector in analogy with the characterization

of the contragradient representation in the dual of a compact group.
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4.1 Theorem. Let M be an infinite factor and 0eSect(M) an irreducible sector. Then
Ind(0) < oo if and only if both θ θ and θθ contain the identity sector.

Moreover ϊ/0'eSect(M) is irreducible and θ'-θ and 0-0' contain the identity, then
0' = 0.

We have Ind (0) = Ind (0) and 0 0,0 0 contain the identity with multiplicity one.
The analogous result for correspondences associated with finite factors is

obtained by Theorem 4.1 by tensoring with a type /^ factor. As an immediate
corollary of physical interest we have

4.2_Corollary. Let 0eSect(M) be irreducible. Ifθ-Θ = 0-0, then θ has finite index iff
θ-θ contains the identity.

To prove the theorem we shall need a few facts.
In this case next propositions show that θ has finite index iff C(M, p{M)) φ φ

where 0 = [p]
Let NczM be an inclusion of infinite factors and y:M-*N a canonical

endomorphism with respect to a bicyclic vector Ω. If veH(γ\N), \\v\\ = 1, then

εv(x) = v*y{x)v, xeM

defines a conditional expectation εveC(M,N) and all normal conditional expecta-
tions of M onto N arise in this way [18]. Since the canonical endomorphism of
Mγ =JMN'JM onto M with respect to Ω is implemented by Γ = JNJM, thus it
extends y, it follows that if weH(y)9 || w || = 1, then

ε'w(x) = w*y(x)w, xeM

defines an element of C(MUM) and w->ε'w is surjective [18]. Since MczM x is
antiisomorphic to M' c JV' we have also a surjective map

weH(y), || w || = 1 ̂ jM's'w'jMeC(N'9 M'\

where j M = J M J M .

4.3 Proposition. With the above notations, every conditional expectation εeC(M, N)
is given by ε = εv with veH(y\N) and every ε'eC(N',M') is given by ε' =jM-ε'w'jM

with weH(y). If N'nM = C then H(y) and H(y\N) are at most one dimensional.

Proof. By [18] and the above comments the first part is immediate. The uniqueness
of v and w up to a phase factor in the irreducible case will follow directly by
Corollary 5.8 when N is isomorphic to M, namely N = p(M) for some peEnd (M);
the general case then follows easily by considering the inclusion JV®y(M)cz

m

4.4 Proposition. Let N czMbean inclusion of factors. The following are equivalent:
(i) Ind(ΛΓ,M)<oo.

(ii) (a) N' nM is finite dimensional.
(b) There exists a faithful expectation εeC(M,N) and a faithful expectation
ε'eC{N\Mr).

Proof. If Ind(JV, M) < oo then by definition there exists a faithful εeC(M,N) and
a faithful ε'eC(MuN) [11] see also Propositions 2.3 and 2.4 of [18]. Also
dim(iV'nM)< oo [12], see also [15].

On the other hand assume (ii) and let εeC(M,N) and εfeC(N\M') be faithful;
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let ε'o be the operator valued weight of Nf to M' dual to ε [3, 9]. Then the Connes
Radon-Nikodym derivative ut = (Dε'0:Dε')t belongs to N'nM. We may suppose
that ε\N'nM is a trace, see [1], so ut is a one parameter group of unitaries in the
finite dimensional algebra N'nM; thus ut is norm continuous and ε'o is
bounded. •

4.5 Corollary. Let N1czN2cz N3 be factors with lnd(NuN3) < oo. Then
lnd(Nί9N2)<ao and lnd(N2,N3)< oo and we have Ind(Nί9N3)^lnd(N1N2y
Ind(ΛΓ2,ΛΓ3), where the equality holds ifN\nN3 = C.

Proof. Since lnd(Nl9N3)< oo there exists a faithful εeC (Nί9N3) and by the
extension of Pimsner-Popa inequality [18] we have ε(x)^.λx, xeN3, where
λ~ι = lndε(NuN3). The restriction ε0 of ε to ΛΓ2 satisfies εo(x)^.λx9 xeN2,
thus Indεo(JVl5 N2)^λ~1. Consider now the inclusions Nf

3 c N'2 c N\; since
Ind(AΓ/

3,N
/

1) = Ind(iV1,J/V3)< oo, by the above argument also Ind(JV3,iV'2)< oo
therefore Ind(ΛT2, N3) = Ind(ΛΓ3, N'2) < oo.

The rest follows by [18] and by the unicity of ε if N'ίnN3 = C. •

Let now p,peEnd(M) be irreducible, where M is an infinite factor, such that
pβ and βp contain the identity. To prove Theorem 4.1, we want to show that β is
a conjugate of p. First note that by Proposition 4.3 and Theorem 3.1
C(M, ρ{M)) Φ φ. Since p(M)'nM = C, there exists a unique conditional expect-
ation εeC(M,p(M)) and ε is faithful. Choose Ω a cyclic separating vector for
ρ(M) and M; we are in the situation covered by [18, Proposition 3.1] for the
computation of the canonical endomorphism yΩ:M-^p(M).

Let UEB(L2(M)) be a unitary such that

UxU* = pβ(x), XGM.

(M and pβ(M) have properly infinite commutants thus pβ is implemented by a
unitary.) Let yeM be an isometry such that

βp(x)v = vx, xeM.

4.6 Lemma. The conditional expectation ε is given by

ε{x) = p(v)*pβ(x)p{v)9 xeM.

Proof. By the uniqueness of ε it suffices to show that ε defined as above is an
expectation. Since ε = p(v*β(-)v) we have ε(M) c ρ(M). If x e M then

ε(p(*)) = P(v*βp(x)v) = ρ(v*vx) = p(x\

thus ε\p(M) is the identity. •

4.7 Lemma. Let φ e M ^ be given by φ = ω-ε, where ω = (Ω,Ω). Then φ = (-ξ,ξ)9

where ξ = U*p(v)Ω.

Proof. We have

(xξ, ξ) = (xU*p(v)Ω, U*p(v)Ω) = (p(v*)UxU*p(v)Ω,Ω)

= (p(v*)pβ(x)p(v)Ω,Ω) = (ε(x)Ω,Ω) = φ(xl xeM. •
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4.8 Lemma. The vector ξ is separating for M.

Proof. By Proposition 4.4 ε is faithful; since ω is faithful also φ = ω ε is faithful,
thus ξ is separating. •

Having fixed the unitary U implementing pp we may define

p~\x)=υ*p(x)U, xeM.

4.9 Lemma. The projection E = \_p{M)ξ] is given by

where e = vv*. In particular Eep(M)' np~ι(M).

Proof. We have for xeM,

p(x)ξ = p(x)U*p(v)Ω = U*Up(x)U*p(v)Ω

= U*ppp(x)p(v)Ω = U*p(pp(x)v)Ω

= U*p(vx)Ω = U*p(v)p(x)Ω.

Since Ω is cyclic for ρ(M) we then have

lp{M)ξ\ = range(t/*pW)

= U*p(Ό)p(Ό*)U

4.10 Sublemma. Let AaB be an inclusion of von Neumann algebras, eeB a
projection and let E be the support of e in A'. Then EeB.

Proof. Let tf be the underlying Hubert space; then E = [Ae#e\ If b'eB\ then

b'Aetf = Aeb'tf a AeJf,

namely AeJf is an invariant subspace for B' thus EeB. •

4.11 Lemma. The vector ξ is cyclic for M.

Proof. By Lemma 4.9 we have

therefore

[Afa^EA
namely G majorizes the support P of p~ V) in M'. By the Sublemma 4.10 with
A = M, B = p~\M), we have Peρ~ι{M). On the other hand PeM\ thus
PeM' np~ 1(M) or ρ(P)ep(M)' r\M = C because p is irreducible. Thus P = 1. •

Multiplying U by a unitary in M' if necessary, we may assume by Lemma 4.11
that ξeL2(M)+, so that we may apply the formula in [18, Prop. 3.1] for the
computation of γ.

4.12 Proposition, lnά(ρ) = Ind(p).

Proof. Let M x = <M,p"1(β)> the von Neumann algebra generated by M and
p~1(e). By Lemma 4.9 and [12], Mx is the extension of M by ρ{M). By applying
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p to Mi we have

pp{M) c p(M) c <p(Af), e> cr M.
Now

Ind(p(M), <p(M), e » = Ind(pp(M), p(M)) = Ind(p(M), M) = Ind(p),

and Ind(p(M),M) = Ind(p), thus

Ind(p) = Ind (p(M), M) ̂  Ind(p(M), <p(Af), β » = Ind(p).

Since p and p plays a symmetric role, we have Ind(p) = Ind(p) and
(p(M),e} = M, in fact Ind(p)< oo by Propositions 4.3 and 4.4. •

We have implicitly proved the following:

4.13 Corollary. M = <p(M),e>, ί/iws M is the extension of p(M) by pp{M).

Proof of Theorem 4.1. By the above corollary we have

where J is the modular conjugation of M with respect to Ω. Hence p ~ 1(v)eM1 and

V0 = Jp~ \v)JeN\ N = p(M).

The standard implementation of the isomorphism xeN-+xEεNE with respect to
Ω and ξ (here E = p~ι(e) as in Lemma 4.9) is given by the isometry V = V0Z with
Z a unitary in N' and by Proposition 3.1 of [18] we have

Γ = V*JVJ = Z*1VF*./JZJ,

thus, to compute the class [y] of the canonical endomorphism of M into JV, we
may assume V = Vo; we then have

ΓxΓ* = Jp~ \v*)Jp ~ \v)xp ~ \v*)Jp ~ \v)J

= Jp - 1(vηjU*p(v)pp(x)p(v)* UJp - \υ)J

= Jp~ \v*)JU*p{vp{x)v*)UJp ' \υ)J

= Jp - 1(v*)JU*p(e)pppp(x)p(e)UJp ' \υ)J

= Jp~ ^JU+UppWU+pieWJp - \Ό)J

= Jp~ \v*)Jpp(x)EJp - \v)J

= Jp-1(v*)Jpp(x)Jp-1(v)J

= 99 (x)

because Jp(v)~ ̂ epiM)' and JEJ = E.
Hence the canonical endomorphism y:M^>ρ(M) is given by [y] = [pp].

Conversely if we define

p = p " 1 7 ,

then pp = y and H(γ) Φ {0} by Proposition 4.3. It remains to show that pp contains
the identity with multiplicity 1; we shall prove this fact in Corollary 5.8. •

4.14 Corollary. With peEnd(M) the tower associated with ρ(M)cM is given by

M => p(M) ZD pp{M) ZD ppp(M) =>••-.
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Proof. Immediate by Theorems 3.1 and 4.1 if we interchange p and p. •

4.15 Corollary. // peEnd(M) then lnd((pp)n) = lnd(p)2n and lnd((pp)np) =
lnd(p)2n + 1.

Proof. This corollary follows from Theorem 3.1 and the product formula for the
minimal index given in [10]. •

It would be interesting to know whether the product formula Ind(p 1p 2) =
Ind(p1)lnd(p2) holds for all pί9 p2eEnd(M). However it holds in the case of
supersection sectors in quantum field theory.

5. Reducible Sectors and Intertwiners

Let M be an infinite factor and peEndo(M) an endomorphism with finite index.
Since p(M)'nM is finite dimensional p decomposes as a finite direct sum of
irreducible endmorphisms with finite index p = ρx © © pn, thus p = px © © pn

is a conjugate of p if pi is a conjugate of pt in the sense of Theorem 4.1, in particular
pp contains the identity at least with multiplicity n and

Ind(p)1/2 = X Ind(/>f)
1/2 = Σ Ind(p f)

1 / 2 = Ind(p) 1 ' 2

by the additivity of the square root of the index [18, Theorem 5.5].
By Theorem 3.1 we have

where γ: M -> p(M) is a canonical endomorphism and

pp(M) c p(M) c M
is a canonical extension.

We may thus assume that p is implemented by a unitary V so that Γ = JpJ,
where J is the modular conjugation of L2(M) and Jp = VJV* and ρ = p~ι-y, where
γ(x) = ΓxΓ*.

To each faithful expectation εeC(M9 p(M)) there corresponds a dual expectation
ε'eC(p(M)\M'% thus a dual expectation έeC(M,ρ(M)) given by ε = p-j-ε' j'β'1,
where j = JJ. If eeM is a projection giving the expectation ρ-ε-p~x eC(p(M), pp(M))
so that M = <p(M), e), then εeC(M,ρ(M)) is characterized by the property that

ε » = Ind ε(M,p(M))- 1

because elements in M are sums of monomials [12],

In particular if we interchange p and p we have ε = ε.
With φ a left inverse of p we have a left inverse φ = p ~1 ε of p. We shall give

below a different description of the map ε -> ε.
Since p has finite index we have H(pp) Φ {0} and H(pp) Φ {0}.

5.1 Proposition, p maps H(pp) onto H(pp\p(M)).

Proof. If veH(ρp), namely ρρ(x)v = vx, xeM, then if we apply p on both sides we
have

ρρ(y)ρ(v) = p(v)y
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for any y = p{x)ep(M\ thus p(v)eH(pp\piM)). Reversing the argument we obtain
the surjectivity. •

5.2 Theorem. Let p,peEndo(M) be conjugate endomorphisms with finite index. For
every isometry veH(pp) there exists a unique isometry veH(ρp) such that

where λ~ι = lndεv(p(M\M).

Proof. Let veH(ρρ) be an isometry and εveC{M9p(M)) the corresponding
expectation and ε = εveC(M,p(M)) the dual expectation as before. Since
pp(x)v = vx9 xeM/ύ we apply ε to both members of this equality we have

ρp(x)ε(v) = ε(v)x, xeρ{M\

namely ε(v)eH(pp\p{M))9 hence by Proposition 5.1,

φ(v) = p-1 ε(v)eH(pp%

where φ is the corresponding left inverse of p.
We set

where λ1'2 = \\φ{v)\\; since we shall show that λ ^ 0 , v is an isometry.
We have

v*p(v) = λ-ιv*p(v) =

where e = vv*. Now φ(e) = p ' 1 ε(c) and ε is dual to εm thus

φ(e) = p~ HΦ)) = Indε(M, piM))'1-

Lemma 5.4 will show that λ = lndt(M,p{\ί))~i, therefore we have

v*p(v) = λ-ίl2λ = λ1'2 (5.1)

as desired. By interchanging p and p it will follow that

(5.2)

in fact (5.2) follows by the same argument leading to (5.1) as soon as we show that
εe and ε,, are one another dual conditional expectations. Notice that we have
made the following construction:

veH(pp)

εveC(M, p(M)\ Φ) = pip*p{x)v)

1
εveC(M,p{M))

I
φ)eH(pp |p

I
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veH(pp),

ϊ
εύeC(M,p(M)).

To show that ε-'= εv let weH(pρ) satisfy (5.1) with w = ϋ; we have

w*p(e)w = w*p(v)ρ(v*)w — λ,
thus

= p(w*p(e)w) = λ,

which shows that εw is equal to εv. The uniqueness of v satisfying (5.1) and (5.2)
then follows as in the proof of Corollary 5.8. •

5.3 Corollary. Let v and ϋ as in Theorem 5.2 and e = υυ*,f = vv*. Then p(e\f are
Jones projections for the inclusions pp(M) a p(M) a M, in particular

p(e)fp(e) = λp(e\ fβ(e)f = λf9

where λ = lnd(p(M)9M)~ι as above. More generally setting

e2i = {ppf-\p{e)\ / = 1,2,...,

the projections e t are Jones projections associated with the inclusion p(M) a M, and
therefore satisfy the Jones-Temperley-Lieb [12,23] relations

e&± iei = λ*h ei*j = efb Ii ~ j\ ^ 2.

Proof. Immediate by the proof of Theorem 5.2. •

5.4 Lemma. Let veH(pp) be an isometry. Then || εv(v) || = λ1/2, where λ~ι =
lndεv(p(M\M).

Proof. Set ε = εv. Since ε is dual to εv we have ε(e) = A, where e = vv*. By Proposition

5.5 there exists mep(M) such that

v = ev = em,

in fact m = λ~ιε(v). Then

|| ε(v) | | 2 = λ21| m | | 2 = λ21| m*m \\=λ\\ m*ε(e)m \\ = λ \\ ε(m*em) \\=λ\\ ε(v*v) \\ = λ.

The following proposition in an immediate extension of [21] as well as its
corollary.

5.5 Proposition. Let N<^M be an inclusion of infinite factors, εeC(M,N) with
lndε(N,M)< oo and Mί = <M,e> the corresponding extension. For every xeM1

there exists a unique meM with ex = em.

Proof. The proof follows [21] with obvious modifications. •

5.6 Corollary. With the above notations let v be an isometry in Mx with vv* = e,
and meM with v = em. Every xeM can be written as x = ε(xm*)m. Moreover

m*m = λ~x and m*em = 1.
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Proof. With ε'e(Ml9M) the expectation dual to ε, we have

m * m = A' 1m*ε'(^)m = λ~ H'(m*em) = λ-ιε'(v*v) = λ~1

and
m*em = ι;*i? = 1,

thus
eε(xm*)m = exm*em = ext?*ι; = ex,

which implies ε(xm*)m = x. •

5.7 Corollary. With the notations of Theorem 5.2, every xeM can be written as

x = λ~ιεύ(xv*)v.

Proof. Recall that εϋ = pφeC(M,ρ(M))9 where φ is the left inverse of p given by
φ = v*p(')v, thus we have

= λ~ 1/2p(v*p(x))v = A" 1/2p(v)*pp(x)v = λ-1/2p(v)*vx = x,

where we have used twice the formulas of Theorem 5.2. •

5.8 Corollary. Let p,peEnd(M) be irreducible conjugate endomorphisms with finite
index. Then H(ρp) is one dimensional.

Proof. Let v9 weH(ρp) be isometries. Then v*p(w)ep(M)' n A#, thus vp(w) = z with
zeC. We have

w = /l1/2p(ΐ;*)ι;w = λ1/2p(v*)pp{w)v = A1/2p(ί;*p(w))t; = / l 1 / 2 p(φ

with A as in the theorem. •

5.9 Corollary. Let N c= M bean inclusion of factors with finite index and N'nM = C.
The Jones projection eeMx( = JM^'^M) belongs to the center of N'nM\.

Proof. As in the proof of Proposition 4.3 we may suppose that N = ρ(M) with
peEnd(M). By Corollary 5.8 there exists a unique veH(pp\ \\v\\ = 1, up to a phase
factor. If ueρρ(M)' nM is a unitary then uveH(ρp), hence uv = βv with βeΎ, so
that ueu* = e, where e = vv*, namely e belongs to the center of pp(M)'nM. The
proof is complete by applying Corollary 5.8. •

6. Invariants for Endomorphisms. Real and Pseudoreal Sectors

Let peEnd(M) be an irreducible endomorphism of the factor M and suppose that,
for some positive integer n, ρn contains the identity, namely

Hn = {veM\pn(x)v = vx, xeM}

is a non-zero Hubert space in M. By Corollary 4.2 p has finite index. Since HnH*
is contained in pn(M)'r\M and the latter is finite-dimensional, also Hn is
finite-dimensional.

6.1 Proposition. 7/peEndo(M) is an irreducible endormorphism with finite index,
then there exists a unique left inverse φ of p. Moreover φ is normal and faithful.
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Proof. By Lemma 7.2 of [18] in this setting, we have to show that there exists a
unique conditional expectation ε of M onto ρ(M). The existence follows by
definition (see Proposition 4.4). By [18, Proposition 5.7] any such expectation is
normal. It is then unique by a result of Connes or by Proposition 4.3. •

If Hn φ {0} as above let φ be the unique left inverse of p, then with veHn we have

pn(x)φ(v) = Φ(pn+I(x)v) = φ(vp(x)) = φ(υ)x9 XGM,

namely φ maps Hn into itself. Denote by T the restriction of φ to Hn; we regard
T as an element of B(Hn).

6.2 Proposition. Tn is a positive non-singular operator.

Proof. We have

< Tnv,v} = φn{υ)*Ό = φn{v*pn(v)) = φn(vv*) = φn(e) = λ ̂  0,

since eepn(M')nM, φn~1(e)epn(M)'npn~ί(M) = C, thus λ is a non-negative
number. Moreover λ is non-zero because φ is faithful. •

Proof. Immediate by Proposition 6.2. •

By the above corollary the set of the eigenvalues of T with multiplicities form
an invariant for the sector [p]. This invariant is a generalization of Connes outer
invariant for periodic automorphisms of factors [2]. To understand the meaning
of this invariant we mention that in the example of the subfactors associated with
an irreducible representation π of a compact group G [18], thus in quantum field
theory with normal statistics, if π ® ® π (rc-times) contains the identity, the
restriction of the n-cycle of PΠ to the subspace of the identity representation is
equivalent to T. It is not difficult to construct examples with non-trivial invariants
of all orders.

6.4 Corollary. //pgEnd(M) is an irreducible selfconjugate endomorphism, then H2

is one-dimensional and T = + Ind(p)~ 1 / 2.

Proof. H2 is one dimensional by Corollary 5.8 and if veH2 then | |φ(f) | | 2 =
Ind(p)" 1 by Lemma 5.4. •

If peEnd(M) is irreducible and selfconjugate we shall say that p is real or
pseudoreal according to φ \Hl = ± Ind (p)~1 / 2. In quantum field theory with normal
statistics, this corresponds to the reality or pseudoreality of the associated
representation of the gauge group G and, when G is SU{2), to integral or half
integral spin sectors. By the same argument we have a generalization of Carruther's
theorem [5].

7. Braid Group Statistics and Link Invariant Polynomials

Some applications to Quantum Field Theory have been discussed or follow directly
from the analysis of the previous sections. We give here an explicit analysis of the
braid group representation giving the statistics for a class of sectors. We use the
notations and assumptions in [18].
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Let pegc be a localized irreducible endomorphism of the quasi-local observable
C*-algebra si = u ^ ) " , and εp the statistics operator associated with p, namely
ep = u*p(u), where uestf and uρ(-)u*egc is localized (left) space-like to p (we deal
with a Minkowski space of dimension ^ 2). Then by duality

p c p 2

if p is localized in Θ. Let Bn be the braid group with generators {σh i = 1,..., n — 1}
satisfying the Artin relations

σiσi+ίσi = σi+iσiσi+u σiσj = σjσi if \i-j\^2.

An elementary calculation shows that

ρ(εp)εpp(εp) = εpp(εp)εp

(write εp = w*p(w) and use the equality up(εp)u* = εp due to the fact that uρ()u* acts
as the identity on s/(Θ)\ henceforth the unitaries

have the above presentation of Bπ and define the representation εp

n) of Bw giving
the statistics of the sector [p].

In [6] it has been observed, among other things, that if p 2 has two irreducible
components, since

εp has at most 2 eigenvalues, henceforth εp

n) belongs to the class of representations
analyzed by Hecke algebras methods, see [24].

On the other hand V. Jones has constructed directly representations of Bπ

associated with subfactors of finite index / [13]. If {ei9 i — 1 ~n — 1} are projections
that satisfy the relations eiei±ιei = l~ιeh e^i = e^j if \i — j \ ^ 2, then

is a representation of Bw; here qeC satisfies q + q'1 +2 = 1 and zeΎ is arbitrary
and set equal to 1 in [13].

Because of the equality

it is natural to see when εp

n) is the representation π{£\ associated with the inclusion

We begin with the following proposition. We shall denote by ωp the phase of
the statistics parameter λp = φ(εp). Notice that here sectors refer to different (but
obviously related) objects than in the previous sections.

7.1 Proposition. Let p be an irreducible selfconjugate localized endomorphism and e
the Jones projection given by Corollary 5.3, then

£pe= ±ω~ίe,

where the ± sign is chosen according to whether the sector [p] is real or pseudoreal
respectively.
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Proof. Assuming more generally that p is not necessarily selfconjugate let vest
be an isometry with pρ(x)v = vx9 xes/; by a calculation similar to that in [5], the
isometry w = ωpε(p, p)v satisfies

v*p(w) = w*p(v) = — - ,
Φ)

where ε(p9p) is the natural intertwiner between p and p (with p localized left
spacelike to p). Restricting to a local von Neumann algebra and applying
Theorem 5.2 we have ϋ = w, namely

v = ωpε(p,p)v.

Specializing this formula to the case p = p, one has εp = ε(p, p) and v = ± v by
Corollary 6.4, therefore

epV= ±ω
and multiplying both sides by v* we have the thesis. •

In the simplest case where p is an automorphism, Proposition 7.1 implies that εp

is a fourth root of the unity: εp = ± 1 (real sectors) or εp = + i (pseudoreal sector)
and the ± sign alternative are interpreted as corresponding to the Bose-Fermi
statistics alternative. These possibilities appear also in the following cases.

7.2 Theorem. Let p be an irreducible selfconjugate localized endomorphism. Ifp2 has
two irreducible components then εp

n) is equivalent to π ( ^, where z = ±iq~llAr or
z = +q~ιlAr according to [p] is a real or pseudoreal sector, modulo the possible
change q->q~x.

Proof. Since p is selfconjugate by Theorems 3.1 and 4.1 the canonical tower
associated with ρ(^(Θ)) <= s/(Θ\ where p is localized in 0, is given by

hence εp belongs to p2(<s/)' = ρ\stf)' n s/(Θ) = {ote + β9 α, J?eC}, where e is the Jones
projection given by Theorem 4.1. The projections e{ defined in Corollary 5.3 with
p = p are then the Jones projections. By definition

O < ) = z(qet - (1 - ed) = ΓMqe - (1 - e)))
and

however the only choices for oι9βeC that gives a representation of BΠ are

εp = z(qe - (1 - ^))

with zeC [14]. It remains to determine the value of z. By Proposition 7.1 the
projection e is a spectral projection of εp with spectral value ± ω ~ 1 , thus
± αΓ"1 = zq. By the calculation in the Corollary 7.4 we have ωp = — zq " 1 / 2 , hence

namely z = ±ίq~1/4 or z= ± q~1/4 as desired.
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Note that explicitly we have found the possibilities, cf. [8],

with μeC, μ4 = 1.

7.3 Corollary. Let p be as in Theorem 7.2. Then d(p) ^ 2.

Proof. ε{

p

n) is unitary, therefore πJJ is unitary, but this entails lnd(p(s/(Θ)),
sf(Θ)) ^ 4, thus d(ρ) ^ 2 by [14]. •

7.4 Corollary. Let p be as in Theorem 7.2. The statistics parameter λp is given by
λp = — z(l + q)~\ where q + q~1 + 2 = d(p)2 and z as in Theorem 7.2. Hence ε(

p

n) is
determined by d(p) (modulo the above possibilities).

Proof. Since εp = z[qe — (1 — e)~] and φ(e) = d(p)~~2, where φ is the left inverse of
p (cf. [18]), we have

Γ(n+n 1 ( q+1

In particular ωp= —zq~1/2. •

7.5 Corollary. Let p be as above. If d(p)2 is an integer, then up to tensor product
by one dimensional representation o/Bn, ε^ is given by a finite group representation,
namely B J k e r ε ^ is finite.

Proof. Immediate by the analysis in [14]. •

The groups Bnfkerεp

n) are discussed in [14]; for example the Hessian group of
order 216 and the simple group of order 25,920 appear in this analysis, B. Schroer
has called our attention to the fact that the group BJkeτε{

p

} are in fact the
monodromy groups of the Wightman functions and their analysis is classical, cf. [8].

7.6 Corollary. Let p be as above. Ifd(p) = 2, then εp

n) is the tensor product of a one
dimensional representation of Bn (statistics of anyones) and the normal statistics
representation ofPn.

Proof. This follows because when 7 = 4, π^\ factors through a representation of
Pn as due. •

Note now that the formula φco(εi^\OL)) = φn~1(ε(

p

n)((x)), αeBn, gives a Markov trace
for the representations ε{

p\ neN, [5,6]

the tracial property of φ°° follows directly by the tracial property of the minimal
index expectation [18, Theorem 5.5].

7.7 Corollary. Let p be as in Theorem 7.2, L a link represented by the element αeBw

and VL the Jones polynomial. Then

VL(q) = ( - p

where I is the exponent sum of a a word in σ1,...,σn
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Proof. By definition [13]

where tr is the relative Markov trace, thus by Theorem 7.2,

Now the above coefficient of φ00 is unaffected by the change g-x?" 1 , z^zq'1,
thus by Corollary 7.4 it is a function of λp. An elementary calculation of this function
gives the formula in the statement. •

In particular the right-hand side in the above corollary gives a link invariant
associated with the sector [p]. This fact does not depend on the special class of
sectors considered here [6], because the Markov property of φ™ readily entails
its invariance under Markov moves of types I and II as in [13].

Let now [p] be a general selconjugate sector. By Theorem 4.1 and our
index-statistics correspondence d(p) is finite and has n channels with n g d(p)2.
Notice explicitly that if we set gi = pi~1(εp) and et = pi~ι{e) as above the gt are
unitaries satisfying the Artin braid relations and the e{ are selfadjoint projections
satisfying the Jones relations with index d(p)2 and also

giei=±ω;ιe, (7.2)

We shall discuss somewhere else the algebra generated by these relations (where
(7.1) becomes ei+1g

k

iei+ί = λp

k)ei + u λp

k) = φk(sp). In particular this algebra admits
a natural Markov trace giving rise to link invariants and the statistics of p is
described by finitely many parameters). Here we treat the case of a 3-channel
sector where the description is complete.

7.8 Theorem. Let [p] be an irreducible (pseudo)-real self-conjugate 3-channel sector.
Then εp has spectral decomposition of the form

where qeΎ is given by (q ± q~1)(d(p) ± 1) = ωp ± ωp \ (resp. (q ± q'^dip) + 1) =
1

The statistics braid group representation εp

n) is equivalent to a representation
of Birman-Wenzl and Murakami [26,28] tensored by a one dimensional
representation.

Proof. By Proposition 7.2 εp has a spectral decomposition of the form

εo

 = ω~1e + t~1fί +qf2
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(we assume p is real, the pseudoreal case is analogous) for some ί, qeΎ. We show
now that t = ± q2. In fact

e = Aεp + Bε;1 + C (7.3)

for some constants A, B, C, because

(ω, - ί)(ωp"* - q)e = (ε ; x - ί)(ε, - <?)• (7.4)

Evaluating the left inverse on both sides of (7.3) yields

Aωp + β ω ; + C φ ) . (7.5)

d{p)

Moreover multiplying both sides of (7.3) by e a n d / 2 respectively one obtains

l=Aω~ί+Bωp + C9 (7.6)

0 = Aq + Bq~1 + C. (7.7)

Since εf 1p(εp)ε*1 = p(εp

±ί)εpρ(ερ

¥1) one also has

and multiplying both members of this equality by e from the left and by/ 2 from
the right one obtains

that, together with equation (7.3), yields

Aq-1+Bq = -±- (7.8)
d(p)

Elementary calculations show that equations (7,5-8) and the equation analogous
to (7.8)

dip)

admit only the stated solutions (unless p degenerates to a 2-channel sector). It
follows that the gi9 et in (7.1), (7.2) generate the Birman-Wenzl algebra [26]. The
rest is now clear. •

Restrictions on the possible values of the spectrum of εp are discussed in [27].
We consider now the Kauffman link invariant polynomial KL(t,s) [29] where

we choose the variables as in [26].

2 We thank H. Wenzl for privately mentioning to us the validity of this equality in the course of our

computations and K. H. Rehren for pointing out to us that our original proof was lacking equation

(7.8) and for correcting signs together with B. Schroer, see also [36]



Index of Subfactors and Statistics of Quantum Fields 307

7.9 Corollary. Let p be an irreducible (pseudo)-real self-conjugate 3-channel sector.
Then

KL(t, s) = ( - d(p))n- \ -

where KL is the Kauffman polynomial, t= — y/± 1 ωp (t = v / ± lωp) and
1

Proof. By the analysis in [26] the Kauffman polynomial is given by

KL(t, s) = (s-1(t + Γ1)-l)n-1Γ

where π is the representation of BΠ given by π(σf) = v / + \g{ (real case). An
elementary calculation gives the formula in the statement. The pseudoreal case is
analogous. •

We mention that in the case of a two channel non-selfconjugate sector p, since
εp satisfies a second order equation ε2 + rεp + s = 0, one obtains by using the
analysis in [7,6] the formula (independent of Corollary 7.7)

PL(ί, x) = ( - d(p))n- H - ωp)-ιφ™ψ;\θL)\

where PL is the two variable link invariant polynomial determined by the skein

rule [7] at t = - iy/sωp and x = — iiχlj~s) (we use the notations in [13]).
Let now [p] be an arbitrary 3-channel sector such that p 2 = OL®p1®p2 with

α an automorphism. Then <x~1ρ2 = id®0L~1p1®0L~1p2 contains the identity,
therefore the conjugate of p is p = oc~1 p, cf. also [35]. If e is the projection in
p(j/)' corresponding to α, as before the projections ei = ρi~1(e) satisfy the Jones
relations and generate together to the gi = pί~1(εp) the Birman-Wenzl algebra by
the argument in Theorem 7.8. Denoting by θ the spectral value of εp,

εpe = θe,

the representation of BΠ

with z = (0ωp)~1 / 2 is again equivalent to a Birman-Wenzl-Murakami
representation and the statistics is given by the Kauffman polynomial.

Notice that if p is a sector with d(ρ) < 2 then p has at most 3 channels in which
case one component of p 2 must have statistical dimension one, namely it is an
automorphism. The same argument extends to the case of a larger, but
sufficiently small, statistical dimension.

8. Comments

We briefly comment here on the structure of the inclusions of type III factors
p(srf(Θ)) a srf(Θ) considered in this paper, having the knowledge of the fusion rules
matrices N\. of the given QFT model. Notice that these inclusions are not built
up from commuting squares, although there might be a different construction of
this sort. The matrices N\. determine the inclusion matrices of the relative
commutant tower pn(s/(Θ))'ns/{Θ) (and of the tower in Corollary 4.14) hence the
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inclusion matrices for the relative commutants in the Jones tower (Theorem 4.1).
The corresponding Ocneanu principal graph [20] is an invariant for the sector.
An illustrating example where fusion rules are formally known is the SU(2)k

Wess-Zumino-Witten model: there are fc+1 irreducible sectors ρo,ρu...,pk

with fusion rules

with m = I / - /1, n = min (i + /, 2/c - i - I) [30]. The index of ρt(s/(Θ)) a s/(O) is
d(pι)2 [18] and d(p,) = sin((/+ l/fc + 2)π)/sin(π/fc + 2) [31]. WZW models based
on compact lie groups G generalize this construction [31]. The emerging structure
is similar to the one analyzed in [27]. We shall return with more details on this
structure somewhere else. It is also a natural problem to explain in this context
the A-D-E classification of minimal models.
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