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Abstract. This work deals with the general (i.e. non-equilibrium) Schrδdinger
dynamics of infinite mean-field quantum systems. It is shown how this dynamics
is related to the Hamiltonian flow φf on the "classical phase-space" E c= R L

recently defined by Bona [10] to describe the time evolution of classical
(macroscopic) observables of the system. These connections allow us to clarify
the structure of the set of all physical folia, a notion introduced by Sewell for
the dynamical description of infinite systems in cases where this description is
representation-dependent. They also yield a result showing that the Heisenberg
picture is the more general approach to such descriptions in the sense that
there are more representations in which a Heisenberg dynamics can be defined
than ones which allow for the definition of a Schrδdinger dynamics. Finally,
our theory makes it possible to construct many explicit examples of physical
folia; in this connection it is shown that there can be overcountably many
inequivalent representations with the same macroscopic dynamical structure.

I. Introduction

Recently, great progress has been made concerning the rigorous formulation of
the general, i.e. non-equilibrium dynamics of infinite quantum (lattice) systems
with a mean-field interaction.

Such models were first considered by Hepp and Lieb [1], who showed that
they can be successfully applied to problems in superconductivity and laser-physics.
One interesting feature of infinite mean-field systems is that, due to the extremely
long range of the interaction, the Heisenberg dynamics cannot be defined as a
*-automorphism group of the C*-algebra s4 of quasilocal observables [2]; or,
expressed in the Schrδdinger picture, that the "set of physical states" [3] is not
all of S(s/\ the state space of s/. While the dynamical description of the system in
thermal equilibrium—i.e. in the GNS-representation of KMS- or limiting
Gibbs-states—was discussed extensively in the literature [4], the concepts
necessary to deal with the general case developed more slowly.

Sewell [3] worked in the Schrδdinger picture and used the notion of a "folium"



238 T. Unnerstall

in S(srf) introduced by Haag et al. [5]; a folium F g 5 ( J / ) is a convex, normclosed
set of states ω on J / , which is invariant under "quasilocal perturbations" in the
sense that

(D(CC\

ωeF=>ω c:= — -eFVcesrf with ω(c*c)φθ.
ω(c*c)

Folia arise naturally as the set of π-normal states of any representation π of s4\
more precisely, there is a one-to-one correspondence of folia in S(s/) and
quasiequivalence classes of representations of srf. Thus, if Jί% = π(s/)" denotes the
von Neumann algebra belonging to π, the folium Fπ belonging to π is
Fπ = (Jiπ)i(ί> + t l . Sewell defined as a "physical folium" of the system a folium on
which an affine, normpreserving group of transformations vt:F-+F acts, which is
in a natural sense the limit of the local time evolutions and which can thus be
regarded as the Schrodinger dynamics of the infinite system. Consequently physical
folia in 5 ( J / ) constitute possible dynamical descriptions in the Schrodinger picture
of the quantum system described by si.

This dynamical theory can be completed due to the fact that, in πF, the
representation belonging to F, one can also define a Heisenberg dynamics [6] as
a group of W*-automorphisms τt:πF(s/)"-•πF(ts/)", which is the dual of vt. The
Heisenberg dynamics was analysed further by Morchio and Strocchi [7], who
emphasized the importance of operators in the center of the von Neumann algebra
πF(s/)ff for the dynamical theory. Such operators can justifiably be called "classical
observables" [8], and thus play a crucial role from a fundamental point of view [9].

Decisive progress in this line of thought was recently made in the impressive
work of Bona [10,11], who worked in the Heisenberg picture and proved the
existence of the limiting Heisenberg dynamics in a certain maximal representation
τ% (with folium F$) for a large class of mean-field models. He was able to clarify
completely the role of the classical observables in the dynamics of the infinite
quantum system and described their time evolution by means of a "classical
phasespace" E <= R L and flow φf on E. Each point in this phasespace E corresponds
to certain values of the classical observables, hence to a set of macroscopic
parameters of the system: its "classical state." The flow φf being generated by a
Hamiltonian function β, Bona thus realized rigorously old ideas of Hepp and Lieb
[1]. The structures developed by Bona can in fact be generalized by associating
to each representation π (to its folium Fπ, respectively), π ^ π#( ̂  is the ordering
of quasi-equivalence classes of representations), a classical space Eπ g E in a natural
way [12]; for the limiting Heisenberg dynamics to exist in π it then suffices that
Eπ be invariant under φf.

The purpose of the present work is to investigate the Schrodinger dynamics
of the class of models considered by Bona. Working in the framework of the folium
FP<=F$ generated by the permutation-invariant states Sp{^\ which is slightly
smaller than F#9 we are pursuing two goals.

The first goal is a description of the Schrodinger dynamics vf:Fp^Fp which is
as explicit as possible. This is done with help of the flow φf\ we show how the
full quantum state evolution oΐωeFp is constrained (or, in the case ωeSp(s/\ even
fully determined) by the time evolution of the macroscopic parameters which a(n)
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(ensemble of) system(s) described by ω can assume. Thus we establish rigorously
the connection between the microscopic, quantum level of state evolution (vp) and
the macroscopic, classical level of state evolution (φp).

Noting first that the considered class of models, and more explicitly the folium
Fp, is a concrete example of the notion of a physical folium considered abstractly
in [3]—this has already been pointed out in [13]—the second goal of our work
is to elaborate this notion further by giving many more examples of physical folia,
and by analysing the structure of the set of all physical folia (in the framework of
Fp\ IF p h y s . In particular, we show how F p h y s is naturally classified in terms of the
"sub-phasespaces" £<=£, i.e. the closed, φp-invariant subsets of E. These
correspond physically to certain ranges of the macroscopic parameters to which
the system may be confined due to external circumstances such as temperature
(compare [14]). For each such physical situation, then, our theory

—defines the set of all dynamical descriptions (= physical folia) of the system
which are at one's disposal in this situation;
—gives a method to construct such descriptions explicitly.

These insights can be used, for example, to construct descriptions in which a
Hamiltonian generating the dynamics can be defined [15].

Having thus given an overview of the physical concepts involved, we now
briefly sketch the technical procedure of the paper. After defining the class of
models under consideration and introducing the Schrόdinger dynamics vp:F p ->F p

in Sect. II, we first look at the general structure of lF p h y s (Sect. III). We show that the
time development of subfolia of Fp is reflected by the classical flow φf in a "coarse
grained" way. This is then used to introduce the natural classification of F p h y s (in
terms of the sub-phasespaces B <= £) referred to above. We also show in this
connection that the relation between vp and φp is "too coarse" to allow an
identification of all physical folia by means of φp, which contrasts to some extent
the situation in the Heisenberg picture. An interesting consequence of this state
of affairs is that there are many representations π of si in which a Heisenberg
dynamics can be defined, but whose folia are not physical, whereas the opposite is
not possible [6].

In Sect. IV it is demonstrated that the Schrόdinger dynamics is given directly
by φp on E for all states in the (time invariant) set Sp(s/). This result is intimately
connected with those of [13]; see also [16] for related work. The precise description
of vp|SP gives rise (Sect. V) to a method of constructing physical folia explicitly:
to every φp-invariant set of probability measures on E one can naturally associate
a physical folium whose associated phasespace is given by the supports of the
measures. To illustrate our theory, we conclude the paper by considering an explicit
physical example, the BCS-model (Sect. VI); in particular, the set F p h y s is there
seen to be of amazing richness.

II. Dynamical Descirptions of a Class of Mean-Field Quantum Systems

In this preliminary section, we briefly sketch the theory of Bona [10] to the extent
necessary for the present purposes, and some structures developed in [12]. For
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more information and additional references, we refer the reader to the original
papers. General background on the operator algebraic techniques which we employ
throughout can be found in [17,18], and on the properties of folia in [5].

The models under consideration are defined by three elements:

1. The quasilocal C*-algebra

sf:= (X)<, sίn = B(€m) = MmVneN,

where Mm are the complex m x m-matrices. si is simple, so all folia F <= S( srf) are
full, and all states S(s/) are locally normal, since the local algebras

(\Λ\ denotes the number of elements in A) are finite dimensional.
2. A real Lie-algebra ^ of dimension L (taken to be the Lie-algebra of a compact
Lie-group G), ^ g Lie(S(7(m)), which is represented on <Cm by antihermitian
operators

-X(β), where X(β)e{MJBA\/βe9.
i

This Lie-algebra is chosen to give all elements of ( M J s a corresponding to
physically important observables and in any case all those which occur in the local
Hamiltonians below.
3. Local Hamiltonians

HΛ:=\Λ\Q(XΛ(n...,XΛ(β%

where Q:1RL->]R is an arbitrary, nonlinear polynomial. The density operators

\Λ\
neΛ

1® ® 1 ® X(βk)
position n

are defined by means of the elements

here, β\...,βL is a basis of the vectorspace ^ ^ R L such that tτ(X(βj)X(βk)) =
const δjk.

A "dynamical description" of the system in the Heisenberg picture is then a
representation π of J / in which the local time evolutions

τt

Λ(x):=eitHΛχe
itH

converge to a *-automorphism group of (a subalgebra of) Jί\\— π(s/)" in the
infinite volume limit /l-> oo. This convergence is understood to hold point wise in
the strong operator topology on Jf π, the representation Hilbertspace of π; we
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denote such infinite volume limits over the net $£ in the strong operator topology
by stop —lim. For the representations π considered we confine ourselves here

A

to those quasicontained in πp (i.e. π ^ πp), the representation belonging to Fp. It
is shown in Appendix 1 that all of Bona's results, which are obtained in the
framework of the larger folium

Fg:= {COES(S/): stop — liτnπω(XΛ(β)) = ex. V βe&}
A

remain valid for Fp, πp.
The kinematical structure in which the dynamical theory is defined is thus

(st ^ )πp(&?) g πp(s/)" =\Mnp g # p f π ),

In this setting we define {3?Kp denotes the center of Jίπp):

Xπp(β):= stop - lim πp(X Λ(β))e£?πp,
A

Jf<s:= C* - alg. hull {Xπp(β), βe$} £ Zκ,

The limiting operators Xπ (β) are per definition averaged over all local sites n e N
and thus describe the global, "macroscopic" behavior of the system. They can
therefore be called "macro-observables." The algebra Jίg, the smallest C*-algebra
containing all physically important macro-observables Xπp{β\ βe&, can be looked
at as the relevant classical part of the description [8], because of its being part of
the center of Jiπp. Due to this macroscopic, classical character, Jf % links the
microscopic treatment to phenomenological theory.

Let now ^ * ^ 1RL denote the linear dual of ^, and F 1 , . . . , FL the coordinates
of elements Fe&* with respect to the dual basis of the basis β1,..., βL of C3. One
can then prove [10]

Theorem 2.1.
1. Jίg = C(Eg\ where £ ^ ^ ^ * = ] R L is a compact, convex set, and C(Eg) the
continuous functions on Eg. The *-isomorphism Sg\C(Eg)^Jrg carries the
coordinate functions

to Xπp(βk).
2. For <£<#:= C* -alg. hull {πp{^\Jί^} g Mnp, the following holds:

3. There exists a unique *-automorphism group
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such that for "sufficiently small" ίe]R:

= stop — lim np(τt

Λ(x)) V x e s/(Λ), V /I e j£f, (la)

A

A

Furthermore, τp leaves the algebra Ji % invariant, but not the algebra πp(srf). •
The *-automorphism group τp is the limiting Heisenberg dynamics of the infinite
system. The set E<$ defines, due to the Gelfand representation theorem, the pure
states on Jig, the algebra of classical observables, and can therefore be called the
"classical phase-space" of the system: a point FeE<§ corresponds to certain
well-defined values of the Lclassical observables Xπp(β1),...,Xπp(βL), hence to a
set of L macroscopic parameters of the system.

With the help of Eg, the "classical part" of the dynamics, τp| ¥r§, can be described
as follows: The polynomial g:IRL->]R can be considered as an element of C°°(^*),
since ^ ^ ^ * ^ ^ * * ^ JRL as vector spaces. It induces canonically (i.e. by means

L

of the Lie bracket [ , ] on #, [β\βJ] = Σ cϊ^ s e e C1 0] f o r details) a flow φf

on E<§ g ^ * which is generated by the vectorfield /lQ:RL->]RL given by

j l=l

Thus we can define

as a *-automorphism group of C(E$). The following result is proven in [10]:

Theorem 2.2. τ ? | ^ = S

Theorem 2.2 means that one can translate the algebraic description of the classical
part of the time evolution into the familiar form of a flow on a finite dimensional
coordinate space (where the coordinates signify the macroscopic parameters of the
system), given by a set of ordinary (nonlinear) differential equations. In particular,
it is clear that we have here a rigorous "contraction of description": the evolution
of macroscopic quantities is selfdetermined.

The dynamical description established so far is completed by the results of
[13]. There it is shown that τp can be extended uniquely to a group of
W*-automorphisms of Wg = J(πv, which we denote by the same symbol τp, and
that (la), (lb) hold for all times. This Heisenberg dynamics τf\J(π ->J(n induces
a predual group (τf)+\(Jίπ )*^>{Jίπp)* and thus, because of the one-to-one
correspondence between normal states on Jίπp and F p , a group

of affine, normcontinuous bijections of Fp. The vp are obviously to be regarded
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as the time translations in the Schrόdinger picture and fulfill (by construction)

vf

e(ω)(x) = lim ω(τt

Λ(x)\ V ω e F , VίeIR, VXGΛ/(Λ); VΛeJϊ?. (2)
A

Thus, according to the definition in [3], Fp is a physical folium, and in the
framework of Fp, πp we have both the Heisenberg picture and the Schrόdinger
picture, related to each other by duality as usual.

If we now look for possible dynamical subdescriptions of the system, there are
two questions:

1. Which representations π^πp are such that the local time evolutions τ/1 converge
to a *-automorphism group in Jίπ, i.e. in which π^πp can a Heisenberg dynamics
be defined?
2. Which folia are invariant under vp, i.e. in which F^FP can a Schrόdinger
dynamics be defined?

To answer these questions, we introduce the following structures: Every ωeFp can
be considered a normal state on Mπp, thus by restriction a state on Jf<g\ this state
induces via the "^isomorphism $ % a state on C(E#), denoted by μω, hence a
probability measure on E& again denoted by μω. The support of μω, supp μω, is
then a closed subset of E9.

If one defines

ψ = {F g FP:F folium}, the set of all subfolia of Fp,

—with the lattice operations: Fλ v F2 := smallest folium containing F1 and F2,
Fι Λ F2' = FιnF1, this is a complete Boolean lattice—and

E^:= {B g E<#\B closed}, the set of all closed subsets of Eg,

—this is a complete distributive lattice—it can be proven [12]:

Theorem 2.3. The map

U suppμω
ωeF

is surjective, order-preserving and a complete v -homomorphism, i.e.

, iel / iel

for an arbitrary family {Fi'.iel} <=F of folia. •

Furthermore, every closed set B<=E$ has a unique maximal preimage: the set
FB:= {ωeFp:supp μω g B) is a folium with the property F g Fp, j#(F) = B=>F i F β .

The physical meaning of the map j$ is the following. μω is the classical
probability distribution of the macroscopic parameters in the (ensemble of)
system(s) described by ωeFp. Hence, j# associates to a set of states FeΨ the range
of values of the macroscopic variables in which a system belonging to an ensemble
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described by any ωeF may be found. In light of this, we call j^(F) <= E the "classical
statespace" associated to the folium F.

The map j$ allows a rather straightforward answer to the first question posed
above. If Fπ denotes the folium associated to a representation π, one has [12]

Theorem 2.4. Let π<,πp such that φ?(Eξ) = Eξ,Eξ:=j$(Fπ). Then a Heisenberg
dynamics exists in π and it can be defined as a *-automorphism group τp of

Thus, the φp-invariance of j%(Fπ) is sufficient for the existence of a Heisenberg
dynamics in π.

[Remark. There is a converse of Theorem 2.4 in the sense that the φp-in variance
of E% is also necessary for the local time evolutions τt

Λ to converge to a
*-automorphism group on π{#f)®δ<g{C(E®)) [12].]

Theorem 2.4 shows that dynamical subdescriptions of the system in the
Heisenberg picture can be constructed by determining just the invariant sets of
the classical part of the dynamics, and hence are quite easily accessible.

Unfortunately, the situation is much more difficult in the Schrodinger picture;
however, the flow φf does contain a lot of information about vp, as we shall see
in the next sections, and thus one can give at least a partial answer to question 2
as well.

To conclude this section, we remark that everything that has been stated so
far remains true if one replaces the Lie-algebra <§ by any bigger Lie-algebra #',
# g # ' g Lie (St/(m)). Thus, we shall henceforth suppress the index #.

III. The Schrodinger Dynamics vp

We agree with the viewpoint implicitly taken in [6, 7] that one should require the
existence of both the Heisenberg picture and the Schrodinger picture for a
physically adequate description of the system, since the time development of states
is an integral part of quantum theory.

The following theorem shows that looking for such descriptions is in fact
equivalent to question 2 above:

Theorem 3.1. For a representation π^πp the following conditions are equivalent:

1. A limiting Heisenberg dynamics τp exists in π, is σ(Ji'π\Jtπ)^-continuous and
thus allows a Schrodinger picture as the predual (τp)*.'(^π)*, + ,i - > ( ^ π ) * ) + >1.
2. τf(c{π)) = c(π), where c(π)eJPπ is the central projection corresponding to π.
3. vp(Fπ) = F π .
4. Fπ is a physical folium of the system.

Proof. ( l )o(2)o(3) is well known, (3)o(4) follows from Eq. (2). •

The physically adequate subdescriptions of the system described by ( ^ π p , F p , τ p :
Jίnp -> Jtπp) are thus given by the set

F p h y s :={FeF:vp(F) = JF}
of physical folia.



Dynamics of Mean-Field Quantum Systems 245

As discussed in the introduction, the aim of this paper is to obtain more
information about the Schrodinger dynamics vf and thereby about F p h y s . The
global structure of these objects is contained in

Theorem 3.2.

1. vf is a group of complete lattice automorphisms of IF, i.e.

iel

v?( Λ F) = A v?(Fd
\ iel / iel

for an arbitrary family {Ft :ie/} of folia.
In particular, vf maps folia onto folia.
2. F p h y s is a complete Boolean lattice.

Proof. (1) This result is known, but can hardly be found in the literature in this
formulation (compare [9]). We therefore sketch the proof. Since F is isomorphic
as a complete Boolean lattice to the lattice of central projections CP(Jίπp) in Jίπp

and c(vf(F)) = τf{c(F))MF g Fp, the theorem can be proved equivalently for τf on
CP{Jίnp). Here we have

cγ vc2 = c1+c2-cίc2,

so that the lattice-automorphism property of τp is trivial. The completeness of this
automorphism follows from the fact that

pχ
iel A ieA

where the limit is performed over the net {Λg/:|/l | < oo}, and from the
G(MπpXJίπp)^ - σ(^ π p , (^ π p )J-continuity of τf.
(2) is a trivial consequence of (1). •

We now look at the Schrodinger dynamics vf more closely; in particular, we are
interested in the connection of this quantum state evolution to the time evolution
on the macroscopic level, i.e. of the classical states FeE. Indeed, the following
theorem, the main result of this section, shows how the action of vf on folia is
mirrored—or, in other words, constrained—by the flow φf on E:

Theorem 3.3. Let F £ Fp. Then

j(vf(F)) = φf

Proof We prove first μ^Q(ω) = μω

Q{φf)~\ For all feC(E),
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E E

= (μω°(φ?Γ1)(f).

This entails supp μ^Q ω = φp(supp μ j , since φf is continuous. We then have

= [j suppμω = (J suppμ Q
ω e v f (F) ωeF 4 V '

= ( J <^
ωeF \ ωeF

The picture of the Schrodinger dynamics vp given by the flow φp is only a "coarse
grained" one, since there are in general many folia which are mapped onto the
same B g E by j . This is also clear from a physical point of view: the information
about the global behavior of the system contained in φf is not sufficient to know
the details of its behavior on the microscopic level.

Corollary 3.4. Let F g Fp. Then

In light of Corollary 3.4, the set F p h y s is naturally classified in terms of the "possible
sub-phasespaces" β g £ , i.e. the closed, φp-invariant subsets B of E: the set

F p h y s (£):= {FeΨphys:j(F) = B}^ F p h y s

gives all possible dynamical descriptions of the system with one and the same
associated classical statespace B^E, i.e. with the same "macroscopic structure."
As pointed out in the introduction, B corresponds physically to specified ranges
of values of the macroscopic observables, to which the system may be confined
due to external circumstances.

Lemma 3.5. Let B^E be a phasespace. Ψphys(B) is not empty and contains a unique
maximal element, FB.

Proof. Since j{vf{FB)) = B, we have by maximality of FB\vf(FB) g FB. The group
property of vp then yields v?(FB) = FB. •

For every external physical situation, one can thus choose a dynamical des-
cription which is maximal in the sense that it contains all states (in the frame-
work of Fp) in which the system can be under these circumstances. We shall
show in Sect. V that, in general, IFp h y s(#) in fact contains many (even disjoint)
elements.

We conclude this section with a remark concerning Heisenberg picture and
Schrodinger picture of the dynamics. It is clear from Corollary 3.4 that φp-
invariance of j(F) is a necessary condition for F to be a physical folium. It is,
however, not sufficient:
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Proposition 3.6. Let B^E be a phasespace, consisting not only of invariant points.
Then there is a FeΨ such that
(i) φ?(j(F))=j(F).

(ii) vf(F)ΦF.

Proof. See Appendix 2. •

Recalling Theorem 2.4, it is now clear that there are representations π of si
in which a Heisenberg dynamics exists (as a *-automorphism group τp of
π(s/) (x) $(C(Eπ))) which do not allow a Schrodinger picture, i.e. where τf is not
extendable to a W*-automorphism group of Jίn. This is to be contrasted with
the fact that every physical folium F induces a Heisenberg dynamics in the
representation πF (Theorem 3.1; compare [6]; the same conclusion could here also
be drawn from Theorem 2.4 together with Corollary 3.4). While, mathematically,
the Heisenberg picture is thus the more general approach to dynamical descriptions
of infinite mean-field quantum systems, we think that the requirement stated at
the beginning of the section is adequate from a physical point of view.

IV. The Schrodinger Dynamics if on Sp(s4)

An even more intimate relation between vp and φf than given in Theorem 3.3 is
revealed if we consider the action of vp on the set of Sp(stf) g Fp of the permutation
invariant states on si.

For clarity of exposition, we shall from now on consider only the most general
structures, i.e. those in the case ^ = Lie(5(7(m)). Relevant substructures, i.e. those
belonging to subalgebras ^ <= Lie (SI/(m)), will be treated in Appendix 3. Sp(srf) is
vp-invariant due to the permutation invariance of the local Hamiltonians.

Let us first note some facts about Sp and its extremal boundary, dSp:

Lemma 4.1

(i) φedSp=>φ = ® p9peS(MJ.

(ii) φedSp=>φ is a factor state.
(iii) φ, φ'edSp, φ Φ φ' => φ, φ' disjoint.
(iv) ωeSp=>3 a unique measure pω, concentrated on dSp, such that

ω(x)= j φ(x)dpω(φ) Vxesi.
dSP

This means that Sp is a simplex. Since dSp is w*-compact, it is even a so-called
Bauer-simplex.
(v) For ωeSp,pω its measure according to (iv), it holds

ω(x)= J φ(x)dpω(φ) \lxeJίπp.
dSP

Proof The proof of (i)-(iv) can be found, e.g., in [19]. (v) Kaplanski's density
theorem implies that π(s/)ί, the unit ball in π(si), is σ(Jίπ ,{Jtn ^-dense in
[Jiπp)v Therefore, for any xeJίπp there exists a sequence {xM}neN <= n(si\
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= llχll> w i ^ xn^x i n the σ ^ ^ ^ ^ X J - t o p o l o g y . Therefore,

ω(x) = lim ω(xn) = lim J φ(xn)dpω(φ)
n n dSP

=C J limφ(xn)dpω(φ)
dSP n

= j φ(x)dpω(φ\
dSP

where the Lebesgue dominated convergence theorem applies since || φ(xn) || ^
||xπ | | ^ | |x| | VneN, and pω is a probability measure. The first and last equalites
hold because all ωeSpcp = {Jiπp)^ΛΛ are normal. •

The part (i) of the Lemma implies that we can parametrize dSp by parametrizing
S(Mm). The operators

form a selfadjoint basis of Mm (orthogonal with respect to the trace-scalarproduct),
where β 1 , . . . , ^ 2 ' 1 is the basis of ^ = Lie(SU(m)). Any peS(Mm) is uniquely
determined by its expectation values on X(β1),...,X(βm2~1) and thus can be
considered a linear functional on ̂ , i.e. an element of ^* . The map

is then a w*-norm-continuous bijection [19], implying that ^(dSp) =:D ^JR.m2 ~1

is a compact, convex set.
This induces a one-to-one correspondence between probability measures on

dSp, i.e. 5P, and probability measures on D, denoted by M(D)+Λ:

Θ> is an affine, w* - σ(C(D)*, C(D)) — continuous bijection. These structures are
connected intimately to the phasespace £<= R m 2 - 1 .

Proposition 4.2.

(i) For φedSp: μφ = δ^φ) =yφ.

(ii) For ωeSp: μω=~pω as measures on R^ 2 " 1 .
(iii) E = D^S(MJ.

Proof, (i) Since φ is a factor state, μφ is a Dirac-measure on E [12], concentrated
on a point Fφ:= ( F j , . . . , F ^ 2 " ^ e E , i.e. ̂  = 5 F / But Fφ = 0>{φ\ since

Fk

φ = fk(Fφ) = μφ((Λ)) = φ(Xπp(βk)) = p(X(βk)) = Ψ{ψ)ί (3)
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for all k = 1,..., m2 - 1, where (!) can be verified by direct calculation. The relation

Mφ = δp(φ) a l s o implies D g £ , since D = (J 0>(φ) = (J s u p p μ φ g £ . (Relation

(i) was also proven in [11]).
(ii) Due to Lemma 4.1(v), one has for all feC(E):

ω(*(/))= ί <p(£(f))dpM;
dSP

but then

/U/) = ωW/))= f φ(*(f))dpω(φ) = f μ
dSP dSP

and, due to part (i),

= J f(P(φ))dpω(φ) = f f(F)d(pωop-*)(F) = J f{F)dJ~ω(F).
δSP &>(dSP) D

The result μω = p ω follows due to the one-to-one correspondence between states
on C(D) and M(D) + Λ. In particular, suppμ ω i=D for all ωeSp.
(iii) It was shown in [12] that

j(F)= (J suppμω= U suppμω,
ωeF ωeQ

if β is a generating set for the folium F9 i.e. F = convhull{Qc}~" ", Qc:=
{φGS(S/):3cejtf,a>GQ such that φ = ωc:= ω(c* -c)/ω(c*c)}. Since Sp is a generating
set for F p , we get

E=J(Fp)=

due to (ii). Together with (i), this implies E = D. (Compare [11]) •

The structures developed above can be interpreted as follows. The m a p ^ is a
parametrization of the factorstates dSp with the macroscopic parameters of the
system: to each classical state FeE there exists one and only one state φFedSp,
i.e. one and only one state φ such that

—the system in the state φ shows the macroscopic parameters F1,...,/7™2"1;
—every local site nelN is in the same state (permutation-invariance), i.e. the system
is completely homogeneous.

Likewise, the states ωeSp are uniquely determined by their "classical part" ω\^
only, since pω = (ω\Jr

o<£~1)°ί?; conversely, each measure η on E gives a unique
ωηεSp, ωη = & ~1(η), with μω = η. These particular properties of Sp imply that the

Schrόdinger dynamics on Sp,

is directly given by the classical flow φf on E\

Corollary 4.3.
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(ϋ) vp|SP = ̂ - 1 o ( φ p ) * * o ^ ? where

Proof, (ii) follows from 4.2(ii) and the general relation μ Q — μω°(φf)~1 proven

for Theorem 3.3, (i) is a special case of (ii). •

We have here the remarkable fact that the full quantum Schrόdinger dynamics
of a class of physically distinguished states of an infinite system can be described
by a finite set of differential equations. In particular, this result shows that the
classical flows φf, defined here following [10], and the one defined in [13],
coincide. Let us also remark that, in case of quadratic nonlinearity of β, the
Schrόdinger dynamics on dSp has been described differently, with a nonlinear
Schrόdinger equation on S(Mm), in [16]; of course, one can show explicitly that
the two treatments are equivalent.

V. Physical Folia

In this section, we turn to the notion of a physical folium and show how such
folia can be constructed explicitly with help of the results of Sect. IV; in particular,
this yields a method of constructing dynamical descriptions of the infinite system
in any environmental situation, corresponding to a reduced phasespace B^E.
First we need the following

Proposition 5.1. Let S<=FP a set of states with vp(5) = S, and Fs the folium generated
by S (the smallest folium containing S). Then it holds

i.e. Fs is a physical folium.

Proof. It is F s = convhull{5c}~11 ". Since vf is affine and norm-continuous, it
suffices to show that vf(Sc) g Fs.

Let φ:= ωceSc with ωeS, cejtf such that ω{c*c) = 1. One has for all xeπp(s/\

= ω(πp(c)*τ?(x)πp(c))

= ω(τ°-(c*xc)\ c:= i*t(π

= v?(ω)(c*xc)

= v?(ω)c-(x),

hence, v°-(ψ) = vp(ω)c on Jlnp due to normality of these states. vp(ω)c- is obviously
in the folium Fs of S(Jίπp) generated by S; but since the folium structure within
the normal states on Jl*p coincides with that within Fp ([18], Theorem ΠI.2.7),
Fs = Fs and therefore v^(ιj/)eFs. Since φ was arbitrary, the result is proved. •

The following main result is now easy to see:



Dynamics of Mean-Field Quantum Systems 251

Theorem 5.2. Let M g M(E)+Λ be a set of measures which is invariant under (<pp)**;
let FM = FP be the folium generated by <P~1(M). Then FM is invariant under vp,
hence a physical folium.

Proof. Due to Corollary 4.3(ii), vp leaves &~ί(M) invariant, and thus the theorem
follows from Proposition 5.1. •

Remarks.

1. As a special case of Theorem 5.1, invariant states ωeFp generate physical folia
Fω. In particular, it is known [20] that all limiting Gibbs states of our class of
models are time invariant states in Sp; hence for these models the folia generated
by equilibrium states are physical, like it is known for many other cases [2,4].
2. The phasespaces of folia in F p h y s of the type of Theorem 5.2 are explicitly known:
we have [12]

J(FM)= U
ηeM

With this knowledge, it is easy to construct many physical folia in IF h (B) for
any given B. The simplest ones are of course those generated by an invariant state
(UGSP(S/) with supp μω = B.

Examples.

1. Let β g £ be a phasespace, and M:= {δx:xeB} g M ( £ ) + Λ , where δx is the
Dirac-measure on xeB. Then

F0(B):= V F
φ

is a physical folium.
2. Let B Φ {x} be a minimal phasespace (:= minimal set) for φp, i.e. every orbit is
dense in B. Consider any (non-periodic—the following construction can be easily
modified for periodic orbits) orbit φ^(x), xeB, and any normed measure μ on R,
absolutely continuous with respect to the Lebesgue-measure, with suppμ = R.
The bijections

give measures ηt''=μ°(φ?) * on B with suppμ = φ^(x) = £VίeR. Obviously,
M:= {*7f:ίeR} is invariant under (φf)**, hence FM is a physical folium with
phasespace B. (One can show that F0(B)nFM = 0.)

VI. Example: The BCS-Model

In this final section, we consider the BSC-model for a superconductor as a concrete
physical example of the theory presented here (compare [11,21]). In this case,
<& = Lie(5(7(2)), so that E is the state space of the 2 x 2-matrices, parametrized by
the spin operators σί9 σ2, σ 3 —that is, E is the closed ball with radius 1/2 in R 3 .
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The local Hamiltonians are (with Xkχ.= £ ^> k = 1,2,3):
neΛ

with
β:JR3-+R, Q(F\F2,F3) = 2εF3 -g^F1)2 + (F2)2).

The induced flow φf on E is easily calculable and reads in cylindrical coordinates
z:=F3 ( = particle number), ^ ( ( F 1 ) 2 + ( F 2 ) 2 ) 1 / 2 ( = number of condensed
Cooperpairs), φ:= arctan(F 2 /F 1 ) ( = macroscopic phase):

φf(z, c, φ) = (z, c, φ + (2β + 2^z)ί);

it is a rotation around the z-axis with z-dependent frequency 2ε + 2gz. Physically
interesting subphasespaces in this case are, e.g., the spheres Sr, 0 ^ r ^ 1/2,
composing E: they are precisely the regions of equal temperature, i.e. they represent
a situation where the system is in a thermal bath of a temperature /?. This can be
seen by looking at the (grandcanonical) equilibrium states of the BCS-model [22].

Dynamical descriptions for such a physical situation, i.e. with phasespace
B = Sr,r fixed, can be easily constructed from our theory: to every zoe\_ — r,r~\ let Kzo

denote the circle around the z-axis {z,c9φ:z = z0,c = ^Jr2 - z§, φe[0,2π]} g 5 r.
The Lebesgue measure A(KZ0) is obviously invariant under φf (in fact, the
vp-invariant state &~1(λ(KZ0))eSp is an equilibrium state of the BCS-model). It is
then clear that the sets

M Γ : = μ ( K z ) : z e Γ } ,

where T is any dense subset of [ —r, r ] , generate physical folia Fτ with phasespace
Sr. Furthermore, it holds (Lemma 4.1)

Hence there are overcountably many disjoint folia in F p h y s (5 r ), i.e. overcountably
many different dynamical descriptions with the same macroscopic dynamical
structure.

As a final comment, we want to emphasize that when we have spoken of a
"physically adequate description" of the system, we have not imposed any
continuity requirement in the time parameter. The set of all descriptions with
strong continuity of vf in ί, or, equivalently, with σ — weα/c-continuity of τp in ί,
will be considered elsewhere.

Appendix 1

In this appendix, we want to show that the results of [10] continue to hold if one
replaces the folium F$ and the representation π^ by Fp, πp. From the proofs given
there it is clear that all we need to show is that the projection-valued measure

is the Borel-σ-algebra of #•)

constructed from the unitary representation (3-^^{^fπ ), β\-^>exp(iXπ (/?)) with
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help of the SNAG-theorem is G-invariant, i.e.

σ{g){Sp{B)) = £ JAd*(g)B)VBea(#*), VgeG. (4)

Here, σ(g) denotes the extension to J / * * of the *-automorphism
defined by

)xn)=(g)U(g)xnU(g)\
l / n=l

and linear extension; U:G-+Mm is the unitary representation of the Lie-group G
with generators X(β\βe&.

To establish (4), it suffices to show [10] that σ(g)(c(πp)) = c(πp)VgeG, where
c(πp)ej/** is the central projection belonging to πp\ or, equivalently, that
σig)*:^*-*^*, the dual of σ(g), leaves Fp invariant. One knows [17] that σ(g)*
is linear, normpreserving and leaves S{stf) g J / * invariant. Thus, in order to show
σ(g)*(Fp) = Fp all we need to confirm is σ(g)*(SP) g Fp. This we establish in three
steps:

1. σ(g)*(dSp) s dS':σ{g)*(φ) = φ°σ(g) = ((g)p\σ(g) = (X)U{g)*pU{g)edS*.

2. σ(g)*(Sp) £ Sp:σ(g)*(ω) = ωoσ(g) = ̂ φoσ(g)dpω(φ) = Jσ(^)*(φ)dpω(φ)eS
p, due

to 1.
3. σ(g)*(SP)<=Fp:One easily calculates that with c:=σ(g){c)estf one has VωeSp,

Thus, σ(g)*(SP) g Sf g F p , and hence, Fp is invariant under σ(g)*.

Appendix 2

Proo/ of Proposition 3.6. The assumption on B implies that there is a dense set
Γ g B with φ?(Γ) ̂  Γ. Consider the folium

F:= V FφF,
FeΓ

We have then

FeΓ FeΓ

On the other hand, it holds

(ύ (»)

vQ(F)= V vQ(F ) = V vQ(F Ω )= V F ΦF
FeΓ FeΓ ' Feφ?(T)

Here, (i) follows from Proposition 3.2, (ii) from Lemma 4.1. •

Appendix 3

In this appendix, we extend the relations of Sect. IV to the case where ^ is a
proper subalgebra of Lie(5l/(m)) with basis β 1 , . . . ,β L ,L<m 2 — 1. To choose ^
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smaller than Lie(S£/(m)) means that one restricts attention to substructures of all
structures belonging to Lie(SU(m)), which are time-invariant due to the fact that
the local Hamiltonians are built from the X(β),βe&, only. I.e., the algebra
of classical observables in this case, Jf<#, is a τp-invariant subalgebra of
Jf(Ue(SU(m))), and E$ is a ^-invariant subset of E(Lie(SU(m))). More
specifically, if we let

be the projection onto the first L coordinates, it holds

Proposition 4.2a

(i) For φedSp: μφ = δπmφ)y

(ii) For ωeSp: μω=~pω°π~ι as measures on IRA
(iii) E$:= π(D) <= IRL; E$ is a compact and convex set.

Proof. The proposition is an easy consequence of Proposition 4.2.

(i) Fφ = π(0>(φ)\ since Eq. 3 holds for k = 1,..., L.
(ii) For all feC(E^),

ί J
dSP π(D)

(iii) From (i) it follows π(Z))g£^; (ii) implies supp μω g π(D), hence £^gπ(D).
Compactness and convexity follows from continuity and linearity of π. •

The reason for considering such restrictions is a pragmatic one: if the physically
relevant macro-observables are already contained in Jfy, it suffices for most
purposes to work with the phase space E<g and φf on £^, whose dimension L
may be considerably smaller than m2 — 1. The price to pay is of course that one
is looking only at part of the whole dynamics τp on jV(Lie(SU(m))\ φf on
£(Lie(St/(m))), and thus loses information. This is reflected in the following
assertions.

To each probability measure η on E<$ corresponds now a convex family

of states in Sp. The Schrόdinger dynamics expressed with the flow φf\E9 on E<$ reads:

Corollary 4.3a.

(i) For φedSp: π<?(v?(φ)) = φ?\E,(π(P(φ))9

Proof, (i) follows directly from Corollary 4.3(i) and the fact that π{φf{F)) =

) (») f o l l o w s f r o m μ ? ( )

Finally, we get in place of Theorem 5.2.
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Theorem 5.2a. Let η be a measure on E% which is invariant under (φp)**. Then the
folium generated by Sη is invariant under vp, hence a physical folium.

Proof. The proof is analogous to the proof of Theorem 5.2. •
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