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Abstract. Block renormalization group transformations (RGT) for lattice and
continuum Euclidean Fermions in d dimensions are developed using Fermionic
integrals with exponential and "^-function" weight functions. For the free field
the sequence of actions Dk generated by the RGT from D, the Dirac operator,
are shown to have exponential decay; uniform in fc, after rescaling to the unit
lattice. It is shown that the two-point function D ~ι admits a simple telescopic
sum decomposition into fluctuation two-point functions which for the expo-
nential weight RGT have exponential decay. Contrary to RG intuition the
sequence of rescaled actions corresponding to the "^-function" RGT do not
have uniform exponential decay and we give examples of initial actions in one
dimension where this phenomena occurs for the exponenential weight RGT also.

I. Introduction

Recently rigorous renormalization group methods have been successfully applied
to analyze many lattice and continuum models in statistical mechanics and in the
Euclidean version of quantum field theory [1-25]. A common feature of the
methods applied to the analysis of field theory models in the Euclidean framework
is a decomposition of the momentum space achieved by the decomposition of a
free continuum propagator or in the case of lattice regularizations by block field
transformations. Block renormalization group methods have been used in abelian
gauge, abelian gauge-Boson and non-abelian gauge lattice models in two, three
and four dimensions to show ultraviolet stability [1-7]. In this paper with a view
to future applications to lattice regularized Fermionic and gauge-Fermionic models
(see [26-27] for the lattice formulation) we develop the block renormalization
group for lattice Fermions. Our treatment parallels the one of [1-3] for scalar
and vector Bosons where the RGT is an integral transformation with a Gaussian
weight function; for the (3-function weight for the lattice scalar field see [13-14].
The results for the Gaussian case are also similar except for minor changes due
to differences in the canonical scaling of free Bosons and Fermions. However there
is an unexpected difference in the <5-function formulation.
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As in [28,29] we define the RGT Tε

aL acting on a function p(φ, φ) by

h χ) = (Tε

a,Lp)(χ, χ) = ΛΓ ^

where χ, χ, φ9 φ are independent Grassmann algebra generators and carry spinor
and lattice indices which have been suppressed. The integral is the Fermionic one
of [27]. φ, φ(χ, χ) are ε(Lε) lattice fields, Q is the arithmetic averaging operator over
a block of side size Lε and a is a positive real parameter. Inner products are always
taken as Riemann sum approximations to the continuum. N is a normalization
constant, depending on the number of lattice points and spinor components, such
that

ί P'(L χ)dχdχ = f p(ψ, φ)dφdφ. (1.2)

All integrals are taken in finite volume, the thermodynamic limit is trivial for the
sequence of actions treated in this paper and will be implied without further notice.

Applying successive RGT, denoted by T£ f

L,... we find the composition law

1 a,L 1 a,Ll a,L ~ 1 ak,L
K> \ ι ^)

where the transformation Tε

akfLk is defined as in (1.1) but with ak = (\ —L~}/\ — L~k)
a replacing α, Lk replacing L, and Qk replacing Q. Qk is the averaging operator
over blocks of side size Lfcε and we will use the same symbol, irrespective of the
domain lattice, for the average over the l}d points of the block.

In particular if the original density is <^^\ where D is the ε-lattice version of
[28] of the Dirac operator

( \ d \
4 £ = Σ -ty + d?\ (1-4)

\ ) μ=lε

then applying the RGT's we get a sequence of Lkε lattice actions Dk, k= 1,2,...

given by

In Eq. (1.4) dε

μ is the ε-lattice forward lattice derivative, dε* its adjoint, and yμ are
Euclidean self-adjoint Dirac matrices obeying yμyv + yvyμ = 2δμv. The additional
non-y terms in Eq. (1.4) are added to suppress the period doubling present in the

first term and vanish in the ε->0 limit since Δε ^-> ]Γ d2

μ. It will be shown

that the Dks have exponentially decaying kernels.
An important consequence of the composition law (1.3) is that it gives a product

decomposition of the free field generating function

g-ίJ D-' o = jDφDφe{φ~>Dφ)e{lψH{φ~J}/(J= J = 0),

and a sum decomposition of D~ \ where / a n d J are Grassmann variables. It turns
out that the overall structure of the decomposition of the two-point function D~1

is trivial; the decomposition is the telescopic sum (letting Do = D and Qo = I)

k kD-1, (1.5)
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which can be written

D 1 = Σ $jΓjS* + SkDk

 1Sk

M

9 (1.6)

where Si = D~1QfDi, Sf = DiQiD~1 are Ljε{ε) to ε(Ljε) operators and Γj =
Djι -DJιQ*Dj+ιQDjι ={DJ~a{Li+ιε)~1Q*Qy1 a Ljε lattice operator. The
algebraic structure of (1.5-6) is the same as in the scalar case and is not apparent
in [1] but follows from algebraic relations to be derived here; it is apparent in the
α-»oo limit in [13]. Γj has the interpretation of a fluctuation field two-point
function as will be seen below. We will show that the kernels of Sj9 SJ9 Γj have
exponential decay so that roughly speaking

1 , , ,

τ < ? l i / x-h j μ x λ | , χ9χ'εεZ . (1.7)

Thus (1.5) provides a decomposition into momentum scales (Ljε) 1.
By the standard procedure of exponentiating (J,D~ιJ) given by Eq. (1.6),

representing each factor by a Fermionic integral and differentiating with respect
to J and J we arrive at the following formula for the integral of a function f(φ, φ):

J dφdφe{φ>Dψ)f(φ, φ)/(f= 1) = J DφkDφke
('h'DM f ]

f(φ = Skφk + *£ Sjfjj, φ = Skφk + *£ Sjηλ/(/= 1). (1.8)
\ j=o j=o J\

In Eq. (1.8) φk, φk9 ήj9 γ\} are Grassmann variables. We interpret φk as a new field
and the ηfs as fluctuation fields which have exponential decay. Equation (1.8) can
be used as the starting point of a RG analysis, successively integrating over the
fluctuation fields.

Equation (1.8) can also be obtained from the RG composition formula by
making successive changes of variables in the integral in the left-hand side of Eq.
(1.3). The change of variables is devised to eliminate cross terms in the quadratic
form and give rise to one step operators. The resulting -step operators, Sj9 Sj,
which have the same structure as the j-step minimizers in the scalar field case [13,14],
can be written in the form here by using algebraic identities to be derived in Sect. II.

In addition to the RGT (1.1) we can also define directly a RGT which has the
properties analogous to a ^-function weight in the scalar case and which is the
same as the a -> oo limit for the exponential weight. The limiting sequence of actions
are given by {QkD~ιQfj~ι.

However, contrary to RG intuition, the sequence of actions rescaled to the unit
lattice do not have uniform in k exponential decay. We give examples of actions
in one dimension where this occurs also for the exponential weight RGT.

Furthermore the decomposition Eq. (1.5) can be carried over to the continuum
by taking the ε-*05 /c—>oo limit such that Lkε=l which gives, denoting the
continuum Dirac operator by Dc = Yjyμdμ,
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D:1= Σ [i);1c*Bflr"C-A'1~o;1c*(,-1)J) t-^11C-(,-1)o;1]
n= 1

+ D;1C$D'COD;\ (1.9)

In (1.9) Cm: L2(Rd)-+l2(LmZd) is a continuum averaging operator over blocks of
side length Lm and DL~m = α^L^/ + α ^ C ^ D ^ C * J " 1 is an action on the L~m

lattice. Continuing the decomposition in (1.9) to blocks of side L, L2,... we obtain

oo

D^= Σ [ β e " 1 C * D L I " C m ί ) c - 1 - D c - 1 C : + 1 D L < ' - t l ) C m + 1 D Γ 1 ] d lO)
m — — oo

which gives a decomposition of D~ι into space scales . . . L " 1 , 1, L,... or the
corresponding approximate momentum scales .. .L1, 1, L~ \ . . . .

To make contact with the continuum scalar field decomposition of [31,32] we
note that Eq. (1.10) remains valid for Δc replacing Dc and ALm = (CmΔ ~ιC*)~x

replacing DL W, where zlc is minus the continuum Laplacian. Thus

c /_j L c m me c m + 1 m+ I c h \ )
m = — oo

which is the continuum and α-> oo limit of the scalar field decomposition of [1].
Applying (1.11) to a function Δcg we obtain

oo

m = - oo

and simple calculations show that (note CmC% = I)

(gfm,z1cgfJL2(jRd) = 0, m φ n, orthogonality;
Cn+1gn = O, i.e. the average over an Ln+1 block is zero;
Δcgn is constant on Ln blocks, i.e. is in the range of C*.

In this way (1.11) provides a decomposition of a function into orthogonal functions
in the ( ,Δc ) L 2 { R d ) norm. Of course an analogous decomposition will yield an
orthogonal set for any Sobolev norm. In particular for A c replaced by Ign is constant
on Ln blocks.

We describe the organization of this paper. In Sect. II we obtain expressions
for various operators resulting from RGT and obtain various identities including
(1.5). Also we define the ''^-function" RGT. In Sect. Ill we show uniform in k
exponential decay of the kernels of the suitably rescaled versions of the operators
Dk, Γj, Sj, Sj. Our proof of decay uses explicit momentum space representations
and is more difficult than the scalar case which uses positivity properties of the
negative Laplacian (see[1,13]). In Sect. IV we show the non-uniformity of
exponential decay in the case of the ^-function RGT and in one dimension give
examples of initial actions which also display this phenomena for the exponential
RGT. Section V is devoted to concluding remarks.

II. Renormalization Group Transformations and Properties

In this section we establish as in [1-3] the composition law for the RGT and
obtain various RGT identities. Additional identities obtained here also have their
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analogs in the scalar case treated in [1]. The decomposition of the two-point

function is obtained. Various operator inverses will appear here and will be shown

to exist in the next section. We use the more complete notation D(k)'Lkε and Γ{k)'Lkε

for the Lkε — lattice actions and Lkε — lattice fluctuation field two-point functions,

respectively. Throughout we use the easily derived relation QkQ* = /, j dφdφe^M) =

det A, the translation formula j f(φ + X, φ + X)dφdφ = J f(φ, φ)dφ dφ, and

J dφ, dφ exp lφ, Aφ) + (7, φ) + ( ^ / ) ] = det Λe" ( Z / ί " 1 / } . Here and in the sequel newly

introduced field variables are Grassmann and taken to anti-commute with all

others.

The composition law is given by

Lemma ILL T^lTε

aktLk = Tε

aki l ) L k + ) , or in iterated form

ηrLk ~ 1 ε τ Lε ηrε ηrε
1 a,L "' i a.L1 a,L ~ L ak,L

k •>

where (ί/ak+ί) = (L~ ι/ak) + I/a with solution ak = (a(ί - L~ι)/(\ - L~k)).

Proof of Lemma ILL Using φ, φ (φ, φ) for the integration variables of T^k[ (Tε

ak Lu)

and the translation formula j dφdφ f(φ9 φ) = $ dφdφ f(φ -f Qkφ, φ + Qkφ\ do the

φ integral, use β g * = /, and equate the coefficients of the quadratic form on both

sides.

Define Z(k)Jkε and D(k+lhLk"lε inductively by

and let

Lemma II.2. D{k)^ε = ak(Lkε)~Ί - a2

k{Lkεy2QkG
ε

kQt.

Proof of Lemma 11.2. By the inductive definition of D(khLkε and the composition
r^aX1 ' TaχTatL= Ή k , L ^ we have zε

ke^DW'Lkεφ) = TB

aktLMφ^°u^). Performing the

integral gives the result.

Define a fluctuation two-point function by the quadratic form in the integral

in T^k[ (e^-'D{k)'Lkεφ)) b y

^ + fl(Lfc+ l f i ) - l ρ * Q ) - l . (23)

Using Γ{k)fLkε we establish a recursive relation for D ( / ί + 1 ) > L k ε from Eq. (2.1) given

by

Lemma Π.3. D(fc + 1 ) L k + l ε = α(Lk + 1 β ) " 1 - α 2 ( L Λ + 1 e ) - 2 β Γ ( f c ) L k e ρ * .

We use the definitions and composition formula to find the connection between

the operators G{ and Γik)'Lkε. By calculation we find

ΞΞ z ^ ' D ( f c ) J > 6 ^ ^ (/'G^/}, (2 4)

which defines Z\. Writing the above for k + 1 and substituting T£[Tε

akfLk for

T* k + 1 ? Lk+i gives rise to important R G identities given in
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Theorem II. 1.

a) Zε

k+1 = Z^Z ( / c ) ' L k ε , or in iterated form

Z = Z{k~1)χklε . . . 2 ( 1 ) ' L ε Z ( 0 ) ' ε

b) ^(L'^C^+iG^i^^C^

c) G\+ι = aϊ{Lkεy2Gε

kς$rik)'LkεQkG
ε

k + G£, or in iterated form

k- 1

Gε

k= X a](LjεΓ2GεjQf ΓU)>LJεQjGε + Γ ( 0 ) ' ε .

We now establish other representations for G£, Z)(;c)'Lkε, Γ(/c)'Lkf, GJ β* and βj GJ .
These make the a->co limit more transparent and lead to the decomposition
formula. We have

Lemma Π.4.

a) Gl = D ( 0 ) ' ε - ' - ak(Lkε) ~'Z)(0)'ε"ιQ*(I -f ak(Lkε)"ι QkD
i0)>ε~' Q*)"1

_ £)(0),ε- l£)(O),ε- lQ%β{k),V<εQ j

b) D ( f c ) ' L k ε = α k (L f c ε)" '(/ + %(L fcε)~

c) Dik+1)'Lk+Xε = a(Lk + h)'1(I + a(Lk+1

φ p(k),Lkε _ p(k),Lkε-l _ p(k),Lkε- 1Q*p(

e) αfcίL^J-^Jβf = D ( 0 ) fi-1β?D(fc)'Lkε.

f) k

g)
l),Lk ' Jε

Proof of Lemma. IIA

a) Letting α' - ak(Lkε)~: and multiplying (D ( 0 ) 'ε + a'Q%Qk)f-= g on the left by
QkD(ou-i g i v e s Qkf=(I + a'QkD

{0U-1QΪ)-ί QkD
{0U~1g. Substituting for QJ

above gives the first equality of the lemma; the 2nd follows from b);
b) Substitute Gε

k from the first line of Lemma II.4 a) in Lemma II.2 and simplify.
c) Using Lemma Π.3. for D{k+ 1 } 'L k p and Γ(/c)'Lkε - (D(/c)'Lkε + a(Lk+ίε)-ιQ*Q)-\

the result follows as in the proof of b),
d) From Γ( fe)'Lkε - (Dik)>Lk£ + a(LL + hy1Q*Qy1 and as in the proof of a) the

result follows using Lemma Π.4c.
e) Use Lemma II.4 a) for G{ and simplify.
f) The result follows using Lemma Π.4b similar to e).
g) and h) express Theorem II. lb) in terms of Lemmas II.4e) and f).
We now show that in the decomposition identity of Theorem II. 1c for Gε

k that
the sum is actually telescopic.
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Theorem Π.2.

a2

j{Lje)~2G)QJΓU)XhQjG) = D{0U~ 'QjD^^QjD^-x

- D{0U-χQf+ iZ)^ lhLJ+XcQj+ 1D
i0U~1.

Proof of Theorem II.2 follows from Lemma IL4 d)-f).
We immediately obtain from Theorem II. lc, using Lemma IL4a for Gε

k, the
decomposition formula

/)«»•«~' - * Σ ( D ( 0 ) ' ε - 1 Q * D U ) L J ε Q j D i 0 ) > ε " 1 - D i 0 U - 1 Q J + 1 D < j + v - L 3 + i*Qj+1D
iΌ) ε - 1 )

7 = 0

+ D ( 0 ) ' £ "' ρ*z) ( / c ) 'L k £ρ f cD
( 0 ) ' ε ~\ (2.5)

We note that the specific form of the individual terms can also be obtained by
telescoping Gε

k as given by Lemma II.4a.
Formally the a -> oo limit of D ( k ) 'L k ε is, from Lemma II.4b, {QkD

{0U~ ιQ%)~ι and
the a -> co limits of the relations in Lemma Π.4c)-f) and also Theorem II.2 are clear.

III. Fundamental Sequences of Operators and Decay Properties

In this section we show the exponential decay of G£, D{k)^\ Γ{k)^\ D{0U~1QΐDik)tLkε

and D ( k ) 'L k ε QkD
{0)'ε~ι. It is convenient to introduce rescaled operators

Gk = {p* + akQΐQά-\ (3.1)

a2

kQkGkQi9 (3.2)

aL- iρρ*)-1 ? (3.3)

k) a n d o(k)QkD
η\ (3.4)

which have exponential decay uniform in L Z)'7 above is the modified Dirac operator
on the η = L~k lattice. The kernels of the operators are related by

Gί(Lkεy9L
kεy') = (Lkε)-<d-»Gk(y9y% (3.5)

Dik)>Lk%Lkεx, Lkεx') = (Lkε)-{d + 1)D{k)(x, x'\ (3.6)

Γ{k)'Lkε{Lkεx, ϋεx') = {Lkε)~id~ 1]Γ{k){x,x'l (3.7)

= (Lkε)~d(Dη~ιQtDik))(y,x)9 (3.8)

(Lfcε)-d(Z)(/c)ρfeD^ ^(x, y) (3.9)

for j ; , y'eL~kZd and x, x'eZ^. We have

Theorem III.l. 3β >0, c > 0 independent of k, but dependent on a such that for
sufficiently small a,

b)

c)

d)
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e) \DmQkD
η-\x9y)\Sce~βlχ-yl

for y,y'eL-kZd, x,x'eZd.

Remark. The result b) doesn't hold uniformly in a ^ oo as shown in the next section,
i.e. doesn't hold for the "(5-function" RGT.

We will prove Theorem III. 1 using explicit momentum space formulas and the
representations given by

Gk = Dη-1-Dη-1QΪDik)QkD
η-\D{k) given by (3.10)

(3.11)

= D ( f c ) - 1 - D ( f c ) - 1 β * D ( f c + 1 ) ' L β D ( f c ) - 1 , D ( Λ + 1 ) L given by (3.12)

β*)" 1 , (3.13)

and obtained as in the proof of Lemma II.4.
We use the Fourier transform convention of [1]. Thus for gel2(LjeZd\

kel2(eZd\ letting daJp) = (eiap»-l)/aι,

d

= Π
l

= Σ Π y
I l U

0,

where

pe{ - π/Ljε, π/Ljε]d, I = 2πm/Ljε, rneZd, such that p + le{ - π/ε, π/ε]d, L odd. Thus

^ ( p ) " 1 =(-iy-K(p) + M(p))/(K(p)2 + M(p)2). (3.15)

We have

Lemma III.l.

b)

5LΛP +1)
Slip +1)

ι )χ' L

c)
J (2π)'
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for x,x'eZd,yeL~kZd,pe(-π,π']dJ,l' = 2πm, meZd such that p + le(- Lkπ,Lkπf
in a) andc);pe(- π/L,n/L]d, I, ϊ = {2πm/L)meZd such thatp + l,p + ΐe(-ππ]d in b).

Proof of Lemma I ILL The proofs of a) and c) are direct, b) follows as in [13] using
the momentum space representation of

The idea behind the proof of exponential decay is to show boundedness and
analyticity of the integrands in Lemma III.l in a small strip Tc = {\lmp1\ < α,
(RePi,P2'"Pdε( — π>πΎ}> which results in exponential decay in the μ = 1 direction;
by symmetry we have exponential decay in all directions. The proof of Theorem
III.l b)-e) can be carried out as in [13] using Theorem III.2 below which provides
appropriate bounds and shows how the singularities in the integrands of Lemma
III.l get cancelled, the point being that a factor of Dη(p) can be extracted. For the
proof of Theorem III.l a) use Theorem III.l b)-e) and the decomposition formula
of Theorem Π.l c) as in [33].

Theorem III.2.

a) D{k){p) = akW(pY1Dη{p) = akD
η(p)W'{p)~\

d

W(p) = Dη(p) -f- akYjD
η{p)Dn~1(p + /) J~[

I μ=l

W(p) analytic in Tc,pe(— π,π] d, / = 2πm, meZd,

p + l€(-Lkπ,Lkπ]d,

\W(p)\<c, \W(pΓι\<c> peTC9

and the same for W'{p).

b)

Zπm

V(p) -
i

meZd,V(p) analytic in Tc,pel —y,y
\ L L

p + le{-Lkπ,Lkπ]d,

\V(p)\<c, \V(pΓι\<c, peTc,

and the same for V\p).
c) Dη(p) analytic in Tc, \Dη(p)\ < c,

Dη(pJrϊ)~1 analytic in peTc, for lΦθ,

Î D"" 1(P + 01 < c(l -h |p + /I)" 1.

We defer the proof of Theorem III.2 to the end of the section.
The bounds in Theorem III.2 can be proved using the following lemmas:

Lemma III.2. For peTciK(p\M(p) and sinp/2/η~ι sinη(p -f ϊ)/2 are analytic and
have the bounds
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sin ηp/2
a)

b)

c)

Proof of Lemma HI.2. Follows from elementary estimates. •

Lemma III.3. For peT"(K2 + M2)(p + /) is analytic and

\(K2 + M2)(p + l)\^c(l + \p + l\2), ί # 0 .

Proof of Lemma III.3. We use the following result on the reciprocal of an analytic
function: If f(z) is analytic in \z\ <£ R, sup \f(z)\ g M and /(0) = m, then ί//(z) is

analytic in |z| ^ r = (|m|/M)K/4 and | l/f(z)\ < 2/|m| for \z\ ̂  r. We apply this result
in the complex variable p 1 ? for / fixed, to the function, K2(p + /) -h M 2(p + /) for
circles of radius R = π/2 in the complex p x plane centered at pe( — π, π] d . In
T;,(K2 + M2)(p + /) is analytic and

As we show below we have the lower bound

|(X2 + M2)(p + Z)|^c(l + |Z|2), p e ( - π , π ] d , c> 0.

Thus

|(K2 + M2)(p-f-/)-1 |^C2(l + I Ί 2 ) ~ 1

in T". For the lower bound use the d-dimensional equivalence of norms inequality

\ \ S \ \ ^ / d \ \ 2 t o o b t a i n , for \ηq\^π,q real,

sin2

>i y

The lower bound above for |(K2 + M2)(p + l)\ follows treating l1 # 0 and / # 0 ,

separately. •
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Lemma III.4.

δμ(p)

243

a)
π

b) \K(p)>c\p\, η\p\>-preal, pe(-π9π]d

9 c = ( -
2 \π

c) c'q2 <K2(q) + M(q)2 <cq2,η\q\^π, q real,

2 2 1 2 d k k d

Proof of Lemma 111.4. The proofs of a) and b) are elementary; for c) the lower
bound follows as in the proof of Lemma III.3. For the upper bound in c) write

M(g)= Σ 2S"'''"'"l2 that (K2 + M2)(q)^πq2 + [ΣH>1

— \ jq2 as η\q\^π. •

Proof of Theorem 111.2a. For the upper bound on W(p) use Lemma III.2,3 and
separate the I = 0 term to get

+ ak

d

•π
j u = l

(\K(p)\ + \M(p)\)(\K(p + 01 + \M(p

sin2 pJ2

\(K2 + M2)(p + 01

1

sin2 η(Pμ

d

I μ = l tri
< c.

For the lower bound we use the analytic inverse operator theorem, the operator
version of the reciprocal function theorem, stated in the proof of Lemma III.3.
Note that W(p) = R(p)l + A(p\ where R(p) is a real number and Λ(p) is anti-
hermitian. It is enough to bound SpW(p), the spectrum of W(p\ away from zero
for pe( — π,π]d. We do this by bounding RQSpW(p) away from zero for small \p\
using the R(p) term only and separating out the 1 = 0 term. For all p and in
particular for non-small |p | we use the anti-hermitian terms to bound ImSpW(p)
away from zero. Using Lemma III.4 a, c we have, letting ak = a',

\ReSpW(p)\ =
K(p)-K(p M(p)M(p + l) «•

2 \ / » _ ι _ A II
•0

(K(p)2 + M(p)2)1 / 2(ίC(p + 0 2 + M(p + I)2)112

d

π
^α'c-α'Cilp^cαΆ
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where we take |p | 5Ξ cβcx.
Now consider the anti-Hermitian terms (letting σμv = yμγr — γvyμ),

M(p +1)

iy(-)M(p)a'
K{p ά

π

d

ΓΊ
^ ( p + 0

Sη

μ(p + 0

2

(K2 + M2)(p + I)
π

We treat iγ V(p) + <J'F(p) as a perturbation. We have

iy V(p) + σ F{p)\^acί\p\ + ac2\p\ = ac3\p\,

and the Neumann series of the resolvent (A(p) — z)~ι converges for

\(irK(p)-zr1\\ίrV(p) + σ

Let z = iβ\p\, then the above condition becomes

1

where we have used \K(p)\ > c\p\. Taking β ̂  c/2 and a such that a ̂  c/2c3, we
have convergence and thus \lmSpW(p)\ > c/2\p\.

Combining the above results we have |SpW(p)\ ^ c4 > 0 for all pe( — π, π] d , and
k so that I W(p)~1 \ ̂  l/c4. The region of analyticity of W(p) is Γ^ but in applying
the inverse operator theorem the region may shrink to \pλ — RepJ g r/4c4c = α,
(Rep1,p2? P£i)G(~ π?π]d? which contains Tc.
b) The proof is similar to a), c) follows from Lemma III.2.3. •

IV. Non-Uniform Exponential Decay for the "^-Function" RGT

In this section we show, contrary to RG intuition, that the sequence of rescaled
actions associated with the u<5-function" RGT does not have uniform exponential
decay. The sequence of actions is obtained as the a -> oo limit of D(k) of Lemma III.2b
and is given by

{QkD
η-ιQ$y\ (4.1)

In one dimension we also show that the sequence of actions generated from an
action of the form eιφp, </>e[0,2π], display the same phenomena; occurring also for
finite a for the actions ± p.

The inverse of Eq. (4.1) has the explicit momentum space representation given
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by (see Lemma IΠ.3a)

μ=ί dl(p +1)
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(4.2)

where pe( - π,πj, I = 2πm, meZd,p + le{-Lkπ,Lkπ\d. The k-> oo limit of Eq. (4.2)
is

v
-»r(p

•π
μ=l

ιp» -
= -irf(p) (4.3)

We show that fμ(p)\p =±π = 0, so that for all p with pv = ± π, for all v we have
y /(p) = 0, and thus the limit action {—iyf{p))~ι does not even exist at these
points. To see this we sum over lμ first in fμ to get

1
Λ(p)= Σ Π Pv+'v

2 1
| A - i | 2 V (4.4)

where b2 = Σ 0\ + KΫ B u t f° r Pμ = ± π t n e 'μ s u m i s

v Φ μ

ί £ 1

(2π) 3

n Λ β 0 , 1

as the n = 0 to oo sum is minus the n = — 1 to — oo sum.
We now consider the exponential RGT in one dimension. Take

(4.5)

if7

as the original action and consider D{co\ the /c-> oo limit of the sequence of actions

Thus as lim Dη{p) = Dc(p) = eιφp, we have, with a' = lim ak = (1 - LΓι)a,

2\ -1

(p
Dc(p\ (4.7)

where f(p) - 2(1 - cosp)Σ(P + 0" 3

The function h(p) = p/(p) = (p/2)~2 sin = 1 + P3

L + 0~3

has the properties: h(0) = 1, /z(π) = 0, h(p) = h( — p\ and h(p) is monotone decreasing
on [0,π], since (p/2)"2sin2(p/2) and g(p){g'{p)SO on [0,π]) are.

Thus for φφθ,π (φ = π/2 corresponds to the Dirac action) D(cc)(p) has
analyticity and exponential falloff for all α'e(0, oo). However for φ = 0,π
boundedness and analyticity is lost for every α'e(0, oo].
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V. Concluding Remarks

Our results can be extended to include a mass term in the action. We are presently
extending our results to the case of the Dirac field minimally coupled to a small
external electromagnetic field, which can be considered as a step towards a block
RG approach to QED. The a -> oo telescopic decomposition discussed in the
introduction holds in a much more general context since it only involves the
original operator and an appropriate averaging operator. Its analytical usefulness
depends on the exponential decay of the difference of successive terms which has
to be verified. In particular the decomposition applies to dΔ~ιd*, the gauge
invariant two-point function of the free electromagnetic field.

Also several interesting spectral problems arise, i.e. what starting actions give
rise to a sequence of rescaled actions which have uniform exponential decay and
what is the role of positivity and self-adjointness?
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