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Abstract. Block renormalization group transformations (RGT) for lattice and
continuum Euclidean Fermions in d dimensions are developed using Fermionic
integrals with exponential and “d-function” weight functions. For the free field
the sequence of actions D, generated by the RGT from D, the Dirac operator,
are shown to have exponential decay; uniform in k, after rescaling to the unit
lattice. It is shown that the two-point function D~ ! admits a simple telescopic
sum decomposition into fluctuation two-point functions which for the expo-
nential weight RGT have exponential decay. Contrary to RG intuition the
sequence of rescaled actions corresponding to the “o-function” RGT do not
have uniform exponential decay and we give examples of initial actions in one
dimension where this phenomena occurs for the exponenential weight RGT also.

I. Introduction

Recently rigorous renormalization group methods have been successfully applied
to analyze many lattice and continuum models in statistical mechanics and in the
Euclidean version of quantum field theory [1-25]. A common feature of the
methods applied to the analysis of field theory models in the Euclidean framework
is a decomposition of the momentum space achieved by the decomposition of a
free continuum propagator or in the case of lattice regularizations by block field
transformations. Block renormalization group methods have been used in abelian
gauge, abelian gauge—Boson and non-abelian gauge lattice models in two, three
and four dimensions to show ultraviolet stability [1-7]. In this paper with a view
to future applications to lattice regularized Fermionic and gauge—Fermionic models
(see [26--27] for the lattice formulation) we develop the block renormalization
group for lattice Fermions. Our treatment parallels the onc of [1-3] for scalar
and vector Bosons where the RGT is an integral transformation with a Gaussian
weight function; for the J-function weight for the lattice scalar field see [13-14].
The results for the Gaussian case are also similar except for minor changes due
to differences in the canonical scaling of free Bosons and Fermions. However there
is an unexpected difference in the o-function formulation.
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As in [28,29] we define the RGT T ; acting on a function p(, ) by
() = (T50p)(7 ) = N [ difdipests " -000-00 p(if ), (1.1)

where ¥, x, ¥, ¥ are independent Grassmann algebra generators and carry spinor
and lattice indices which have been suppressed. The integral is the Fermionic one
of [27]. W, (%, y) are &(Le) lattice fields, Q is the arithmetic averaging operator over
a block of side size Le and a is a positive real parameter. Inner products are always
taken as Riemann sum approximations to the continuum. N is a normalization
constant, depending on the number of lattice points and spinor components, such
that

[ o'z 0)didy = | p(f, Y)dpdip. (1.2)

All integrals are taken in finite volume, the thermodynamic limit is trivial for the
sequence of actions treated in this paper and will be implied without further notice.
Applying successive RGT, denoted by T, ,... we find the composition law

TV e Tk e =Tk, (1.3)

where the transformation T%,_, k is defined asin (1.1) but with g, = (1 — L™ }/1 — L7%)
a replacing a, I replacing L, and Q, replacing Q. Q, is the averaging operator
over blocks of side size I*¢ and we will use the same symbol, irrespective of the
domain lattice, for the average over the I¥ points of the block.

In particular if the original density is ¢"?), where D is the ¢-lattice version of
[28] of the Dirac operator

S a;_afl* 1 € £ L1 £ &%
D Bt T W G} (14)
u=1 u=1

then applying the RGT’s we get a sequence of L*¢ lattice actions D, k=1,2,...
given by

D, = ay(L¥)™ (I + ay(L¥)"'Q,D~'QF) ™"

In Eq. (1.4) 7}, is the e-lattice forward lattice derivative, d3* its adjoint, and 7, are

Euclidean self-adjoint Dirac matrices obeying 7,7, + 7,7, = 26,,. The additional

non-y terms in Eq. (1.4) are added to suppress the period doubling present in the
d

first term and vanish in the ¢—0 limit since A°-"% Z 6j. It will be shown
=1

that the D,’s have exponentially decaying kernels.
An important consequence of the composition law (1.3) is that it gives a product
decomposition of the free field generating function

e P jDlﬁDn//e"ﬂ’D'“e‘j"”““/(J_: J=0),

and a sum decomposition of D ™!, wherc J and J are Grassmann variables. It turns
out that the overall structure of the decomposition of the two-point function D'
is trivial; the decomposition is the telescopic sum (letting D, =D and Q,=1)

k=1
D '=Y [D'QIDQD —=D7'Q¥ D;,Q; D1+ DIQEDQD T, (1Y)
=0
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which can be written

k—1 _ _
pi= ZO S,I";5* + S,D; 3%, (1.6)
P

where S;=D"'QfD,, Sf=D,Q,D"" are Lie(c) to &(L/e) operators and ;=
D' —=D;'Q*D;, QD' =(D,—a(l’*'e)"'Q*Q)" " a L lattice operator. The
algebraic structure of (1.5-6) is the same as in the scalar case and is not apparent
in [1] but follows from algebraic relations to be derived here; it is apparent in the
a—co limit in [13]. I'; has the interpretation of a fluctuation field two-point
function as will be seen below. We will show that the kernels of S;, S, I'"; have
exponential decay so that roughly speaking

1 e—(l,’LJf,)[.\‘A,\'",

(L™ ’

ST .S%(x, x') ~

Py x, x'eeZ". (1.7
Thus (1.5) provides a decomposition into momentum scales (L/g) ™ *.

By the standard procedure of exponentiating (J,D~'J) given by Eq. (1.6),
representing each factor by a Fermionic integral and differentiating with respect
to J and J we arrive at the following formula for the integral of a function f(},):

_ . _ _ _ 0 R
[dbdpe ™ /(S =1)= [ DIDy e [] | DryyDgse"s

k—1 k—1
f(lﬁ =S¥+ ‘Zo Sjﬁjr V=S8 + ‘Zo Sj’?j)/(f: 1). (1.8)
ji= j= /
In Eq. (1.8) ¥y, V4, i1;» n; are Grassmann variables. We interpret s, as a new field
and the 5;s as fluctuation fields which have exponential decay. Equation (1.8) can
be used as the starting point of a RG analysis, successively integrating over the
fluctuation fields.

Equation (1.8) can also be obtained from the RG composition formula by
making successive changes of variables in the integral in the left-hand side of Eq.
(1.3). The change of variables is devised to eliminate cross terms in the quadratic
form and give rise to one step operators. The resulting j-step operators, S;, S;,
which have the same structure as the j-step minimizers in the scalar field case [13, 147,
can be written in the form here by using algebraic identities to be derived in Sect. I1.

In addition to the RGT (1.1) we can also define directly a RGT which has the
properties analogous to a d-function weight in the scalar case and which is the
same as the a — oo limit for the exponential weight. The limiting sequence of actions
are given by (Q,D Q¥ ™.

However, contrary to RG intuition, the sequence of actions rescaled to the unit
lattice do not have uniform in k exponential decay. We give examples of actions
in one dimension where this occurs also for the exponential weight RGT.

Furthermore the decomposition Eq. (1.5) can be carried over to the continuum
by taking the ¢—0, k—oco limit such that I*s=1 which gives, denoting the
continuum Dirac operator by D, = Zy,ﬁ“,

u
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D7'=Y [D;'C*,DX"C_, D'~ DIICH D TIC D

n:l -n c c
+ D 'CEDICoD (1.9)

In (1.9) C,: L*(RY—1,(L"Z% is a continuum averaging operator over blocks of
side length L™ and DY " =a_ ™I + a, L"C_,D;'C* )" 'is an action on the L™

lattice. Continuing the decomposition in (1.9) to blocks of side L, L?,... we obtain
Di'= ) [D'CiDMC,DI =D Chi DMUC, DY (1.10)

which gives a decomposition of D, ! into space scales ...L~ %, 1, L,... or the
corresponding approximate momentum scales ... L', 1, L™',... .

To make contact with the continuum scalar field decomposition of [31,32] we
note that Eq. (1.10) remains valid for A, replacing D, and A" =(C, A 'C¥)~!
replacing D", where A is minus the continuum Laplacian. Thus

A;lz Z [AcilC:ALmCmAc-l'Ac‘1C?::+1ALm+1Cm+1AC~1]7 (111)
which is the continuum and a — oo limit of the scalar field decomposition of [1].
Applying (1.11) to a function 4 g we obtain

g: Z gm’ ng[ACMIC:AmemNAJJC:!:HrlAL"Hlcm‘rl:lg’

and simple calculations show that (note C,,C% =1)

(Gm> A Gn)L2rey = 0, m # n, orthogonality;
C'*lg, =0, i.e. the average over an L"*?! block is zero;
A.g, 1s constant on L" blocks, i.e. is in the range of C¥.

In this way (1.11) provides a decomposition of a function into orthogonal functions
in the (-, 4, ) 2zey norm. Of course an analogous decomposition will yield an
orthogonal set for any Sobolev norm. In particular for A, replaced by Ig, is constant
on L blocks.

We describe the organization of this paper. In Sect. II we obtain expressions
for various operators resulting from RGT and obtain various identities including
(1.5). Also we define the “d-function” RGT. In Sect. III we show uniform in k
exponential decay of the kernels of the suitably rescaled versions of the operators
D, I';, S, §j. Our proof of decay uses explicit momentum space representations
and is more difficult than the scalar case which uses positivity properties of the
negative Laplacian (see[l, 13]). In Sect. IV we show the non-uniformity of
exponential decay in the case of the d-function RGT and in one dimension give
examples of initial actions which also display this phenomena for the exponential
RGT. Section V is devoted to concluding remarks.

II. Renormalization Group Transformations and Properties

In this section we establish as in [1-3] the composition law for the RGT and
obtain various RGT identities. Additional identities obtained here also have their
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analogs in the scalar case treated in [1]. The decomposition of the two-point
function is obtained. Various operator inverses will appear here and will be shown
to exist in the next section. We use the more complete notation D®2** and I~ ®-1*e
for the L¥e — lattice actions and L*e — Iattice fluctuation field two-point functions,
respectively. Throughout we use the easily derived relation Q, Q3 = I, | dydye"*V) =
det 4, the translation formula [f() + X,y + X)dydy = f(p,y)dy dy, and
[ dr, d exp [, AY) + (T, ¥) + (7, J)] = det Ae ") Here and in the sequel newly
introduced field variables are Grassmann and taken to anti-commute with all
others.
The composition law is given by

13 . S . .
Lemma IL1. TLPT o=T5 | x+r, or in iterated form

Lk~ 1g ~Le e _ e
Ta,L 1 u.LTa.L =T

l;k,Lk s
where (1/ay ;) = (L™ '/a,) + 1/a with solution a, = (a(1 — L™ Y)/(1 — L™¥)).
Proof of Lemma I1.1. Using 1, (¢, ¢) for the integration variables of TX¥ (T%, )

ay,L*

and the translation formula {dydy f(Y,y) = [dydy [() + Q.Y + Qyh), do the
W integral, use QQ* = I, and equate the coefficients of the quadratic form on both
sides.

Define Z®“*¢ and D**1-E*" " inductively by

Z00 LDy TL (e @™ 0y, (2.1)
and let

G = (D + ayL'e) ' QF Q) . 22)
Lemma IL2. DO = g (I*e) ™ 'T — a(L¥*e) 2Q,GLQF.

Proof of Lemma I1.2. By the inductive _gicargl;rllkition of pt-tre and the composition
TE T TS =T, 1, we have ZieWP ) = TZ,(.Lk(e“/"D( M‘”’). Performing the
integral gives the resull.

Define a fluctuation two-point function by the quadratic form in the integral
in TV (e((E’D(l\),L"e(b)) b

a,L y

F(k).L"s = (D(k),L“s + a(Lk+ 18)~ IQ*Q)— 1 (23)
Using I"®1* we establish a recursive relation for D** V-2 from Eq. (2.1) given
by

Lemma IL3. DO+ DL e — gkt lgy =t g2([kH1g)—2Q [ W%,
We use the definitions and composition formula to find the connection between
the operators G; and I"*®*¢. By calculation we find

. 7 D(O)"' b.f 7 — —
Tf:k,j,k(ew)’ ¢)+(d /)+(fd>))(‘/j’ l//,f,f)
. (k), Lk k= 1p 7 ~ ZrE Ak -
= Z8eWDT ) pad L) LGN + (LGN, - (G f ) (2.4)

which defines Z;. Writing the above for k+ 1 and substituting Tff}fo,k‘Lk for
T%, . . e+ gives rise to important RG identities given in
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Theorem II.1.
a) Zo,, = Z:ZWe or in iterated form
Z =20 D g Z e 700
b) @y (L 10) T Qs 1 Ghry = alLf ) Ty L) QT W Q.G
(L) TGy 10 = a(LF T o) Nay(Lre) T GRQET W Q.
¢) Gy, =ak(Ike) 2GiQF " 1Q, G + G2, or in iterated form
k—1

Gi= Y a(lje) 2GiQF I'P1eQ Gt + MO+,

i=1

We now establish other representations for Gf, D¥2*, %1% GL0* and Q,Ge.
These make the a— co limit more transparent and lead to the decomposition
formula. We have

Lemma I1.4.
a) Gf =D —a(Lk) " DO QH( + a (L) QDO 0TI QDO
— D(O),s - lD(O).a- IQ;(kD(k),L"erD(O).e* 1.

b) DL = ay(1e) (1 + aLke) ' QDO 0p)

C) D(k+ 1)Lk te a(Lk+ 18) - 1(1 + a(Lk+ 18)~ 1QD(k),Lke— IQ*)* 1.

d) r(k),Lks — D(k),Lka -1 _ D(k),Lka - IQ*D(k +1),Lk+ 1£QD(k),ch - x’

&) L) GO = DO QFDWI

f) a(l¥e)™'QuG} = W, D@71,

g) D(O),a— 1Q1>{k+ 1D(k-i~ 1)L+ e a(Lk+ 18)— ID(O),F— 1Q§<D(k),L"sr(k),Lst*,
a(Lk+ 18)~ 11"(k),L"eQ* — D(k),L“s‘ lQ>1<D(k+ 1,1 " te

h) D(k+ 1),Lk* ‘st+ 1D(O),s— 1 a(Lk + 18) - 1QI-'(k),L"eD(k),LstkD(O),s - 1’
a(Lk + 18)— 1Qr(k),Lks = p+1,Lxt 1EQD(k),Lk.s- '

Proof of Lemma. 11.4

a) Letting @' = a,(I*¢)” ! and multiplying (D2 + a'Q¥Q,) f =g on the left by
0, D=1 gives Q,f=(I+da QD" 10F) ' QD 1g. Substituting for Q,f
above gives the first equality of the lemma; the 2" follows from b);

b) Substitute G}, from the first line of Lemma I1.4 a) in Lemma I1.2 and simplify.

¢) Using Lemma I1.3. for D& D:Ee apd [®-L* — (DL L g([k+1g)=10* Q)™
the result follows as in the proof of b),

d) From 0L = (D@L 4 g([F+1g)=10*Q) ! and as in the proof of a) the
result follows using Lemma I1.4c.

e) Use Lemma 11.4 a) for G} and simplify.

f) The result follows using Lemma II.4b similar to e).

g) and h) express Theorem 11.1b) in terms of Lemmas I1.4¢) and f).

We now show that in the decomposition identity of Theorem II.1c for G} that
the sum is actually telescopic.
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Theorem 11.2.
Z(L]e) ZGSQ*F(]) LJsQ Ge D(O) &= IQ* D(}) LJeQ D(O) e—1
D(O) &= 1Q;_1<+ 1l)(}+ 1),Li+ 13Qj+ 1D(O),e— 1.

Proof of Theorem I1.2 follows from Lemma 11.4 d)-f).
We immediately obtain from Theorem Il.1c, using Lemma I1.4a for G}, the
decomposition formula

D(O)s 1 _ z (D(O)a 1Q*D(1)L15Q D(O)a 1 D(O)e 1Q* D(;+1)LJ“£Q DO)e 1)

+D‘°" 'QFpWLeg, Ot (2.5)

We note that the specific form of the individual terms can also be obtained by
telescoping Gf as given by Lemma Il.4a.

Formally the a — co limit of D®+** is, from Lemma I1.4b, (Q,D®*~10#)~ ! and
the a — oo limits of the relations in Lemma I1.4c)—f) and also Theorem I1.2 are clear.

III. Fundamental Sequences of Operators and Decay Properties

In this section we show the exponential decay of G, D®-L*¢, ["®1L*e p(©.e= 1% pk).Lxe
and D®-1*¢ 9, D=1 Tt is convenient to introduce rescaled operators

Ge=(D"+a,0i00 ", (3.1)
D® = a1 — a;Q,G,0F, (3.2)
= (D% +al"'00%) ", 63)

D" 'Q¥D% and D®Q,D" 1 (3.4

which have exponential decay uniform in k. D" above is the modified Dirac operator
on the = L™* lattice. The kernels of the operators are related by

Gi(Lrey, L'ey) = (L'e) ™" VG, y), 3.5

DWE([hex, Tkex') = (Lre)~ @ DDW(x, x), (3.6)

IO (Lex, Lex') = (L) ™7 D ®(x, x'), (3.7

(DO~ QE W) (Lrgy, Lex) = (Lke) (D" ' QEDW) (v, ), (3.8)
(D@, DO~ 1) (Lex, Ley) = (L'e) ~(D™Q, D"~ 1)(x, y) (3.9

for y, yeL™*Z% and x, x'€Z*. We have

Theorem I11.1. 38 >0, ¢ > 0 independent of k, but dependent on a such that for
sufficiently small a,

) |Gy, )| < i Ve,

b) [DW(x,x)| < ce” 7,

o) M0 (x,x)| < ce” X1,

d) [ D" QEDM(y, x)| < ce” P,
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e) |DYQ,D" (x, y)| < ce Fx
for y, yeL™*Z% x, x'eZ°.
Remark. The result b) doesn’t hold uniformly in a < oo as shown in the next section,
i.e. doesn’t hold for the “d-function” RGT.

We will prove Theorem III.1 using explicit momentum space formulas and the
representations given by

G,=D""'—Dpr1Q¥Dp®Q, D", D® given by (3.10)
D(k)=ak(1+akaD"_lQ;f)_ls (3.11)
[®=pw=1_ pR-10%pk+DLOPE®=1 pk+ DL given by (3.12)
DEFOL = g~ ([ + gL ' QD@1 Q)1 (3.13)

and obtained as in the proof of Lemma I1.4.
We use the Fourier transform convention of [1]. Thus for gel,(I/eZ?),

kel,(€Z%), letting 0%(p) = ("™ —1)/a,
aLJe p+ l)~

o T (
+)= , k)(p) = +————k(p+1
QF9)(p uljl (3£p+l)gp) (Q;k)(p) ;ul_]l Ep k(p +1),
where
pe(—mn/Lie,n/Lie)?, 1 = 2nm/Lie, meZ, such that p + le(— /e, n/e]%, L odd. Thus
4 sin 1 —cos
D(p)=i Y 7, nnp,t +'IZ( > nPy)
m
D'(p)~" = (—iy-K(p) + M(p))(K(p)* + M(p)*). (3.15)
We have
Lemma IIL1.

=iy K(p)+M(p), (3.14)

_p D“‘)(p)ei”"‘ -x')

PR =

2up+ D)
ap(p+1)

ip(x— x7
) esz ‘C)’

1 ) ,
b) I'®(x,x) = zf (2‘17157) o D(k)( 4 1)L DE DL () pitr D)

d
=f(~2—%ak<l +ak;D"_l(p+l) H

d
+ 3T g DU+ D) DD
2,

A+
hp+1)

aL(p +1) ?yL_(p +1 e i(l—-l’)x’:]eil’(x~x’)eip(x—x’)
f 5&(134"1/) a.p+1 ’

I

¢) (D" 1QFDM)(y,x) = Z H

p+l)

5’7 p+l) ( +I)D(k)(p)ei(P+l)ye*ipx
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for x,x'eZ% yeL"*Z% pe(—n, )%, LI = 2nm, meZ* such that p + le(— L*n, [*n]*
ina)and c); pe(— n/L,n/L]% LI = 2nm/L)meZ* such that p+ I, p + I'e(— nn]* in b).

Proof of Lemma I11.1. The proofs of a) and c) are direct. b) follows as in [13] using
the momentum space representation of

D¥F DL = (gL )1 (I +aL" QD1 Q*). M

The idea behind the proof of exponential decay is to show boundedness and
analyticity of the integrands in Lemma IIL1 in a small strip 7, = {|Imp,|<a,
(Repy,py - pae( — m, ]}, which results in exponential decay in the u = 1 direction;
by symmetry we have exponential decay in all directions. The proof of Theorem
ITL.1 b)—e) can be carried out as in [13] using Theorem II1.2 below which provides
appropriate bounds and shows how the singularities in the integrands of Lemma
II1.1 get cancelled, the point being that a factor of D"(p) can be extracted. For the
proof of Theorem I11.1 a) use Theorem 111.1 b)—e) and the decomposition formula
of Theorem II.1 c) as in [33].

Theorem II1.2.
a) DP(p) = a,W(p)~* D"(p) = a, D"(p) W'(p) ",

d

W(p) = D"(p) + a ; D"(p)D"" (p+1) []

u=1

2

oyp+1)

ap+D
W(p) analytic in T.,pe(—n,n]%, | =2nmm, meZ",
p+le(—Ln I¥n]%,
[W(p)<e, [W(p) 'l<c peT,
and the same for W'(p).
b) DTy = L7 V(p) D (p)=ay L7 D)V (p) ",

Ap+|?
V(p)=D" LD (p)Y D (p + )|
(p) (D) + @ (p); (p+ )az(p+l) ,
V(p) analytic in T, pe| — 2,2 o i 74
119 — = -
p y C’p L,L 9 L b mE 9

p+le(— L, Lin],
WVip)l<e, [V(p)'I<c, peT,
and the same for V'(p).
¢) D"(p) analytic in T,, |D"(p)| <c,
D"(p + 1)~ ! analytic in peT.,, for [ #0,
D" Yp+ Dl <c(l+(p+1)7"
We defer the proof of Theorem II1.2 to the end of the section.
The bounds in Theorem II1.2 can be proved using the following lemmas:

Lemma IIL2. For peT.,K(p), M(p) and sinp/2/n~'sinn(p + 1)/2 are analytic and
have the bounds
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' sinnp/2
n~tsinn(p + 1)/2

b) [K(p+ Dl <c( +11),

c) IM(p+ D <c(l+]1)).
T, = {p:dist(p,,(— m,7]) < 7/2, (p,...pa)e(—m, )" 1}
Proof of Lemma I11.2. Follows from elementary estimates. M
Lemma II1.3. For peT/(K*+ M?)(p + 1) is analytic and

(K2 +M*)(p+D|=cl+|p+1?), [#0.

T = {p:dist(p,,(—m, 7)) =7, (p5,...pg)e(—m,m]* "'}

Proof of Lemma I11.3. We use the following result on the reciprocal of an analytic
function: If f(z) is analytic in |z| < R, sup |f(z)| £ M and f(0) =m, then 1/f(z) is
z|SR
analyticin |z| £r =(|m|/M)R/4 and | 1}}(2)| < 2/|m|for |z| = r. We apply this result
in the complex variable p,, for [ fixed, to the function, K2(p + [} + M?(p + 1) for
circles of radius R=mn/2 in the complex p, plane centered at pe(—m,n]% In

T.,(K? 4+ M?)(p + I) is analytic and

(K + M) (p+ 1) <4c'(1+ 1)~

I c(1 +11)),

As we show below we have the lower bound
(K2 4+ M) (p+ DI Zc(1+]1]?), pe(—mnl’, ¢>0.

Thus
(K2 + M) (p+ D)L+

in T/. For the lower bound use the d-dimensional equivalence of norms inequality

\/dl [, £I'l; £/dl'], to obtain, for [ng|<m,q real,

sin?
(KM @2 Y (1= cosng, )
u u
1 sin .
:<1~3>2 an“ Y. sin*#, y 5> (1—2cosng, + cos*1q,)
e " I
sin2 e
>122(1—coanu)_l 2
—d5 n’ d% nq, 2q2>izq2
2 B gt L

The lower bound above for [(K? + M?)(p + )| follows treating [; #0 and [ #0,
separately. W
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Lemma II1.4.

dp|_2 |0,p+D| = Ip,
a) |—==— <= l #0, pe(—m,n],
Maw |27 (oo en|“2ip+op W7 petomm
2 2
b) |K(p)>c|pl, rilp|>gpreal, pe(—m,n]’, c=<;>,

c) <:’412<I<2(q)+M(q)2<cq2 nlql S, q redl,
Kz(p+l)+M7'(p+l)>d S1%, 1=2mm, meZ?, p+le(—Ln, K]

Proof of Lemma I11.4. The proofs of a) and b) are elementary; for c) the lower
bound follows as in the proof of Lemma II1.3. For the upper bound in c) write

M(q)=<2 . > so that (K2+M2)(q)§nq2+<2%qﬁn>2

§q2+q2(2%ﬁ> (1+(d2n> >q2 as nlgl<n. W

Proof of Theorem I11.2a. For the upper bound on W(p) use Lemma IIL.2,3 and
separate the [ =0 term to get

[W(p)| < 2(1K(p)? + [ M(p)2)"/2 + a,c
a Z(IKp)l+IM(p)l)(lK(p+l)l+lM(p+l)l)
" (K* + M?)(p + )

d 2 1

(n/2)72

C ¢ ‘
seract 3 [ e (Sary) <

1#0 p=1

2sin?4q,/2'\?

sin’p,/2
sin®n(p, +1,)/2

u=1

For the lower bound we use the analytic inverse operator theorem, the operator
version of the reciprocal function theorem, stated in the proof of Lemma II1.3.
Note that W(p) = R(p)I + A(p), where R(p) is a real number and A(p) is anti-
hermitian. It is enough to bound SpW(p), the spectrum of W(p), away from zero
for pe(—m,n]% We do this by bounding Re SpW(p) away from zero for small |p|
using the R(p) term only and separating out the /=0 term. For all p and in
particular for non-small |p| we use the anti-hermitian terms to bound Im SpW(p)
away from zero. Using Lemma 111.4 a,c we have, letting a, = a,

_ < K(p)K(p+1)+Mp)M(p+1) 4 0.
[ReSpWip)| =\ M(p)+a ). Kp+)  ALeeT)
o (K(p)? + M(p)*)"2(K(p+ 1)* + M(p + 1)*)!12
M +de=da ) K2+ M)(p+1)

d c
Ill:ll (1 + ”u’)z

=zadc—dc|p|>cd/2,



244 T. Balaban, M. O’Carroll and R. Schor

where we take |p| < ¢/2¢;.
Now consider the anti-Hermitian terms (letting o, = y,7, — ¥, 7.

o N M(p+1) a5( 2)
o=t sk 3, S T
- , K(p+1) a,(p+hJ?
H MW 2 e v+ L o+

oup+ D

'y ,,v (K,(pK,(p+D)—K,(p)K,(p+1]) &
ap+1

170 oy (K2+M>(p+1)) i=1
=iy K(p)+iy-V(p) + o F(p).

+a

We treat iy-V(p) + o- F(p) as a perturbation. We have
[y V(p) + 0" F(p)| < acp| + ac,|pl = acs|p|,

and the Neumann series of the resolvent (A(p) —z) ! converges for

Gy K(p)—2)" iy V(D) + o F(p)| < 1.

Let z =if|p|, then the above condition becomes

1 acs|p|
K@) —Bip P =g

where we have used |K(p)| > c¢|p|. Taking f <c¢/2 and a such that a <c¢/2c,, we
have convergence and thus |Im SpW(p)| > ¢/2|p]|.

Combining the above results we have |SpW(p)| = ¢, > 0 for all pe(— =, 7]%, and
k so that |[W(p)~'| < 1/c,. The region of analyticity of W(p) is T/ but in applying
the inverse operator theorem the region may shrink to |p; — Rep,| S r/dcsc=a,
(Repy,pss...pa)e(—m, )%, which contains T..
b) The proof is similar to a),c) follows from Lemma II1.2.3. B

<1,

IV. Non-Uniform Exponential Decay for the “§-Function” RGT

In this section we show, contrary to RG intuition, that the sequence of rescaled
actions associated with the “d-function” RGT does not have uniform exponential
decay. The sequence of actions is obtained as the a — oo limit of D® of Lemma I11.2b
and is given by

QD" 10 @.1)

In one dimension we also show that the sequence of actions generated from an
action of the form ¢ p, p[0,2n], display the same phenomena; occurring also for
finite a for the actions + p.

The inverse of Eq. (4.1) has the explicit momentum space representation given
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by (see Lemma III.3a)
¢ 10, (p+1)|?
D" 1 D"~ 1 +l “
(@ D" O Z (p )uljl @Z(p+l)

where pe(—n, ], | = 2nm, meZ% p + le(— L, n]". The k — co limit of Eq. (4.2)
is

4.2)

—ip(p+ D) & |e 112
o e L e e () 43)
We show that f,(p )p _ 1+, =0, so that for all p with p,= + =, for all v we have

y-f(p)=0, and thus the limit action (—iy-f(p))~* does not even exist at these
points. To see this we sum over [, first in f, to get

fLup=3 11 :

ePu-1 P s 4.4
[V¢[ VEN l Z +l)(pu+l) +b2 ( )

et

p,+1

where b2 =Y (p, +[,)% But for p, = + = the [, sum is

vE U

1 & 1

—— e = (), 4.5
R AT %)

G+n| G+n) +| 5=

27

as the n=0 to oo sum is minus the n= —1 to — oo sum.
We now consider the exponential RGT in one dimension. Take
pro @ =D
in

as the original action and consider D™, the k — oo limit of the sequence of actions

DW =g, (1+a,Q, D" 1QF)" . (4.6)
Thus as lim D"(p) = D*(p) = ¢ p, we have, with ¢’ = lim q, = (1 — L™ Y)a,
k— o0 k— o0
) le? —1]2\ ! a
DX (p)=d|1+ae" == . D<(p), (4.7)
(r)= ( 2 5oxh ) @ rrani)

where f(p) = l—cosp)Z(p—i—l)”.

The function h(p) = pf(p) = (p/2)”* sin® (p/2)g(p), 9(P) = [1 +p? IZO (p+D" 3]

has the properties: h(0) = 1, h(n) = 0, h(p) = h(— p), and h(p) is monotone decreasing
on [0, 7], since (p/2)~?sin?(p/2) and g(p)(¢'(p) <0 on [0, 7]) are.

Thus for ¢ #0,n (¢ =mn/2 corresponds to the Dirac action) D'®)(p) has
analyticity and exponential falloff for all a'e(0,0). However for ¢ =0,n
boundedness and analyticity is lost for every a'€(0, co].
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V. Concluding Remarks

Our results can be extended to include a mass term in the action. We are presently
extending our results to the case of the Dirac field minimally coupled to a small
external electromagnetic field, which can be considered as a step towards a block
RG approach to QED. The a— oo telescopic decomposition discussed in the
introduction holds in a much more general context since it only involves the
original operator and an appropriate averaging operator. Its analytical usefulness
depends on the exponential decay of the difference of successive terms which has
to be verified. In particular the decomposition applies to 9A~!1¢* the gauge
invariant two-point function of the free electromagnetic field.

Also several interesting spectral problems arise, i.e. what starting actions give
rise to a sequence of rescaled actions which have uniform exponential decay and
what is the role of positivity and self-adjointness?
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