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Abstract. The purpose of this paper is to study a limit probability distribution
of the set of the first K eigenvalues A1(i?)<λ2(jSf)< ... <λκ(Jίf) (with a fixed K
and j£f —>ΌO) of the boundary problem on the interval [0, J2?]

Hy= - --a(t,ω)-£ +q(t,ω)y = λy,
at at

where α(ί,ω), q{t,ω) are the random stationary processes. Particularly the
question of the repulsion between the first eigenvalues (small energetic levels) is
studied. It has been proved that in the "divergent" case (q(t,ω) = 0, a{U ω)φθ)
levels repulsion exists. As for the "potential" case (a(t, ω) = 1, q{t, ω) φ 0) there is
not any repulsion at all. This is one of the main differences between these two
cases.

Introduction

Let H(ω)= ~ — α(ί, ω)— +q{t, ώ) be a one-dimensional random Schrδdinger
at at

operator with stationary coefficients a(t, ω)>0, q(t,ω) (on a probability space
(ί2, #", P)), describing the quantum-mechanical behaviour of an electron in a
random medium. As for its spectral properties, it is possible to study them either in
££2(Rι) or in i f 2( — if, if) when if-• oo. The latter is more important for physical
applications. A restriction H^(ω) of the operator H(ω) on ££2{<£, <£) is determined
by some classical boundary conditions y. Since the coefficients α(ί, ω\ q(t, ω) are
stationary, many properties of the operator H(ω) on a large segment are
independent of the segment's position. That is why we shall further consider
[0, i f ] instead of \^ — S£,S£~\ since it is technically simpler. We shall study
asymptotic of the eigenvalues (the energetic levels) /lf(if, ω) when
££-+ + oo and the eigenfunctions for the following boundary problem:

Hψ(t) = λxp(t);
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If N#(λ)= Σ 1, then under very general conditions there exists a non-
λ, (J2?)gλ

random continuous limit

N(λ)= lim -pjN<r(λ)9 where i?-> + oo,

which is called the limit spectral distribution function [I].
If q(t, ω)^const with probability 1 (i.e. P-almost surely) then there exists a

point X such that JV(X) = O and N(λ)>0 when λ>λ. The point X is (P-almost
surely) the left end of the spectrum S(H(ω)) of H(ω) in i f 2(Λ1).

The character decay of N(λ) at the left end of the spectrum in various models is
different. Particularly in a model studied in [2] when ^ Ξ O ("divergent case") the
following asymptotics for N(λ) was found

N(λ)~ const λ1/2, when λ->λ = 0.

However in a model with a = 1 and q(t9 ω) = £ δ(t — τf), where τf are points of a

Poisson flow (this potential is often used in physics and is called ^-potential) the
asymptotics for N(λ) is a different one. Namely, using the results of [3] one can
obtain

N(λ)~ const exp(-π//l1 / 2) when A->X = O.

The purpose of this work is to study a limit probability distribution of the set
of the first k eigenvalues λv λ2...λk with a fixed k and i?-> + oo and to find out a
structure for the corresponding eigenfunctions. A similar problem was solved in
[4,5] for eigenvalues in a neighborhood of a fixed internal point of the spectrum.
Namely, for the case α(ί,ω)=l and q(t,ω) = F(xt(ω)), where xt(ω) is a diffusion
process on a smooth compact manifold K and F.K-+R1 is a smooth Morse
function such that mini 7 = 0, it was proved that when λo>0 and a,b(a<b) are

fixed, a point process {λ^J?)} is asymptotically a Poisson process in scale — I in
\ ^ z

the neighbourhood zlfl b = (λ0 — a/J?,λo + b/Jίf) with the parameter n(λ0), where

w(^0) = ——-°- is a state density. Its continuity was also eastablished. The

eigenfunctions ψ#(t, if) corresponding to the spectral interval Aab are decreasing
exponentially. That is for any function ψ^t, J£, ω): λi(£^)eΔa b there exists a point
τ e [0 , i f ] such that

2\l/2

^ c(β, ω)exp(( - α(A0) + ε)|ί - τ | ) .

Here ε > 0 is a fixed small constant, α(Λ,0) is a nonrandom positive function
(Liapunov index) and φ , ω) is a constant bounded in probability when if-^ + oo.
Note that the asymptotic Poisson property of the spectrum {λ.(Jίf)} near the point
λo>0 is interpreted physically as the absence of any interaction between the
spectral levels.

The results obtained in [5] alter the viewpoint suggested earlier, according to
which there exists a repulsion between spectral levels in quantum disordered
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systems (see the discussion in [5]). After [5] had been published it was suggested
in a number of new papers in physics that the levels repulsion hypothesis might be
secured at least for small energies λ = o(l) when JS?-» + oo.

This hypothesis turns out to be true for some cases but for others it turns out to
be false even for small energies. To distinguish these cases a supplementary
classification of hamiltonians is necessary. In particular the spectral properties of a

"divergent" one-dimensional hamiltonian H = — - a(t, ω) — at the end of the
dt dt

spectrum are similar to those of the operator Ho = — —j. Namely there is a strong

repulsion between the small levels and the corresponding eigenfunctions are not
localized.

Similar effects were observed of the spectrum end structure for difference
analogues of divergent operators. Moreover, this was true even for the
multi-dimensional case [12,13]. Apparently, it is possible to prove that the

situation for a "potential operator" H(ω)= —d2/dt2-\- Σ ί t <S(ί — TJ ) with a genera-

lized <5-potential at the end of the spectrum is in general similar to that near the

point λ0 > 0. Now we can formulate more precisely our results.
The first one in physical terms is the following: let us consider a divergent

operator H= — Γ a ( t , ω ) — on [O,JS?]. Let a(t,ω) be a stationary random process
at dt

with an finite expectation M l — -I = α and M\—z- <oo. Let the process
\a(t9ω)J W(t,ω))

— α\ /ε 1 / 2 weakly converge to Gaussian white noise; then

λi+ A&, ω) - λ£&, ω) = λ°ι+ ,{£>) - λ°

where A?(JSf) are the eigenvalues of the averaged operator

H ' •*'

and ξ.(j5f,ω), i=ί,2...k have joint Gaussian distribution when k is fixed and

The second result deals with the "potential case." Let H = — —y + Σ <ί£<5(ί — τ£),
at i

where τ are the points of Poisson flow, τ. do not depend on ξ. and ξt are
independent random variables having the same exponential distribution then

are asymptotically independent and after corresponding normalization they have
a limit exponential distribution.
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In the divergent case a Liapunov index is degenerated, α(0) = 0, while in the
potential case α(0) > 0, which accounts for the difference between both cases. (The
definition of oc(λ) see in [1,4]).

Let us proceed to the exact formulations starting with the divergent case.

I. Divergent Case

Let H(ω)=—-α(ί,ω) — be an one-dimensional random operator on [0,+ oo),
at at

where a{t, ω) is a stationary process satisfying the following supplementary
conditions:

M f ) < o o ; D ( )
\a(t,ω)j \a(t,ω)J

2. The distribution of the normalized process

tε[0 i:

weakly converges when if -> + GO to the distribution of the Wiener process with
some variance σ 2 > 0 . Thus in the sense of closeness of distributions in
Levy-Prohorov metric

, ω)

Condition 2 is valid at least for a large class of stationary Markov processes.
We shall further give some examples where conditions 1, 2 are valid and the
variance of the limit Wiener process can be calculated. Let us consider the spectral
problem

^ ^ 0. (1.1)

Note that a choice of such boundary conditions is connected with considerable
simplification of some formulae however it is not difficult to study the general
case

y(0) + hiy'(0) = 0, y(&) + Λ2y(JίP) = 0.

Theorem I. The set of the first k eigenvalues of the spectral problem (I.I) when
j£f-> + oo and k>0 is fixed can be represented in the form

( ) ; (1.2)
\a(t,ω)J
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where ξ.(JZf

9ω), 0^i^k—l is a random vector having a limit Gaussian distribution
with zero mathematical expectation and covariance matrix σ2B = σ2(bij), where bt

are constants that can be effectively calculated1.

Proof The idea of the proof is different from that of [2] but has many points in
common with [12] which, however, deals with discrete time. We substitute
variables putting x = t/J&, then our problem becomes equivalent to the following
one

4 a(xJ?, ω)4~y = λS£2y, xe [0,1] y(0) = y'(l) = 0. (1.4)
dx dx

Let us denote the eigenvalues of the boundary problem (1.4) by μ^\ i = 0,1,2....
Then μ.(if) = /l.(if) if2, where λ£(JSf), i = 0,1,2... are eigenvalues of the boundary
problem (I.I).

Now let us consider a homogeneous equation

Hy = 0. (1.5)

This equation has two independent solutions

/ x ΐ du( ) ί
The Green function of a nonhomogeneous problem

can be obtained with the help of these solutions in a standard way.
Now the given spectral problem is reduced to an integral equation

y(x)=$G{x,z,ω)λ&2y{z)dz
o

ήu
y(z)dz] , λ+λ&\

Further we shall use the fact that

1

y{z)dz. (1.7)

under condition 2 in the sense of distribution, where α = M f — -\,wt is a Wiener

process. So we substitute (zα + ̂ (z)/i f 1 / 2 ) and (x(x + ξ^(x)/^1/2) for J ^

x du
and f — in (1.7) respectively, and obtain

O, iή=j so that the λt in general are asymptotically dependent even after normalization
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l 1

y(x) = J (G0(χ, z) + — m Gψ\x, z, ω))λ& 2y{z)dz (1.8)

Thus the Green function of the boundary problem (1.6) is presented in the form
of the sum of the Green function G0(x, z) of the nonrandom boundary problem

0 (1.9)

and a certain asymptotically Gaussian and infinitely small kernel

1 / 2 G(f\x, z, ω), which is evidently expressed asymptotically through a Wiener

process.

Now we shall use classical perturbation theory. Let μOjί = Λ,O)ίJS?2 be the i-th
eigenvalue of the nonrandom boundary problem (1.9), then

1

= Mo, i ί Go(*> z)y(z)dz = μ0, i<ϋo
o

1 d2

As the operator (Go is inverse to the iperator Hoy= -r-j )>>.y(0) = /( l ) = 0, then

it is easy to understand that

and the normalized eigenfunction corresponding to the ith eigenvalue μ0 . is

y0 f(x) = γl sin((αμOj t )
1/2x) = j/2 sin(^.χ), (1.10)

where

^ = π ( l + 2 0 ; ^ =β[. . ^ 0

2 α ~~

The operator C^ connected with the kernel G ^ x , z, ω) is random, depends on i f
and has no limit when jS?->oo (there exists only a weak limit of its distribution).
Therefore it is necessary to be careful using perturbation theory. Under condition
2 the operator (G1 is bounded in probability: for any ε > 0 there exists a constant
c = c(ε) > 0 such that

ε > 0

forallJS?>JS?0.
Let a sufficiently large i f and an elementary event ω be fixed. Consider the

spectral problem (1.8):

where μ =
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l

<Doy=$Go(x,z)y(z)dz,
o

<Biy=]G¥\x,z,ω)y(z)dz.

Following [14] we shall look for a solution y. corresponding to the zth eigenvalue
μt of Eq. (1.11) in the form of a perturbation of the function yOi choosing the
normalization

1

iy* J>o, * W , i ] = ί yi(χ)yo i(χ)dx=^ ί=°-
0

M u l t i p l y i n g b o t h p a r t s o f E q . (1.11) b y y O i w e g e t

-gmy,,y

But since yo,i=μo,i<ΰoyOJ, therefore

i=-p-+i*i&y<>y<>X ' = 0 ( L 1 2 )

Excluding μ. from (1.12) we get

fgg ^ 0 . (1.13)

Then from (I.I 1) and (1.13) we get the expression for yt:

m
o r

G 2

^ = ^0,1(^0-

and finally

(1.14)

The operator (E — μ0 f<Er0) is invertible in the subspace of functions which are
orthogonal to y0 . and besides

Therefore from (1.14) we obtain
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The operator T$(co) on the set A#(ε) transfers the ball lly, —yOjI || ^ 1 to itself if

for all i = 0, l,2...(fc — 1) and if >c2(/c,ε). Moreover in this sphere this operator is a
contraction with a contracting coefficient ρ. Therefore it is possible to solve Eq.
(1.15) by iterations taking as the first term y0 ., i = 0, l,2...(fc— 1). Thus we get

( U 6 )

From (1.13) using (1.16) we obtain the expression for μ0J, z = 0,1,2...(fc — 1);

μ2

where

K*\<c-ή^- (i i7)

Letting ( f ( « ) ) = -< l(Gi3Ό, l.3Ό>i) w e § e t f r o m ί1-17)

^ ' Λ Λ + / - , „ ; I r . J ^ ^ p . (1.18)

Now we shall obtain evident formulae for the random variables c

i = 0,l,...(fc-l).
As

1 x 1 1

ί yoβ
0 0 O

Then using (1.10) we get

cf\ώ) = - - 4 f sin^ x f sin(βίZ)ξ^(z)dzdx
α \o /o

1 1 \

+ J sin(j8fx)^(x) j sinfβ^dzdx .
O x /

Notice that under condition 2 a limit distribution of the random vector {c^}(
z = 051, ...(fe— 1) is Gaussian and coincides with the distribution of the vector

2/?4/1 *
-q- J sin(jg.χ) J sinOS,z)w(z)dzώc

α \o o
1 1 w

+ J s i n ^ x ) ^ ) J ύn(βiZ)dzdx ) \ , i = 0,1,2.. .(fc - 1 ) .
0 x /J
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It is not difficult to obtain asymptotic formulas for the mean and the variance of
the random variables c{^\ω), z = 0, 1...& — 1 and also to get the covariance matrix.
We don't write out here these formulas, only notice that in general bl74=0, i+j.

Now letting C£(JS?,ω)= 4 ( c H ω ) + r ipJ? JS?1/2), \rise\< ^ | A we get the state-
Pi ' -z

ment of the theorem. Namely

ft = /v,+ ̂ + r , ^ f i [ 1 + ^ ] , ,.0,!..*-!),
and consequently

Now we shall give some examples where conditions 1 and 2 are fulfilled and the
variance of the limit Wiener process is explicitly calculated.

Example I is the most interesting since it generalize the well-known results [8]
for the case of processes with continuous time.

Example I. Let K be a compact metric space, xt(ω) be a homogeneous
Feller-Markov process on K which is ergodic in the following sense: for any initial
distribution v on the σ-algebra

Jv(dx)P(t,x, )=>τc( ), ί ^ o o . (1.19)

where P(t, x, Γ) is the transition function of xt(ω\ π is the probability measure
which is obviously the stationary distribution for this process. The convergence =>
is weak, so the condition (1.16) is essentially weaker than the classical Doeblin
condition [9].

Now let fe^2(π). Suppose that the equation

Ag=f (1.20)

has a unique solution belonging to J5f 2(π), where A is the strong infinitesimal
operator of the process xt(ω). Note that from (1.16) it follows directly that

Proposition I. Let xt(ω) be a stationary Markov process (i.e. an initial process with
one-dimensional distribution π). Then the normalized functional

converges to the Wiener process with the variance σ2 = — 2(Ag, g) in the sense of
Levy-Prohorov, that is in the sense of weak convergence of the distributions in
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This proposition is similar to the Gordin-Lifsic theorem [8] and like the latter is
based upon the principle of invariance for martingales [10]. Here we give only an
outline of the arguments.

t

1. A process ζt = g(xt)— J Ag(xsds is a martingale.
o

2. Increments ηn = ζnΔt — ζ{n-1)At form a stationary and ergodic martingale-
difference sequence.

3. Since g(xt) is restricted in probability the limit distributions

ξ 1 Zt

Ίjβίϊ a n d ^Ϊ72 ί Mxjds

in C[0,1] coincide.
4. According to 2. all conditions of Billingsley's theorem were fulfilled, i.e. the

successive sums of variables ηn after a corresponding normalization converge (in
the sense of Levy-Prohorov) to the Wiener process.

5. Let us find its parameters. We have

But

Όηί=Mπ(g(xΛt)-g(x0)- ^Ag(xs)ds^ = -2At(Ag,g) + o

and nAt = t because

and consequently

The proposition is proved.

Example la. Let K b e a compact Riemannien manifold and xt(ω) be a diffusion

process on K with generator A (Laplace-Beltrami operator). Then π(dx) = δ(dx) is

the normalized Riemannian measure. Let/: K-+R1 be a continuous function on K

and f=\fδ{dx) be its mean value. Then

\f{xs)ds=ft + \{f-ft{xs)ds.
0 0

But by the Fredholm alternative the equation

Δg=f-f

has the unique smooth solution in 5£2(δ). The limit variance of the functional

7172 ί (/-/) (χ

s)
ds n a s t n e f o r m

1 o

g, g)σdx =
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where Vg is the Riemannian gradient g. In other words σ2 coincides with the
quadratic Dirichlet form of g.

Example Ib. Let K = SX and xt(ω) be a Markov chain, with continuous time on
S1 = [0, π] (points 0 and π are identified) with the constant density λ of jumps and
with the distribution dF((y — x) mod 1) at the moment of the first jump from point

x. Then Af(x) = λ(—/(x)+ j dF(y — x)f(y)). It is evident that under natural

conditions of irreducibility (see below) the process xf(ω) is ergodic with respect to
the invariant measure on S1 (Lebesgue measure). Let

lfdx = 0.

Let us solve the equation Ag= —f. If

+ 00 +00

/ = X an exp(2πmx), g= £ cΠ exp(2πz'nx),
— oo — oo

then it is easy to establish that

c,= A i ^ , n + 0,

where
1

yn = j Qxp(2πinx)dF(x)
o

are the Fourier coefficients of the measure dF. The irreducibility mentioned above

means that \yn\ < 1. It is clear that for the fixed measure dF (even if lim yn = 1) and
n-*oo

for all "sufficiently smooth" functions / we can suppress the influence of the small
denominators (1 — yn) and obtain a smooth solution g.

Let us emphasize that for the process xt(ω) in Example Ib (for some singular
distribution F) Doeblin's condition was not fulfilled. Example Ib is a certain
modification of [II].

Example2. Let a(t, ω) be a generalized renewal process, i. e. a process equal to — on

the intervals the length of which form a sequence {ξ.} of independent random
variables with the common distribution. {(.} is also a sequence of independent
random variables with common distribution with mean equal to 0 and a finite
variance. {{J and {£J are independent. Then using the Donsker-Prohorov

theorem for { it is easy to show that the distribution of the process

^~112 ί ~~τ weakly converges to the distribution of a Wiener process with

variance σ2 = Ό(ξ.ζ.).
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2. The "Pieces" Model

In this section we consider the simplest potential model, the so-called "pieces"
model as the first approach to a model with generalized ^-potential whose
hamiltonian has the form

H(ω)=-^2+ f ξt(ω)δ(t-τd,
at f=-oo

where τ is a Poisson flow of points and ^(ω) are independent random variables.
Roughly speaking in the "pieces" model f .= oo. The more exact definition is the
following: let τi9 i=l,2,...v# be the points of Poisson flow with parameter λ
concentrated on [0,5£\ v<? be the number of points of the flow in [0, i f ] . Let us
consider the spectral problem

άt2y "

with the constraints j/(τ.) = 0, τ e [0, ̂ £\ This problem decomposes in fact into a set
of spectral problems without potential on each piece Av A2,...AV^+V bounded by
the points of the flow. If for example v^ = n, then our problem is a set of n 4-1
boundary problems with zero boundary conditions on every interval of the
partition. The eigenvalues of the restriction of the operator H(ω) to the ith interval

of the partition are equal to λ{ m = —j—, meN, where Δt is a length of ith interval,

n + i ί π 2 m 2

and consequently, the spectrum of the operator H(ω) is equal to [j (J \ 2
i=l meN [ A{

We are interested in the structure of the spectrum at the left end. It follows directly
from the above given formulae that the study of the distances between the first
eigenvalues may be reduced to the study of the sequence Δi9 i=l,2...(w + l).

Actually the minimal eigenvalue of the operator H(ω) is equal to λλ = -, ^

/ max AY

and if An+1^A{n)^...^A(l) is the ordered set of {At} in increasing order then

λ - π2 'λ - %1 λ - %2 k<n2

A A A
n(n) (n-ί) n{n-k+l)

Now let us consider the interval [0, i f ] and the sequence of intervals Δί9

A2, ...ΔVg + v It is known that the random variables Δv Δ2, ...Av^ + ι have the same
exponential distribution. For the sake of simplicity we assume that the parameter
of the exponential distribution λ = l . The random variable v^ has a Poisson
distribution with mean if [15] i.e. P{v^ = ̂ }=exp( — i f ) — besides, from the

2 We use the fact that when Jδ?-> + oo and /c5j/c0 the senior values Δ(n+ί), Δ(n), ...Δ{n_k+2) are
equivalent in probability so that e.g. the second eigenvalue on the interval Λ(n+1) is greater with
probability approaching 1 than the first values on Δ(n), Δ{n_iy ...Δ{n_k+2) (see below)
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central limit theorem it follows that v^ = ̂  + ̂ 1/2ξ, when if->oo, where ξ is a
random variable having asymptotically normal distribution with parameters (0,1).

Let us list several properties of the exponential distribution which will be used
in the proof of the main theorem concerning the distribution of the first
eigenvalues of the random operator H(ω) (for proofs see [15]).

Proposition I. Under the condition v^ = n the interval [0, ££] is decomposed into
n+l intervals by random points τi5 i=l,2...n and the distribution of the vector of
lengths (Av A2...Δn+1\ coincides with the distribution of the random vector

$£ ^ , <e ^ ,...JS? ^ ) , where ηt,

are independent random variables having common exponential distribution with
parameter λ = l.

We can write

Thus from Proposition 1 it follows that the study of lengths of the random
intervals is reduced to the study of the sequence of independent identically
distributed random variables.

Proposition 2. Let ηv η2 -rJn be independent random variables having the same
exponential distribution with parameter 1. Let η{n)'^η{n_l)'^...'^ηiί) be the ordered
sample of ηv η2- •-*]„• Then the joint distribution density of the random variables

when ft—xx) is asymptotically equal to

exp(-yi-2y2-...-kyk-Qxp(-yk)),

where yv y2...yk_1>0, ykeRK

Proposition 3. Let v% = n. If

or

then

lim
n-> oo

i.e. ξ(n+1) has a double exponential distribution in the limit rc
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Proposition 4. The arguments used in Proposition 3 are applicable to the sequence of
lengths

A = n+ 1)

A _ a> %ή A
Z- /\Λ\ — o ^ ZJ /

<"> + (

and as a result we obtain that there exists a limit distribution for

We assume now that the number of points v^ in the interval [0, i f ] is not fixed.
As was mentioned above, the random variable v# has a Poisson distribution with
parameter 5£ and v^ = £? + £? 1/2ξ, where the random variable ξ is asymptotically
normal. So we obtain from Proposition 4 that if

then for the random variables f(i)(jSf,ω) = -Λ ( v j ? _ ί + 2 ) + lnJS?, i=l,2...fc the limit
distribution exists when JS?-*oo.

Let us return to the study of the first fe eigenvalues /I1?/l2.../ίfc of the operator
H(ω). As was stated earlier

π2

but ^ + 2 _ 0 = lnjSf-ξ»(jSf> ω) ) therefore

when JS?-»oo. Let us put

2π 2

Now using Proposition 2 it is easy to show that the random variables

C(1)(J^, ω) - C ( 2 ) ( ^ , ω),...ζ(k~ ι\5£, ω) - ζ(k)(^, ω\ ζ(k)(^, ω)

are asymptotically independent when jSf->cx) and have the following joint
distribution density

or, which is the same, random variables
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have the following limit density

Px(x)=

Thus we have proved the following theorem

Theorem 2. In the "pieces" model for the fixed k and if-> + oo the following
statement is true:

where the random variables ζ(ι)(J£,ω) have such limit distributions that random
variables

are asymptotically independent and have limit densities

( _
yx

While proving Theorem 1 we have also proved that the eigenfunctions yvy2>-yk

in the "pieces" model are localized on an interval of the length ( l )

3. ^-Potential

Let us consider the following boundary problem on the interval [0, j£f]:

t.elO.SC]

0

where the τ ; are the points of a Poisson flow with parameter 1, {τ;} do not depend
on ξ. and ξt are independent random variables with the common distribution

P{ξi>x}=ίh *-° n μ>0. (3.2)

[exp(-μx), x>0, *~

Let us introduce as usual [4] the amplitude and phase by the formulae

= rsin(θ(ή),

It is known that a problem (3.1) is reduced to the following boundary problem for
the phase

dt
-r{t,ω))sin2(θ{t)). (3.4)
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The equations for the first eigenvalue have the form

(3.5)

For the second λ2 it has the form

and so on.
Thus we get the following picture. The random variable θ(t) changes inside the

interval [0, π] according to Eq. (3.4). At the initial moment ί = 0 it is at point 0.
Then its motion consists of the determined motion with the speed cos2(0(ί))
+ Asin2(#(ί)) towards π and random jumps in the opposite direction determined
by the random potential Ψ"(t, ω). The minimal λ for which the phase 0λ(JS?) equals
π coincides with the first eigenvalue A1 of the boundary problem (3.1). The
equation 0λ(jSf) = 2π defines the second eigenvalue λ2 of the problem (3.1) and so
on. It is convenient to identify intervals [πfc, π(k+1)] with the interval [0, π] and
to imagine that the process instantly jumps from the point π to the point 0. Notice
that the process θ(t) can return to the point 0 only after passing through the point

π since —-— = 1. It is technically simpler to deal with the whole axis (— oo, + oo)
at

rather than with the interval [0, π]. We make the following change of variables

x(ί)=-ctg(0(ί)), ί ^0 . (3.6)

Then for x(t) we obtain the Riccati equation

dx
χ + χr(tM (3.7)

at
from which the Markov property of the process x(ή on the whole real axis follows.
We shall calculate its infinitesimal operator A. Let our process at the initial
moment be equal to x. For a short interval of time At it has no jumps with
probability 1 — At + o(At) and under this condition it passes to the point

(3.8)

With probability At + o(At) a jump occurs and then the process x(t) is equal to

(3.9)

where ξ has distribution (3.2). Let us take now an arbitrary smooth function f(u)
and calculate the mean value

MJ(x(At))-f(x)

At

From (3.8) and (3.9) it follows immediately that

l imM^))/(x)=_
At^O At

+ μ]f{x-y)exp(-μy)dy. (3.10)
0
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Of particular importance here is τλ(x), which is equal to the first passage time to
+ oo under the condition x(0) = x

τλ(x)=min{t:x(t)= + oo\x(0) = x}. (3.11)
t

From what was said above it is clear that the condition

τA(-oo)>JS? (3.12)

is equivalent to the condition

λx>λ (3.13)

(the condition τψ + τψ><£3 is equivalent to the condition λ2>λ etc.).
So, if we know the asymptotic distribution of τλ(— oo) when λ->0 we obtain the

asymptotic distribution of the first eigenvalue of (3.1). In order to get this
distribution we use the method of moments. Let

«(x,α) = M ;c(exp(-ατλ(x))). (3.14)

From the general theory of Markov processes it follows that the function (3.14)
is a solution of the problem

) = l, (3.15)

where A is the infinitesimal operator of our process x(t) given by (3.10).
Thus we come to a boundary problem which looks as follows:

(x2 + λ)-~ \-μ J u(x — y)exp( — μy)dy — (l+oc)u(x) = O,

° (3.16)
M(+OO) = 1 .

Let us introduce a new function v(x) putting

+ 00 X

v(x) = μ J u(x — y)exp( — μy)dy = μexp( — μx) j u(t)exp(μt)dt. (3.17)
0 - o o

For function u(x) and v(x) we get the following boundary problem

( 2 }\^u

dx

dv -

M(+ oo) = ι;(+ oo) = 1. (3.18)

Excluding v(x) from (3.18) we get

d2u , n Λ du

(3.19)
u( + oo) = 1, u'( + oo) = 0.

3 τj } is the time of ίth phase revolution, i.e. transition of process x(t) from — oo to + oo
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Let us introduce the functions

dku(x90)
"*(*) = dak ( 3 2°)

It is easy to see that

M ° ( X ) Ξ 1 ' (3.21)
uk(x) = (-ί)kM{τf\x)}, kZl.

Differentiating (3.19) with respect to a and supposing α = 0 we come to the
system of equations

(3.22)

Note that any uk(x) is expressed through uk_ x(x) in view of (3.22). This allows us to
solve Eq. (3.22) recurrently for k = 1,2.... (As for the boundary conditions in (3.22)
they follow from the estimates

M{τk

λ(x)}<cx,
1 λ S~ x (3.23)

lim M{τ*(x)}=0, k= 0,1,2...,
χ-> + oo

where ck does not depend on x for any k)
The first estimate in (3.23) follows from the fact that τλ(x) is majorized by a

small similar value in the "piece" model (see Sect. 2).
Integrating (3.23) we obtain

uk(x)=k]? dz ] K
x Z +λ -a

(3.24)

where

Integrating by parts in (3.24) we get the following expression for uk{x):

(3.25)

Theorem 3. For any fe = 1,2... and any x: — oo ̂ x ^ 0 ί/je asymptotic formula

uk(x)~(-l)kk\exp(πk/λ112) (3.26)

is ua/iίi w/ze« A-> + 0 (uniformly in x).
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Proof. We shall prove (3.26) by induction. Expression (3.26) is obviously true for
k = 0. Let now (3.26) be true for a k — 1 we shall prove that it is equally true for k.
Let us put

(3.27)

Now we shall estimate the second additional term in (3.25) when x = — oo

7
,

From the induction hypothesis

(3.28)

(3.29)

for some c and sufficiently small A. Consequently from (3.27) and (3.29) we get the
following estimate for z SO:

.-^ ί
(3.30)

From (3.30) it follows that for the first term in the right-hand part of (3.28) the
following inequality is true

(3.31)

(3.32)

— OO Δ ~Γ /I

In order to estimate the second term in (3.28) let us put

when z^O. From (3.30) it follows that

and thus

Then

exp(-
(3.33)

dz

+ ί ( 3 3 4 )



120

But

L. N. Grenkova, S. A. Molcanov, and Ju. N. Sudarev

00 /= J exp -
V

-

=exp(V2A1'2) J exp^- z+φ y -

= exp(π/2/l1/2) [ l + o ( l ) ] , A-

The last equality is true since it is obvious that

expφg)- π s i , Qxp[φ[^j- , when

In its turn

βk-i(°)= i
° exp(μt-φ(ή)
i

Assuming the induction

Notice finally that from (3.29)

+ 00 I

^ ί -
= o(exp(πyt//l1/2)), λ-> + 0.

And at last (3.27) follows from (3.25) and (3.31)-(3.38).
Thus Theorem 3 is proved completely.

Corollary I. In the limit λ- 3 the random variable τλ= . / η 1 / rλ exp(π/;1 / 2

exponential distribution with parameter 1.

(3.35)

)]

(3.36)

(3.37)

(3.38)

exp(π/A1/2)

Actually, from (3.21) and (3.26) it follows that when λ-> + 0

a n
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But since the distribution is uniquely determined by all its moments

From Corollary I it is easy to get

Corollary 2. // N(λ) = Σ 1 then there exists a nonrandom continuous limit

N(λ)= lim - ^

and

N(λ)~exp{-π/λ112), when λ-^+0 (as N(λ) = (Mτλy
1).

Notice that this result was obtained earlier in [3].

Let us connect parameters S£ and λ by the expression

(3.40)

where z is a fixed positive number. From (3.40) it follows that

w + ° t M (3 4i)

Let us introduce the normalized eigenvalues of problem (3.1) in the following
way:

(3.42)
κ 2 π 2

Theorem 4. For any natural k there exists a limit distribution of λk [when $£^> + oo)
with density

Pv(χ)== TΊ—7T7exP(fcx~exp(x)), xeR1. (3.43)
κ
 (K— 1)\

Proof Taking into account (3.12), (3.13), (3.39), (3.41) and (3.42) we can write the
following sequence of equalities

= P{τλ>lnz} = z + o(l). (3.44)

Putting z = exp(x) we obtain

P{λ1 >x}-+exp(-exp(:x)), xeR1. (3.45)

Differentating the right side of (3.45) we get (3.43), where k= 1.
To find λk it is necessary to take into account that the transformed phase runs

through the real axis k times, as it was mentioned earlier. Since every such
transition is independent of previous transitions then
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where all ξ. are mutually independent and have limit density

p(x) = exp (x - exp (x)) (3.46)

((3.43), where fc = l).
Consequently the limit density of λk is a (k— l)-times convolution of the density

(3.46). From this (3.43) follows.
Notice that Theorem 2 may be written in an equivalent form

^ ί ^ ) *-' 2~ (347)

where — ζk have the limit density (3.43).
And now we can formulate the main result of the paper. Namely the following

theorem is true.

Theorem 5. The joint limit distribution of λk,λk_1...λι coincides with the distri-
bution of the first k eigenvalues in the "pieces' model under the same normalization.

Let us introduce random variables l.,i=l,2...fc similar to l ,i=l,2...fe with
the same points of partition in the "pieces" model. Obviously

and with j£?-> + oo

λi-λi •O, i=l,2...fc (Theorem 4).

This means that the limit distribution of vectors (λk,λk_1...λ1) and
(λk,λk_1...λ1) are identical.
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