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Abstract. In the framework of dimensional renormalization the existence of
Green's functions to all orders of perturbation theory is proved for theories
with massless particles, provided all terms in the interaction Lagrangian
have infrared degree Ω^4. If the vanishing of masses is enforced by some
symmetry and this symmetry is respected by dimensional regularization,
Schwinger's action principle holds for these Green's functions as in the massive
case.

I. Introduction

In this work we continue the discussion of the dimensional renormalization.
In two previous publications [1,2] we have outlined the method, or rather a
possible version of it, for theories with exclusively massive or massless particles.
The purpose of the present paper is to relax these restrictions on the mass. The
reason why we have anticipated the case of purely massless theories is that they
can be treated completely within the framework of dimensional renormalization,
that is to say, the subtraction of pole terms in n — 4 (n = dimensional regularization
parameter) is sufficient to obtain Feynman amplitudes which are well-defined
distributions in their external momenta (which clearly is not to say that we can
prove anything about the existence of the S-matrix). The reason is that the massless
particles do not develop a mass or super-renormalizable couplings through their
interaction or the £/F-counterterms. This is in contrast to the generalized BPHZ-
method [3] where mass-counterterms are employed even in theories with massless
particles only.

Since it is not entirely self-evident how to define dimensionally regularized
Feynman amplitudes in the presence of massless fields, let us give the definition
we are going to use. This definition differs from other ones given in the literature [4].
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As extensively discussed in [1], we can construct a dimensionally regularized
Feynman integral for each Feynman graph G

oo

3rG,ε&n) = cG ί dα/G,ε(p,M,α,rc)|tt=0 (1)
o

where the regularized integrand IG ε is element of an abstract algebra of Lorentz
covariants. Interpreting the momenta p as 4-dimensional ones, this integral
converges absolutely for ε>0 and Re(π)^4, and defines a C°° function of p which
is analytic in n and can be analytically continued to a meromorphic function.
All poles correspond to U ̂ -divergences; in particular those at n=4 reflect the
lack of convergence of the original integral in 4 space-time dimensions. This
function is polynomially bounded in £ and can, therefore, be interpreted as
distribution over if. The limit ε->0 may or may not exist (in Sf'\ depending on
whether there are LR-singularities or not. As will be shown subsequently, there
are no such LR-singularities near n=4, provided the vertex functions satisfy
certain normalization conditions in the tree approximation and these normaliza-
tion conditions are enforced in every order of perturbation theory by suitable
finite renormalizations.

Using dimensional renormalization it turns out that these normalization
conditions are automatically satisfied as long as all particles are massles. Un-
fortunately the situation changes, once Lagrangians with both massive and
massless particles are considered. The massless particles will then in general
develop a self-mass, resp. super-renormalizable couplings via their interaction
with the massive ones. If nothing is done to enforce the correct normalization
of vertex functions containing massless fields, perturbation theory breaks down
as can be easily seen from the example of the propagator (p2 + iΰ)~lΣ(p)
(p2 + ίO)~ί + ... which is ill-defined as a distribution if the self-mass Σ(p = 0)
does not vanish. Consequently any Feynman integral containing this propagator
may fail to converge for small momenta (of this propagator). Consider as an
example the integral

Γ _ _ d*k (2)
J 2 * 2 [(p-/c)2-m2 + ίε] V '

corresponding to the graph in Figure 1 with Σ(p) = const. For small ε it has an
JjR-singular behavior ~(p2-m2)~l Inε and the limit ε->0 certainly does not
exist. Similarly (the L/F-finite part of) the self-energy integral

corresponding to the graph in Figure 2 reveals the consequence of a trilinear
coupling for massless scalar fields. Its small momentum behavior is ~ln/?2 and
there is no finite renormalization such that ΣR(p = 0) vanishes. Insertion of this
self-energy into graphs such as the one in Figure 1 leads again to an IR-singularity.

Even in cases where some symmetry (gauge invariance or spontaneously
broken symmetry) prevents the formation of a self-mass for the massless field,
one will encounter IR-singularities in the individual Feynman graphs, although
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\
Fig. 1. A graph with At = 2 for one internal vertex, leading to an IR-singularity

Fig. 2. A self-energy graph with Δt = 3 for two internal vertices, leading to IR-singularities when
inserted into graphs such as the one in Figure 1

(α) (b)

Fig. 3. Two self-energy graphs in scalar QED, which individually lead to an IR-singularity

(α) (b)

Fig. 4. Two vacuum polarization graphs in scalar QED, which individually need an IR-subtraction

these cancel when all contributions to some Green's function are summed up.
As an example Figure 3 shows two graphs contributing to the self energy in scalar
QED. Each one contains a vacuum polarization subgraph (Fig. 4), whose amplitude
does not have the correct small momentum behavior. Due to gauge invariance
their sum does, however, vanish for small photon momenta. It is easy to see that
the contribution of the graph shown in Figure 3b has indeed an IR-singularity
~lnε.

If one wants to avoid these IR-divergencies one has to subtract Feynman
amplitudes for graphs with IR-degree Ω>0 (for the definition of Ω see Sect. 2)
at the origin in momentum space. Again these subtractions cancel order by
order if the contributions of different graphs to the same Green's function are
added, if there is some symmetry principle at work which forbids the corresponding
counterterms in the Lagrangian and dimensional regularization respects this
symmetry (examples are: QED, Yang-Mills field + fermions without axial coupling).
This has the gratifying effect that there will be no radiative corrections to the
equations of the action principle in such cases.

Since the existence proof for the renormalized Green's functions resp. Feynman
integrals is admittedly somewhat complicated due to the interplay of both UV-
and IR-subtractions we have divided it up in a series of smaller steps. These are
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i) the definition of infrared degrees,
ii) the introduction of combined UV- and IR-subtractions and how they can

be considered separately,
iii) the decomposition of the domain of integration into sectors corresponding

to π-complete forests and
iv) the resolution of the singularity structure of the IR-subtracted integrals.
We make wide use of the notations and results of Refs. [1,2].

2. Infrared Degrees

In addition to the renormalization that removes UV-divergencies of Feynman
amplitudes we have to perform finite renormalizations that maintain the small
momentum behavior (up to logarithms) of the tree approximation.

Similar to the superficial degree of divergence (UV degree) ω characterizing
the large momentum behavior we shall need an infrared (IR) degree Ω for each
1PI graph describing its low momentum behavior. This IR-degree will decide
about the counterterms we add to the Lagrangian in order to guarantee convergence
of Feynman integrals at low momenta.

Let us consider some field φ with propagator Gφ(p) = (Tφ(p)φ*(Q)y® behaving
like \p\D for |p|->0. We assign an IR-degree Δφ = (4i-D)/2 to φ in complete analogy
to the UV-degree δφ = (4 + d)/2 corresponding to the behavior Gφ(p)~\p\d for
|p|-»GG.

As an example, a massive scalar field gets Aφ = 2, whereas a massless scalar
field has Aφ = 1 (both have δφ = 1). This allows us to assign a "canonical" IR-degree
ΔC

M to each monomial Jί composed of (quantized) fields and their derivatives by
adding their respective degrees plus the number of derivatives.

We require Aφ^. ^ for all fields, thus excluding IR-singularities in the free
theory. For the existence of Green's functions it will turn out to be sufficient
that all terms in the interaction Lagrangian of the form j Jί(x)dx (i.e. without
external fields) have a degree ΔC

M^4. As an example this rules out a φ3-couρling
for a massless field, whereas it allows this coupling for two massless and one
massive field (which appears in the σ-model).

One possibility to maintain an admissible low momentum behavior beyond
the tree approximation would be to subtract from all vertex functions their
Taylor series at p = Q up to degree Ω — 1, where Ω is determined in the same way
by the zΓs as the UV-degree ω is by the <5's. This procedure would, however, in
general lead to counterterms of an unnecessary high degree Ω>4 and may convert
a renormalizable theory into a non-renormalizable one via these counterterms.

In order to avoid this situation we shall allow an arbitrary assignment of
IR-degrees AM<^AC

M for each monomial, as long as 4^ΔM for each integrated
(non-source) term. We shall simply denote a pair (Ji, A^) by Jl Δ.

I n \°
If we consider a connected graph G contributing to ( T Y\ (Ji^A^ } , we

'
n

can assign an IR-degree ΩG to it by ΩG = 4+ £ (^;-4). We shall also need
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/ k

IR-degrees ΩH for all 1PI subgraphs H C G. Let H correspond to ( Γ f j Jf}Λl\
\ /=!

where Jίf^δ^Jί/δφ^ then we put

with djαl) = 4 f — ΣαJ^ the sum running over the set of fields removed from Jί{.
j

This is not the only possible choice, but it is the most convenient one for our
purposes and leads to the simple rules

and

3. UV- and IR-Subtractions

Renormalization can* be expressed equivalently by adding appropriate counter-
terms to the Lagrangian or by performing suitable subtractions (corresponding
to 1PI subgraphs) on the amplitudes [5]. in particular dimensional renormalization
consists in the subtraction of pole terms in n— 4 arising through the singular
behavior of JG ε [Eq. (1.1)] when some subsets of α's tend to zero. In the present
case this is not sufficient; we have to perform additional subtractions to guarantee
the correct behavior of 7G>€ when some α's tend to oo. This is done in the form
of Taylor series subtractions in the external momenta for 1PI subgraphs H with
ΩH>0.

To simplify the discussion we will disentangle these two kinds of subtractions.
To be able to do so we have to adapt the machinery of additive renormalization
to the present situation. The difference to the formulation given by Hepp [5] is
that we use counterterms corresponding to subgraphs rather than to generalized
vertices. The necessary modifications are so straightforward that we feel justified
to proceed rather quickly without giving proofs.

Given some Feynman graph G, which we keep fixed for the following discussion,
we define sets 3FG resp. 3F'G of all forests of non-overlapping non-trivial 1PI sub-
graphs contained resp. properly contained in G. Furthermore we denote by &G

resp. $G the subsets of forests in 3FQ resp. 2FG containing only pairwise disjoint
subgraphs. Obviously ^G^ (J {F,Fu{G}} and ^=#Gu{{G}} if G is non-

trivial and 1PI; otherwise ̂  = ̂ 0 and ̂ G = &G
A pair (G, F) with Fe&G is called a generalized Feynman graph. A vertex part

for a non-trivial 1PI subgraph HCG is a distribution of the form

~x2)...δ(xm,i-xm) (m = hrfl|) (1)
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where D is a co variant differentia} operator with constant coefficients. A generalized
Feynman amplitude for (G, F) is an expression of the form

^G.F.*)= Π XH ^G,F= Π *ιr Π *Γ Π ^ (2)
HeF HeF VleVG\ u 1̂  έε&G/F

HeF

where G/F is the reduced graph with lines J*?G\ (J JSf H.
\HeF

fflx — V ^ Πϊ
^G— 2* ^(G.F.X) W

Fe&o

is called an additively renormalized Feynman amplitude. The correspondence
9~G-*8&\ defines a renormalization if the Hepp axioms [5] are satisfied. As is well
know &G can also be obtained as a sum of (unrenormalized) Feynman amplitudes
with respect to a modified Lagrangian.

A subtraction operator S is a linear operator determining vertex parts X by
the recursive construction

vs _ \ "^ H if H is 1PI and nontrivial
H [0 otherwise

with

π*
S determines an additively renormalized Feynman amplitude by

ΛS = Λf= Σ Π*i^G/F. (5)

As known from Zimmermann's work [6], where S is a Taylor series subtraction,
the recursive construction of $S

G may be resolved into the forest formula

®G= Σ Π(-SH)^Gresp.^|= Σ Π(-SH)^"G (6)
HeF

assuming that one succeeds in defining the action SH of the subtraction operator S
on the Feynman integrand IG.

In order to be able to describe a change of the renormalization prescription
we have to introduce the concept of a "finite" renormalization, which is the analogue
of a finite renormalization as defined by Hepp [5], although we do not require
that the YH (see below) remain finite when the regularization is removed.

Starting from a set of vertex parts YH and a subtraction operator S we construct
new vertex parts Yj by

s _ ~ H Y+YH for H nontrivial , 1PI
H~ |0 otherwise

with

<fs,γ_
^ H — Λ < S ( H , F , Y S )
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resulting in a new renormalization

^Π^ΠV*^1^ Σ ^G,F,y*) (8)
^G ^G FeJ^G

There is a second way [7] to describe such a "finite" renormalization which
makes direct contact with the counterterms put into the Lagrangian. For any
generalized subgraph (H, F) of G we define vertex parts

(YH if F={H}
X(HF)=\ -83Γ^Ύ

F} if H/F is nontrivial, 1PI (9)
10 if Ή/F is 1PR

with
<fs, r _
•ΛH.F) —

F'e&Ή \ H'eF'

where the sum runs over all FΈ^'H which are coarser than F, i.e. F= φ FH,
H'eF'

with FH'e^H>. The corresponding

<^s,y
^(G,!F>= Σ' ( Π X(H,FH^O,F (10)

HeF'

are the renormalizations of the amplitudes / Y[ YH\ 2ΓGIF for the reduced graphs
HeF

G/F with vertex parts YH, which are naturally obtained from a Lagrangian modified
by counterterms computed from the Y's. The equivalence of both constructions
is expressed by

Proposition 1.

the proof of which is completely analogous to the one in [7].

As already indicated we shall use the combined subtraction operator
S= C+ T(l — Q where C extracts the singular part of the Laurant expansion at
n=4 from ̂ | (compare [1]) whereas T picks up the Taylor series in p at p = 0
up to order ΩG — 1. This ̂ subtraction procedure is based on the assumption — to
be proven below — that ̂ | is meromorphic at n=4, the poles being polynomials
in the external momenta and that the Taylor series exists up to the required order.

Obviously T and C commute and we may as well write S=T+C(l — T).
It is very convenient to make use of both decompositions for S, interpreting
T(l — Q resp. 0(1 — T) as "finite" renormalizations (which are actually UV-
resp. IR-fϊnite). Let us write S = SX H-S2 and put

v ί-S^H ίf H is nontrivial , 1PI
YH~\O otherwise. (12)

According to Proposition 1 we have

which we can use in two ways:
i) We put Si = C and S2 = T(l - Q.
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As long as εφO we know according to Ref. [1] that all 3%S

(£
Ύ

F) are analytic
at ra =4, since S2 defines obviously vertex parts YH which are analytic at n = 4.
Therefore ?̂| is analytic at n=4.

ii) This time we put S1 = T and S2 = C(l - T).
Assigning IR-degrees to the vertex parts YH originating from subgraphs H by

^g = 4+ £ (Af-4) (14)
VterrH

it is easily verified that the IR-degree of any reduced graph G/H equals the IR-
degree of G and that this assignment is admissible. In particular the operator
1 — T contained in S2 ensures that (zJg)c^zlg. If all vertices of H are internal
ones of G then ̂  = 4. Considering the 1̂ 's as arising from a modification of
the Lagrangian by counterterms the latter ones are of an admissible IR-type
(i.e. Ajf^4). Provided the Taylor series subtraction S1 = Tdoes what it is supposed
to do — what we actually claim to prove in the following — each ^f^'J) has a limit
for ε-»0 as a distribution in p which is meromorphic at n = 4, entailing the same
properties for <%& For this purpose we shall also prove that the YH(g, n) exist
for ε>0 and have a limit for ε->0 as meromorphic functions in n. All poles at
n=4 arise from UV-singularities already present for ε>0.

Combining these results we conclude that &S

G ε has a limit ε-»0 as a distribution
in 2 which is analytic at n = 4. It should, however, be noted that the existence
of this limit is restricted to a small neighborhood of n = 4.

Thus we are led to the conclusion that it is sufficient to show that
lim ̂ £, (p, n) exists as a distribution, meromorphic at n = 4, for any Lagrangian
ε^O
satisfying Δ<>ΔC for all monomials and 4^ Δ for all integrated monomials.

Due to the linearity of our subtraction operators T and C, ̂  is multilinear
in all vertex factors Xt and spin polynomials Z .̂ Decomposing them into mono-
mials, we may define for each combination of such monomials effective UV- and
IR-degrees. The most general propagator, we are going to consider, is of the form

where w^>0, s° and s™ are non-negative integers with s^=s£ + s^>0 and Mj(p)
are monomials of degree r£.

For each monomial M^ we define

-s^δ, and Δf = ±(4 + ri)-s^Ac^A, . (16)

Ae/f = de/f + s™ and for each term contributing to the amplitude for a graph G,
ΩG* = ωeGf + 2 ]Γ s%. The actual UV-divergencies arise from ω^ff and not from ωG,

&G

which is the maximal value ω^ff can possibly assume.
For the denominator of Equation (15) we use the integral representation

Λ 00

— lim f dn(7\ f dαnr5" Vα(p2~z + l'ε) (Ί7)
~ ™ J μ() (
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where dμ(z)/dz is either <S(z)/Γ(s°), δ(z - m2)/Γ(sm) or Θ(z)θ(m2-z)(z/m2)sw~1

depending on whether s°, sm or both are non-zero.

Remark. For propagators with several massive poles we can use the same integral
representation with a different dμ(z).

In either case Jdμ(z)z~ρsW converges for 0<ρ<l. Keeping this in mind we
can forget the integral over z and write again m2 instead of z.

We claim that it is sufficient to prove the existence of lim^?G>ε, employing
ε-^O

the maximal possible Taylor subtraction for each combination of monomials
in ^~G ε. Denoting by T resp. Teff the Taylor operators corresponding to degrees
A resp. zleff, we may rewrite our subtraction operator S as S= Teff + [(T- Teff) +
+ C(l - T)] and interpret the vertex parts YH arising from [(T- Teff)+ C(l - T)]
as IR-finite renormalizations. Again these vertex parts allow us to assign IR-
degrees A^ to YH (when inserted into G/H). The proof of the existence of YH

originating from Γeff implies automatically the existence of YH originating from T.
These oversubtractions Γeff will introduce artificial UV-divergencies besides

those already introduced by the Taylor subtractions T; yet they drop out again
if we add all contributions to ^S,ε Nevertheless it is in general true that the
necessary IR-subtractions for subgraphs HcG will increase the UV-degree ωG.

Anticipating that we know how T^ff acts on the Feynman integrand IG ε

we may resolve the recursion and obtain the IR-subtracted amplitudes originating
from subtractions recursively defined by

g if G is nontr jviai ?

G'ε~ |0 otherwise

with

resp.

Π (~ T H f ) I G , & & n) (18)
HeF

}̂? g = j dα Σ Π ( ~ ?#f 0 ̂ 0, ε(j?> β> n)
0 FeJ^G HeF

In the following sections we will prove the existence of lim^<?£ and lim YH ε.

For simplicity we will drop from now on the superscript 4eff' from Taylor operators
and degrees.

4. Complete Forests

In order to take advantage of the Taylor subtractions we have to rearrange
the Σ Y[ (—TH) such that (1 —T^r) appears in the right places. Following the

Fe& HeF
original treatment of Hepp [8] we consider sectors 2n in Feynman parameter
space.

Let G be some connected graph with IPI components Gt .
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Definition 1. (&9&9σ) is called a labelled forest with basis & for G iff (<g,σ) is a
labelled forest for G (compare [1]) and ac^f = <f\{Gi}. For any He% we denote
by Jί(H) the set of all maximal elements of * properly contained mH,H = H/Jί(H]
and for any HeW by #+ the uniquely determined element of ̂  with
For any line / let H^ be the element of V with

Definition 2.

t^Q for all

) for

xσ(H)^σ(H+) for

ασ(tf)^ασ(H+) for

Remark. &(<#, 0, σ) = ̂ («', σ) as defined in [1].

Definition 3. For any permutation π of the lines of G we put

(#, J*,σ) is called π-complete iff ^πc^(^,^,σ); let us denote by &π the set of
all π-complete forests (for G).

This concept corresponds to that of a complete forest with respect to a hyper-
plane in Zimmermann's work [6].

Lemma 1. Let π be any permutation of lines and F any forest in 2FG, then there exists
a unique π-complete forest (#, Jf, σ) with

Proof. Assume {GJCF (otherwise we replace F by Fu{GJ) and put F' = F\{GJ.
As shown _in the proof of Lemma 3.f [1], there is a unique labelled forest (#, σ)H

for each H with HεF (H is to be taken with respect to F!) such that in ^π the
α^ /e^f^ are ordered as required by &(<£, σ)H. Lemma 3.c [1] tells us that there
exists a unique labelled forest (#, σ) for G associated with these (#, σ)H such that

. We put <%={Hetf':π-1(σ(H))<π-ί(σ(H+})}. By construction gtcF'C
and ^πC^(^, J*,σ). Assume that there are two such forests (#, J*, σ)φ

(r,̂ >0. Either (̂ , σ) = (ίT, σ'} but then 0(tf, ̂  σ)n0(ίP, #, σ) is a set of
Lebesgue measure zero for J^ΦJ^ and therefore cannot contain 2)π. Hence
(<g9 σ)Φ(«", σr) and therefore (̂ , σ)HΦ(«", σ')H for at least one HeF and ®(̂ , σ)Hn
®(ίf', σ')H again has Lebesgue measure zero. This is a contradiction because

®πC@(^ 0, σ)n®(<f', ̂ , σ')C X (®(*, σ)Hn (̂r, σ\)
HeF

Lemma 2. L ί̂ π be α fixed permutation of the lines of G, then

Σ 4Π(-rH)= Σ Π d-r f l)Π(-^)
Fe&G HeF (<g,3β,σ)e&π He%*\3§ He®

where 3F* is either 3F or 3F' and similar for <$*.

Proof. Follows immediately from Lemma 1 and the fact that any subset
is an element of J 2 .
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Corollary 1.

f ' feΣ.ΓK-W^ Σ ί & Π α-τβ)Π(-r f fμβ. (20)
0 Fe^& HeF (<g, 08, <τ) ®($ , &, σ) He<g$\3$ He&

Proof. We first decompose

]dz = £ ί da
0 πeSL ®π

use Lemma 2 and finally collect all π's for which a given (#, J*, σ) is π-complete.

Definition 4. Let G be 1PI and (#, σ) a labelled forest for G. Instead of α we introduce
scaling variables ^^(tH9He^9β^fe^'G^^^{σ(^}) as well as auxiliary
variables £ ,

Π tH' = ξ2H = t2

Gη
2

H if / =

(21)
if /eJ^ = J^\{σ(#)}, #e^

and define /?, = !, /eσ(^) for convenience. The image of 0(#,#,σ) under this
substitution is the set {{t, §):Q^tG<oo;ΰ^tH^l for He<$'\0$\\<ztH for

5. Singularity Structure of the IR-Subtracted Feynman Amplitudes

From now on we follow essentially the analysis given in Ref. [2], the only dif-
ference is that we take the Taylor subtraction operators into account.

We restrict ourselves to connected graphs G which have the property that
i) Ω f^4 for all internal vertices and ii) every external vertex Vte^G is connected
to the rest of G by exactly one line which we call external; graphs with arbitrary
external vertices can be obtained by 'amputation' of external lines. In addition
we assume that the propagators for these external lines are of the form

with some nonnegative integer kG, to be determined later.
From G we obtain a new graph G^ by collapsing all its external vertices to

a new one called V^. Neglecting graphs with trivial ocomponents, there is clearly
a one-to-one correspondence between subgraphs H of G and subgraphs H^
of GQQ. Notice that H need not be connected for H^ to be 1PL

Definition 5. A labelled c^-family with basis $ for G is a triple (Ή^, ^> σ) such
that its image under the above mentioned correspondence is a labelled forest
with basis 36 for G^.

These c^ -families with basis allow us to analyze simultaneously the UV-
and IR-singularities of the Feynman integral corresponding to G in the presence
of Taylor subtraction operators.

Remark. G^ is 1PI iff G contains no tadpoles. We assume for the moment that
this is the case. Later on we will prove that the amplitude for any graph with
tadpoles vanishes (even before the limit ε-»0 is taken).
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Definition 6. For future reference we define some subsets of ̂  and <£ G

^ or equivalently H is 1PI};

0}; ^C^C^C^. "

, :H is a tree (in G/J((H))}

FQO is one of the endpoints of t in G^} .

We want to use the decomposition of Corollary 1 adapted to labelled c^-
families with basis for the graph G. This can be done because the subgraph H^
of G^ corresponding to any 1PI He G is 1PI as well. We just have to put the Taylor
operator 7^ = 0 for all He^^β"^ which means that we may ignore all (̂ ^ ̂ , σ)
except those satisfying J^C^>.

Before we can apply formula (4.20) we have to give a representation of the
Taylor operators that exhibits their action on the Feynman integrand IG ε(p, α).
Since this has already been discussed in the literature [9,10], let us just indicate
the essential idea. Using the formulae

Ω ! / d\Ω~*

and

one has to keep track of all A's while one performs the Gaussian integrals leading
to the α-space integral (1.1). The result is

He#«χ>'\# He38

i (I — λ )ΩH~I ( d \ΩH ΩH 1 I d \ΩH~^H ~
= [ [ ]dλH Γa^Γ 11 ^ in _/ M\"pT~ ^

" " (3)
with

/= -̂

where λ<%=(λH,Heέ%), v = 4 — n and /G ε is obtained from 7G ε by multiplying
each o^ except those in ̂  α^rnj + is) by a factor Y[ λ2

H. In terms of scaling

variables (4.21) that means tH^λHtH for all HεW^. For convenience we define

Remark. We are allowed to interchange the evaluation of the Taylor operators
with the α-integral, because the latter is defined by analytic continuation from a
region where it converges absolutely.
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Next we put all auxiliary momenta pt associated with internal vertices
Vtei^\^G to zero and introduce linear combinations (qH,HeJήf) of the external
ones (defined in Ref. [2]).

Integrating over S)(^^ 8%, σ) and using the results of Appendix A of Ref. [2],
we obtain a sum of terms

t,§,i) π #"-"" Π ft Π hr
0 1G ® He^ fe£G He<g& \UAH

' βε, rfaflfe VH> & v) exp [ - ί|( - id(ηHqH, λHtH9 §) + iM + έ)] (4)

where
1 Λt °° fit 1 ///? 1 π i \ΩH-I

Λ= Π ί^Πί^Πίf Π ί^Λn iv (5)

He<gόo\@ 0 CH He^ 1 CH ^e^fb 0 P^f He<e%\& 0 V^fί""1;1

f ε > r is a homogeneous polynomial of degree r in (^g,ε1/2), d(rιq,λt,§)=

a quadratic form in ̂  with a positive definite matrix dH>ίr;
dH H' and the coefficients of g^r are C°° in (λt, §), independent of tG and independent
of resp. analytic in v. Here we have used that λH = 1 for He ̂  JH=
and 0</H^ί2H for He^. Furthermore i

Remark. Since / [Eq. (3)] is an even resp. odd function of λH if ΩH is even resp.
odd we may restrict the sum over fu to even values. For the same reason r—ωG

is always even.
Evaluation of the derivatives with respect to λ yields a similar expression

with d/dλH replaced by tH; thereby r may increase without changing the properties
of #£jr Putting λ@ = Q leaves C"0 functions gε)r(i]Cl,λt) and d^q.λt) with λHtH^L

Choosing kG sufficiently large, we achieve ωG<0 and the fG-integral converges
absolutely (for Re(v)^0, ε>0), leaving expressions of the form

I dμ(t, 0, λ) Π t

with

(7)

Since ΩH^0 for all ffe^\«"^ we may write /H^0 for all /f e<O#
In Ref. [2] we have proven the following

Lemma 3 (ε-Lemma). Let {ηpQj}Jj=ί and {y^k^κ^=1 be real numbers in the
domaίn0^ηj^...^ηί;0<ρj<4forj=l.> ..., J; γ^Oandk^ /c^>0/or/=l, ...,L.
In addition be ρeC, {<ίjj}f,j=ι fl positive definite matrix defining the quadratic
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form d(β) = Yjdίjqiqj over J copies of 4-dίmensional Mίnkowskί space,
homogeneous polynomial of degree r in Q,

Λ = Σ Qj + r + 2 X *,-Re(ρ)>0
7=1 ^=1

and /(g, ρ, ε) the expression

Thenf(Q9ρ90) = limf(g,ρ,ε) exists in 5 '̂(R4J), is continuous in (rj,y) and C°° m
ε^O

the coefficients of Q and d. Furthermore limεfe/(g, ρ + 2/c, ε) = Q for fc>0.
ε^O

Corollary 2. l/smg ίte same notation, f(q, ρ, ε)/(l + £ 77? + £ y^ + ε)A/2 is uniformly
bounded (as element of 9") in (?j,^, ε).

Proof. This is an immediate consequence of Lemma 3 and of the homogeneity
of f(g, ρ, ε) in (ί/2,^, ε).

First we decompose the polynomial gε r

gε,r(r,q,λt,£,v) = £ β_%,iί,£, v)//2 . (9)
r' = 0

The last statement of the ε-Lemma guarantees that if the limit ε->0 of Equation
(6) exists, then only the term with r'=0 contributes. In addition we can neglect
all ε's in the numerator when we "amputate" external lines or derive the equations
of the action particle.

All we have to do now, is to rearrange the integrand to display the numerator
required for the ε-Lemma. We rewrite Equation (6) as

Γ Γ G ~ G [ dμ Π if Π ft ~kt - - - & - (10)
\ Z / 2> V& £G vhc-ωc + r

l-id(r,q) + iM + s] 2

where

H-σH-ι?H-2τH, σH= ^ QH, and τH=Σkt

We have to demonstrate the existence of ρ#'s and fc/s such that the hypothesis
of the ε-Lemma is satisfied and the ίH-, βr and AH-integrals converge. This is
greatly facilitated by our choice of maximal ( = effective) IR-degrees. Let us first
collect some knowledge about the subgraphs He^ and their IR-degrees ΩH.

We know that all elements //e^V^ are linearly ordered by inclusion and
that the smallest one, #min, is an element of ffl. For any ί/D#min resp.

let H~ resp. //_ be the largest element of ffl satisfying H~ CH resp. _

The elements of ̂ V^7" are not necessarily connected, but i) every ocomponent
has at least 2 external vertices and ii) every ocomponent of any H^Hmm contains
exactly one ocomponent of H~ with the same number of external vertices.
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In particular Hmin is connected and has two external vertices. For all external
resp. internal vertices of G, Δf = 2 resp. Af ^4 and for any vertex Vi contained in
an arbitrary subgraph H of G.Af^Af. If HcG then A?<Af for at least one
vertex in each ocomponent of H.

For any graph H with ocomponents Hi9 the IR-degree ΩH is the sum of the
degrees ΩHι.

Definition 7. We split the degree ΩG = 4— £(4 — Af) into the internal degree

Ω^=- £ (4-Jf) and the external degree Ωgi = ΩG-Ω%t. For any HcG

with ocomponents Ht we define the relative external degree of H in G by

~ Σ (4-^)1 (H)

Remark. These degrees are completely analogous to those defined in Ref. [2]
using UV-degrees δ and ω.

Ωjf is a sum of non-negative terms, ΩG

xt = ΩG

xt

G and for each connected graph
H., fig?, G = 4-2|ΦHJ. For any He G with c-components Hi

(12)

and most importantly for any H c G, ΩH = ωH + 2sH with SH = ]Γ s™.
^jf

We can now proceed to the definition of the k/s and ρH's. Let a and (5 be real
numbers with 0<a<^ and 0<(5<α/2(sG + ftG). For teSSG we choose

, ^ n V 4 if Hmίn G

* m otherwise ( }

where

/ v
x(v)/2=maxίθ,Re--δ if

x =
O otherwise.

The v-dependence of kf via x(v) allows us to show the convergence of the decomposed
integral Equation (6) for Re(v)^>0. In a neighborhood of v=0, where the limit
ε->0 is studied, x(v) vanishes. These kt all satisfy fc^>0 and (unless β^ = l and
Re(v)^25)/c^<s^ which guarantees convergence of the /^-integrals. The corre-
sponding τ#'s are

= ί(l-δ)sH+hHx(v)/2-Ω^/2 if
H \(l-δ)sH + hHx(v)/2 otherwise.

For HeΉ^ we choose σH= maxίO, ̂ (α-Ω^jG) which first of all implies

that σH vanishes for all He^ and otherwise depends only on H~ as it should.
The ρH's corresponding to this choice of σ#'s are
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There are altogether four possibilities:
i) \<%H_\ = \<%H\ (i.e.H_ has one ocomponent more than H) and ρH = 4 -a; ,

ii) \%H_ I = \<%H\ — 1 (i.e. H_ and H have the same number of ocomponents)
andρH = 2;

iii) \%H_ I = \<%H\ — 2 (i.e. H_ has one ocomponent less than H) or
iv) # = #minandρH = α.

In either case 0<ρ#<4 is satisfied.
With these fc/s and ρH's we obtain

= a-2δsG + hG(x(v)-v). (17)

Due to our choice of x(v) in Equation (14), Re(x(v) — v)= max( — Re(v), —2(5)
and therefore Re(zJ)>0.

Combining everything we get the following exponents nH for tH:

i-α) for

ii) RercH^/ιH(Rev-x(v)) + 2<5sH for

iii) Re nH ̂  /ιH(Re v - x(v)) + 2£sH - 2 for H e J* .

Proposition 2. 77ιe IK-renormalίzed Feynman amplitude $IG& n) for a connected
graph G with At^4 for all internal vertices, as defined by Equation (3.18), can be
decomposed into a sum of integrals

<5(Σ PΪΓ (W>c~")o + r] I dμlt, §, λ)fε(p,t, §, λ, n) (18)

which — considered as a distribution over ^(IR4*) in the p's — converge absolutely
for Re (4 — n) positive and can be analytically continued into a finite neighborhood
o f n = 4 where &IG(TJ, n)= lim ^J? ε(p, h) exists in '̂(IR4*) and is meromorphic in n.

Proof. With our choice of fc/s and ρ#'s the integrand of Equation (10) satisfies
the hypothesis of the β-Lemma. The λH- and /^-integrals converge due to our
choice of fc/s, whereas Corollary 2 supplies an estimate which is needed to prove
the convergence of the £H-integrals. The variables tH for He $ are the only un-
bounded ones, however (l + Σ*7π+ Σ^V + ̂ )1/2 ^s bounded by some multiple
of Y[ tH. This effectively increases the exponent nH of these tH by A. If Re(v)>0

then Re(nH)>0 for He^NΛ and Re(nff + J)<0 for He 31 and therefore all
ίH-integrals converge. For Re(v)->0 only the ίH-integrals for He(KtϋQ\S> with
sH = 0 may fail to converge. Since the remaining integrand is C°° in these variables,
the integral can be analytically continued in v and has poles at v = 0. All these
poles arise from UV-divergent 1PI subgraphs with massless lines only and are
present whether ε>0 or ε = 0.

Remark. The whole amplitude certainly can have poles for Re(v)>0. Due to
our choice of maximal (effective) IR-degree they are, however, all absorbed into
IR-finite but possibly UV-divergent counterterms.
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We still have to show the existence of the IR-counterterms lim Tβσ ~ ̂ {f; ε

ε-^O

for 1PI graphs G with ί2G>0.

Proposition 3. Let G_be a 1PI graph with ΩG>0 and A^4for all internal vertices.
Then YG, & — TΩc ~ I^IG, ε(p> n) Z5 a polynomial in p with coefficients which are mero-
morphic in v. In a finite neighborhood of v = 0 these coefficients have a limit ε-»0.

Proof. Let us first concentrate on the highest derivatives

2^ίtGML=o. (19)

Decomposing it according to ofamilies with basis for G (here we use c- and not
c^ -families since there are no external momenta) yields integrals of the form

Γ + SG- l j dμ Π ίvfc* + 2'*-«* Π K* - -' - (20)
V 2 / ^ <#> <eG vhc

(iM + ε)~ °

with

ί^O for

*H\^2 even for

multiplying monomials of degree ΩG — 2 in p. Reorganizing the powers in the
integrand in a familiary fashion we obtain

-<H-2« ]-[ βse -*, (22)

with

Ό/2 if
ίf /GJ^'

where x(v) is given by Equation (14) and

for all H e ̂ . Application of the ε-Lemma with ρ = vhG + 2s G — 2 shows the existence
of this integral for Re(v)>0. Again the only possible singularities at v = 0 (apart
from the singularity of the Γ-function) develop from the ί^-integrals with He^'\^
and % = 0, leading to a finite order pole at v = 0.

Next we consider all the remaining terms in TΩ°~13~™ ;ε(p, n). The coefficients
of the polynomial in p arising from

ελp,n)\λ=0 (25)
Oλ
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where k> 1 are integrals of the form

*' *G l V f c c _ _ _ ,

with an exponent of the denominator which is in general too small for a direct
application of the ε-Lemma. We can, however, multiply numerator and
denominator by

(27)

and decompose MG in the numerator into

£ t2

HMH (28)

where {H{} is the set of all maximal elements of $. ^G/{Hf} *
s bounded and can

be absorbed into g(λt, §, v). For each He {H{} we obtain a term with /# replaced
oo oo 1

by ^# — 2. If /H = 2 we replace J by J — j. The first term can be integrated to

(dtH vfcj

0 ί̂Γ
sG-k+l

(29)

In the second one, where we have reduced the number of integrals from 0 to oo
(i.e. members of $\ or if /H>2 we may further decompose MH as above. In any
case we obtain one or several integrals of the type we started from, but with k
reduced. Continuing this process we obtain eventually integrals of the form (20),
converging for ε->0 and Re (v) > 0. They all have a limit ε-»0 in some neighborhood
of v = 0 and all poles for Re(v)>0 are made explicit by the various Γ-functions
occurring in the reduction.

Combining Propositions one, two and three we have proved:

Theorem 1. For any connected Feynman graph G, satisfying Δ^^ for all internal
vertices, the renormalized amplitude ^Sjε(p, n) as defined by Equation (3.5) is analytic
at n = 4 and has a limit ε->0 (as distribution over £f) in some finite neighborhood
ofn = 4.

Up to this point we have assumed, that G contains no tadpoles, i.e. that G^
is 1PI. Any 1PI tadpole has Ω > 0 and its amplitude does not depend on any momenta.
Proposition 3 guarantees the existence of τΩ~l&~1* and consequently (1 - T)^IR

vanishes identically in ε and v. Let G be an arbitrary (connected) graph containing
tadpoles and G0 the graph obtained from G by removing all tadpoles as well as
the lines connecting them to the rest of G. The condition A^4 may be violated
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for those internal vertices of G0, to which the tadpoles are attached. Nevertheless
the amplitude for G0 is given by a convergent integral if ε>0 and Re(v) sufficiently
large. Thus the IR-renormalized amplitude for any graph containing tadpoles
vanishes.

Remark. As in Ref. [2] it can be shown that |̂(p, n) exists even if one internal
vertex has A{ — 3.

Theorem 2. For any connected graph G with IR-degree ΩG assigned to it via the
degrees Af of its vertices Vi (i.e. ΩG is not the effective degree) and for any ρ>0.

) = Q (30)

(as a distribution) in a finite neighborhood of n = 4.

Remark. Using the method of Pohlmeyer [11] it should be possible to show that

(31)
fe = 0

with some

Proof. First we observe that &G is a sum of ̂ IR's for various reduced graphs of G
and that the effective IR-degree of each of them is not less than the IR-degree
assigned to G. Next we "augment" the graph G by "external" lines to a graph G'
and note that QG, — ΩG. Choosing λm as mass of the external lines we obtain

M 2( _ /
L ( ,

KG

ΓY — zn24-ίm2Vl f c σ + 1

H φ +^ λi - 3l*(fan). (32)
feσ!

Starting from ^-^G + 2sG'-2SG tjmes Equation (6), multiplying all momenta and
all masses of external lines with λ and proceeding in a by now familiar way we
obtain je-«+2*sσ<-sσ) tjmes Equation (10) with the replacements rjq-^λrjq and,
for /e^f^1, βtηH;-*λ2βgηHf. Choosing a small enough we see that the limit ε->0
exists in some neighborhood of v = 0, is continuous in λ and vanishes for λ = Q.

6. IR-Subtractions and the Action Principle

Like the BPHZ-renormalization the Taylor series subtractions performed to
improve the IR-convergence of Feynman integrals are in general not compatible
with the equations of the action principle, i.e. lead to radiative corrections in these
equations. In principle it is possible to determine these corrections explicitly
although in many applications their precise form turns out to be irrelevant [12].

There are however important cases in which the Taylor series subtractions
completely cancel if all contributions from different graphs to one given Green's
function are combined. This is so if (but not iff) some symmetry principle (gauge
in variance, spontaneous symmetry breaking) respectedby dimensional regularization
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enforces the vanishing of the Taylor expansion of the corresponding vertex
function up to the required order. Relevant examples are QED, the Goldstone
model and certain non-abelian gauge theories.

Under these circumstances a proof of the Ward identities expressing the
symmetry at the level of Green's (or vertex) functions can be given to all orders
of perturbation theory inductively hand in hand with a proof of the absence
of IR-counterterms in the Lagrangian. Assuming that the Ward identities hold
at the tree level and are respected by dimensional regularization, they also hold
for the regularized one-loop Green's functions (see Ref. [1] for a discussion of
this point). Assuming further that the validity of the Ward identities implies the
vanishing of the "massless" vertex functions at zero external momenta up to the
required order there will be no IR-counterterms in the Lagrangian to this order.
Notice however that individual two-loop graphs may still require one-loop
IR-counterterms in order to be IR-fmite, it is just that they cancel out if one puts
them together to an operator counterterm in the Lagrangian. The argument
given above can be clearly extended to any order in perturbation theory, thus
showing at the same time the validity of the Ward identities and the absence
of IR-counterterms in the Lagrangian.

To illustrate this we consider the lowest order contributions to the vacuum
polarization in scalar QED, originating from the two graphs shown in Figure 4.
Both of them are needed in order to obtain a gauge invariant amplitude. The
regularized amplitudes are

r ' 2

- (m2 - is?

- rξ\\dβ(ί-2β)2(m2-β(ί-β)p2-iεf' (1)

resp.

|j (m2 - ie)*~ * (2)

and neither one vanishes for p = Q, their sum however does. The Ward identity
requires pμΠμv(p) = Q and therefore Πμv(p) = (gμvp

2 -pμpv)Π(p2) with

2β)2(m2-β(l-β)p2-iεf~2 (3)

In higher orders Π(p2) will develop a (weak) singularity at p2 = 0. Theorem 2,
however, guarantees that Πμv(p) and dΠμv(p)/dpρ vanish at p = Q.
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