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Abstract. Some general results about perturbations of not-semibounded self-
adjoint operators by quadratic forms are obtained. These are applied to
obtain the distinguished self-adjoint extension for Dirac operators with sin-
gular potentials (including potentials dominated by the Coulomb potential
with Z<137). The distinguished self-adjoint extension, is the unique self-
adjoint extension, for which the wave functions in its domain possess finite
mean kinetic energy. It is shown moreover that the essential spectrum of the
distinguished extension is contained in the spectrum of the free Hamiltonian.

1. Introduction

In this paper we shall consider the problems of self-adjointness and of the in-
variance of the essential spectrum for the Dirac operator perturbed by a local
potential. The formal Hamiltonian to be considered is

-iα grad + mjf f+F(x) . (1.1)

Reviews concerning the self-adjointness problem both in relativistic and non-
relativistic quantum mechanics appeared recently. See [2] where an extensive
bibliography is also given, and [3] which considers also nonlocal perturbations.
The status of the theory is almost satisfactory due to the results obtained in the
last years. However, there is a point in which the relativistic theory is less satis-
factory: the case of singular potentials when the minimal operator (1.1) is not
essentially self-adjoint. In the nonrelativistic (Schrodinger) case the semibound-
edness of the sesquilinear form defined by the minimal operator is sufficient to
provide a distinguished self-adjoint operator in a canonical way, the Friedrichs
extension, which is taken to represent the physical Hamiltonian irrespective of the
fact that the minimal operator is essentially self-adjoint or not. In the relativistic
case (due to the unboundedness of the free Dirac operator) a general method to
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construct distinguished self-adjoint extensions of the minimal operator (1.1) seems
not to exist.

As the von Neumann theorem [5, Prop. 13.6] assures the existence of self-
adjoint extensions of the formal operator (1.1) the problem is to provide a criterion
to select one self-adjoint extension. The criterion must satisfy two requirements:
first, to have a clear physical meaning; second, to assure the uniqueness i.e., in
the cases of physical interest one have to prove that there exists only-one self-
adjoint extension satisfying the criterion. In this paper we shall adopt the fol-
lowing criterion: the distinguished self-adjoint extension, //, satisfies

®(H)C®(\HmV2) (1.2)

where Hm is the free Dirac Hamiltonian (see Section 3). In the language of physics
the condition (1.2) means that the force law has to determine the motion for
states with finite kinetic energy. Then, the problem of self-adjointness is replaced
by the problem of proving that there exists only one self-adjoint extension satis-
fying (1.2). There exists a method to construct self-adjoint extensions satisfying
(1.2): the pseudo-Friedrich extension method [9, Th. 3.11], [5. Th. 5.2]. However,
the pseudo-Friedrichs extension method is insufficient. Indeed, in the case when
K(x) = (v/|x|)l the pseudo-Friedrichs extension method can be applied only for
|v|<2/π while the exact results for this case [13] show that the whole |v |<l
region is to be covered. We shall show in Section 2 that in the perturbation theory
of self-adjoint operators by quadratic forms, some results known in the semi-
bounded case can be extended to the general one. This provides a general method,
valid both in the Schrδdinger and Dirac case, to define (and to prove the unique-
ness of) the distinguished self-adjoint extension. Applying the theory to the case
of potentials dominated by Coulomb like potentials we obtain the following
result (see Section 5, Theorem 5.1 for the general result).

Let V(x) be the 4 x 4 symmetric matrix-valued function which represents the
potential. If

|xH||K(x)|| |^v<l (1.3)

(here \\\ - \\\ means the usual 4 x 4 matrix norm) then there exists a unique self-adjoint
extension H, of the formal operator (1.1), satisfying (1.2).

Others methods to construct self-adjoint extensions of the minimal Dirac
operator (1.1) have been recently proposed by Schmincke [6] and Wύst [7].
Although, they were able to construct distinguished self-adjoint extensions for
some classes of potentials containing v/|x|, |v| < 1, their proofs are rather intricate
and, more important their methods say nothing about the uniqueness of the
distinguished self-adjoint extension. Regarding the generality it is easy to see that
the class of potentials we shall consider in Section 5 is not contained in their class
of potentials. On the other hand, although it seems not easy to decide if the classes
of potentials considered in [6, 7] are fully contained in our class (actually the
classes in [6, 7] are defined in a rather implicit manner) it is very likely that a
more refined application of the general results contained in Section 2 of our
paper will cover the results in [6, 7]. Regarding the pseudo-Friedrichs method
our method is strictly more general. More exactly the pseudo-Friedrichs method
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is based on the estimates on || IFI^^I/fJ + α)"1!^172!! while our method rests on
estimates on || \V\1/2(Hm + λ ) ~ 1 \ V \ 1 / 2 ||. From the physical point of view it is
worthwhile to mention that, when definable, our distinguished self-adjoint exten-
sion coincide with that provided by the pseudo-Friedrichs method and by the
method developed in [6] and [7]. Regarding the problem of the invariance of the
essential spectrum, the usual method of proof that σess(//)Cσess(#J requires V
to be Hm compact [9, IV. 1.3 and IV.5.6]. This is not the case for singular potentials
satisfying (1.2). We shall show that the |//J3/2-compactness of |F|1/2 is sufficient.
This allows to prove that σess(//)Cσess(#m) for all potentials satisfying (1.2). For
another general result about invariance of the essential spectrum (requiring how-
ever V to be Hm vounded with bound smaller than one [9, IV. 1.], which gives
v< 1/2 in (1.3)) see [3].

The paper is organized as follows. Section 2 contains the general theory of
perturbation of nonsemibounded self-adjoint operators by symmetric sesquilinear
forms. Section 3 contains the description of the free particle Dirac operator.
Section 4 contains the description of the perturbing potential. Finally, Section 5
contains the applications of the general theory, developed in Section 2, to the
Dirac operator.

2. The General Theory

Let A be a self-adjoint operator in the separable Hubert space Y Let ^4— 1/|^4|= \A\ U
be the polar decomposition of A [9, VI.2.7]. In contradistinction to [9] we shall
define £// = /for/in the null subspace of A so that U is unitary and self-adjoint.
Let for α>0, A^A + aU. It is easy to see (using the functional claculus for self-
adjoint operators) that

i) Aa is self-adjoint.
ii) ®(A) = 9(Aά\ @(\A\V2) = @(\A^2).

iii) If [ — a, d\ is in the resolvent set of A, then [ — α — α, α + α] is in the
resolvent set of AΛ.

Let Xa be &(\Aa\
112) with the Hubert space structure given by

Xx are topologically equivalent as for <x1 >α2>0

llxlU^llxlU^K/α^WU (2.2)

For an arbitrary self-adjoint operator A, its associated sesquilinear symmetric
form, £A, is defined by

(2.3)

. (2.4)

It is easy to verify the following relation

*Ajx, V]=*A[.X, yl +«(*, Uy) . (2.5)

As U£ι(\A\ϊ/2) = 3ι(\A\112) we can define the operator

(2.6)
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Because U commutes with \AΛ\
1/2, T is a unitary and self-adjoint operator on

Let ?>[x, j] a sesquilinear symmetric form in Y with

J2MD0(|,4|1/2). (2.8)

If for some α, v- is bounded on ΛΓα

k[x,y]|^CαWα ||);||α (2.9)

then it defines a bounded self-adjoint operator Fα by

)Λ=vίχ,y]. (2.10)

Definition 2.1. The symmetric sesquilinear form ?> is a form perturbation of A
if it satisfies (2.8) and if there exists α>0 such that (2.9) is satisfied and the operator
T+ VΛ has bounded inverse in XΛ. If, for some α, ||FJ <1 then ^ is a small form
perturbation of A. If

l im| |7 α | |=0 (2.11)
α->oo

then v is tiny form perturbation of A

Remarks. 1. If v is a small form perturbation of A then it is a perturbation
of A.

2. If ̂  is a small form perturbation of A and ̂ 2 is a tiny form perturbation
of A then ^ = ̂ 1+^2, J(^) = J(^1)ne2(^2) is a small form perturbation of A This
follows from the fact that || VΛ\\ is a decreasing function of α due to (2.2) and (2.10).

3. The usual perturbation condition [4,1, 9]

\v[_x,x~]\^a\\\A\1/2x\\2 + b\\x\\2ι α<l, b<oo; xe0(|4|1/2) (2.12)

implies that v is a small form perturbation of A. Indeed (assuming that αφO,
otherwise there is nothing to prove) (2.12) can be written as

^[x^ll^αlKI^I+α-1^1/2^!! (2.13)

and it is sufficient to take α>α~1ί>.
Our first problem is to construct a self-adjoint operator B whose associated

sesquilinear symmetric form άB is the form sum (in a sense made precise below)
of the forms AA and v. The following theorem provides such an operator.

Theorem 2.1. Let Abe a self-adjoint operator and v a perturbation of A. Then,
there exists a unique self-adjoint operator B satisfying the condition

2). (L2)

Remarks. 4. For the case when A^O and v- satisfies (2.12) the result is well
known [4, App.], [9, VI.3]. Also, the result is essentially known for arbitrary A
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if v is a small form perturbation of A [5, Th. 5.2]. Moreover, in these case

(2.14)

The proof of the Theorem 2.1 rests on the following variant of the Lax-Milgram
lemma [10, II. 1].

Lemma 2.1. Let {X,(,)x, || \\x}9 {Y,(,)γ, \\ - \\γ} be two Hilbert spaces, XcY,
X=Y, \\ \\γ^δ\\ - \\x, 0<<5<oo, C a bounded self-adjoint operator in X, with
bounded inverse. Then, there exists a unique self-adjoint operator B in Y with
@(B)CX and

yeX .

The proof of the lemma follows rather closely [10] (with the uniqueness argument
borowed from [4]) and will be not given here.

Proof of the Theorem 2.1. We shall make the following realisation of the
Lemma 2.1. Y is the Hilbert space form Theorem 2.1. X = Xa given by (2.1),
C=T+Va given by (2.6) and (2.10). For the appropriate value of α the inverti-
bility of C is assumed by definition. Taking into account (2.5), the operator B in
the Theorem 2.1 is given by

B = B-aU. Π (2.15)

From the physical point of view the result contained in Theorem 2.1 has the
inconvenience to be nonconstructive. The next result we shall prove, shows that
the resolvent of B is given by a formula which formally is the familiar Born series.
In the remainder of this section we shall assume (although this is not essential)
that v is the associated sesquilinear form of a self-adjoint operator V i.e. v = άv.
We shall use the following notation. If G is a densely defined bounded operator
in Y we shall define by [G], its extension by continuity to the whole space. Let V
be A form bounded [i.e. &v satisfies (2.12) for some α, b<oo], α>0, zφσ(A). Then
the operators \V\ll2(A-z)~\ [(A-z)-1!^1'2], [(|̂ | + αΓ1/2|F|1/2], M(z) =

are bounded and

)*, (2.16)
-1/2)*

M(z)* = M(z).

Lemma 2.2. Let A, V = S\V\ be self-adjoint operators such that V is A form
bounded and Av is a form perturbation of A. Let B be the self-adjoint operator
defined by Theorem 2.1. If for zφσ(A\ l + SM(z) has a bounded inverse then
zφσ(B) and

(A-zΓl = R(z). (2.18)

Remarks. 5. If ||M(z)|| <1 then

R(z) = (A-zΓ1-(A-zΓ1V(A-zΓ1 + ... (2.19)

i.e. just the usual Born series.
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6. If &v is a small form perturbation of A then for z sufficiently far from σ(A\
||M(z)||<l (it is sufficient to have |Imz|^(|Rez| + α)/(l-α)1/2). For this case the
result contained in Lemma 2.2 is known [5].

7. An example in which V is not a small form perturbation of A but Theo-
rem 2.1 and Lemma 2.2 apply is provided by A >0, F>0 and V is A form bounded
(take z<0 in Lemma 2.2).

Proof of Lemma 2.2. It is sufficient to prove that for every x

R(z)(B-z)x = x. (2.20)

Let us compute for arbitrary ye Y, (R(z)(B — z)x,y). Let us remark that
l+M(z)S has a bounded inverse

R*(z) = K(z) (2.21)

and the operator \A\1/2R(z) is bounded which implies

Ran#(z)C^(|,4|1/2). (2.22)

Then using the condition (L2)

(R(z)(B-z)x9y) = ((B-z)x,R(z)y)

(2.23)

Now using the identity

SM(z) (1 + SM(z)) " 1 = 1 - (1 + SM(z)) " 1 (2.24)

for β>0

(IFI^SIFI^z^M

= (x9y)-(\A\i'2x9U\A\^2R(^y) + z(x9R(z}y). (2.25)

From (2.23) and (2.25)

(R(z)(B-z)x9y) = (x9y) (2.26)

which implies (2.20), y being arbitrary in Y. Π

The following Lemma is the abstract form of an argument used in [8].

Lemma 2.3. Let A, V as in Lemma 2.2. If for some zQφσ(A\ (l+SM(z)) has a
bounded inverse and [_\V\ί/2(A — z0)~'L(A — z)~1\V\ί/2^ is compact for zφσ(A) then
(l + SM(z))~ί is a meromorphic operator valued function in (C\σ(A). In particular
(1 + SM(z)) has a bounded inverse everywhere in (ί\σ(A) with the possible exception
of a set having no accumulation points in (C\σ(A).

Remarks. 8. Lemma 2.3 is a generalization of the following well-known result
about analytic families of compact operators.

Lemma 2.4 ([1, 11, 9]). Let N(z) be an analytic compact operator valued func-
tion on a simply connected domain D. If for some z0eD, 1 +N(z0) has a bounded
inverse then (1 + N(z))~1 is a meromorphic operator valued function on D.
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Proof of Lemma 2.3. The proof is immediate

1 + SM(z) = 1 + SM(z0) + S(M(z) - M(z0))

(2.27)

Then taking

N(z) is compact and the application of Lemma 2.4 finishes the proof. Π

The following theorem gives examples of perturbations which are not neces-
sarily small perturbations.

Theorem 2.2. Let A, V be self-adjoint operators such that there exists ίelR,
tφσ(A) and V is A form bounded. If (l + SM(ί)) has a bounded inverse, then Av is
a perturbation of A — t.

Proof. Without loss of generality we may assume that ί=0 and \A\^. 1. Let us
consider the following operator

(2.28)

Q is a bounded everywhere defined operator in X0( = &(\A\1/2)) with the norm

(2.29)

A calculation similar to that in the proof of the Lemma 2.2 gives

((Γ+K0)x,QjOo = (x,)Oo (2.30)

i.e.

β*(Γ+K0) = l (2.31)

which implies that T+F0 has a bounded inverse in X0 and the proof of the
theorem is finished. Π

Corollary 2.1. Let A, Vly V2, self-adjoint operators satisfying
i) \A\^m>0.

ii) Vί is A form bounded and there exists z0φσ(A) such that

has a bounded inverse.
iii) [_\V1\

1/2(A-zQΓ1(A-zΓ1\Vl\
1/2'] is compact for zφσ(A).

iv) V2 is a bounded operator and V2\A\~i/2 is compact. Then there exists a
unique self-adjoint operator B satisfying
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The operator B has the property

σess(B)Cσess(A). (2.33)

Proof. By Lemma 2.3 (l+S1l\V1\
1/2(A-zΓ1\Vi\

1/2Γ1 is a meromorphic func-
tion on C\σ(X). Then by Theorem 2.2, $Vi is a perturbation of A — t for some
ίe(-m, m\ Let B = A-t+ V1 in the sense of Theorem 2Λ,B = B + t and B=B + V2.
Obviously

(B-zΓl = (B-(z-t)Γl (2.34)

and from Lemma 2.2 and 2.3

*ess(B)C(τeMU-ί). (2.35)

For sufficiently large Imz

1Γl. (2.36)

On the other hand using (2.18) for (B-z)'1 and iv), it follows that V2(B-z)~1

is compact and (2.33) follows from Lemma 2.3. Π

Remarks. 9. In the theory developed in this section we have used for the sake
of simplicity the factorisation

V = S \ V \ 1 / 2 \ V \ 1 / 2 . (2.37)

The whole theory can be developed with a general factorisation

V=ViV2 (2.38)

with Vί9 V2-\A\1/2 bounded.

3. The Free-particle Dirac Hamiltonian

Let (L2)4 be the Hubert space of the C4-valued functions, Ψ(x) = (ψi(x))f=-L, of the
space variable x = (x^x2,x3) with the usual scalar product

(ψ,Φ)= Σ fViMΦiMd*. (3.1)
i = l

The specification of the integration domain will be dropped whenever the inte-
grals are extended over the whole IR3 space.

The Hamiltonian Hm of a free Dirac particle of mass m is given by the self-
adjoint extension in (L2)4 of the following differential operator [9, V.5.4]

, (3-2)
k=ί \σk υ / \ U ~

where σ1? σ2, σ3 are the Pauli 2 x 2 matrices and 12 is the 2 x 2 unit matrix. Hm has
only absolute continuous spectrum

) = (-co9 -m]u{m, oo). (3.3)
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The integral kernel of the resolvent (Hm — E)~l is given by

G0(x, j;;E) = (-i £ akd/dxk + mβ + E\(4πΓ' exp(iλ\x-y\)/\x-y\ (3.4)
V k = l /

where

λ2 = E2-m2; Im/l^O.

4. The Potential

Let V(x) a 4 x 4 symmetric matrix, whose elements V^x) are (complex valued)
measurable a.e. finite functions on IR3. Exactly as in the scalar case one can show
that

) , (4.1)
j

= {Ψe(L2)4\ Σ J \(VΨ )ί(x)\2dx<oo} (4.2)
i

is a self-adjoint operator in (L2)4. Let x0eR3 such that IKj(χo)l< 0 0 Then F(x0)
is a symmetric matrix which admits a polar decomposition

F(XO) = S(XO)|»Ί(XO) (4.3)

where |K|(x0) is a positive definite matrix, and S(x0) is a symmetric unitary matrix.
Let

V = S\V\ (4.4)

be the polar decomposition of V. Then

Let |||F(x0)||| be the usual 4 x 4 matrix norm (the greatest eigenvalue of |F|(x0).
Then

= ess-sup HI K(x)||| . (4.5)

5. Dirac Operators Defined as Quadratic Forms

In this section we shall apply the general theory developed in Section 2 to the
case when Y = (L2)4, A = Hm given by (3.3), (3.4) and V is given by (4.1), (4.2).

Let w(ί) be a decreasing function on [0, oo)

0^w(0^1; limw(ί) = 0. (5.1)
ί->00

Lemma 5.1. Let us suppose that

F(x)-w(|x|)̂ (x) (5.2)

where W is Hm form bounded. Then ί\V\l/2(Hm-E0Γ
1(Hm-E)-1\V\1/2']9 E,

E0φσ(Hm) is compact.
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Proof.

(5.3)

so that it is sufficient to prove that [|ffm |~3/2 |F|1/2] is compact. Now for α>0 [14]

Hm\-« = (-A+m2Γ«12 (5.4)

i.e. the integral kernel of \Hm\~a is essentially the Bessel potential [12, V.]. Because
of (5.2) it is easy to see that

π

2 ] | | = 0 (5.5)

where

f**\
(5'6)

so that it is sufficient to prove that [\Hm\~3/2χn( - )|F|1/2] is compact for all positive
integers n (the norm limit preserves compactness). Using the elementary prop-
erties of the Bessel potential [12, V.3] one can see that there exists c>0 such
that [exp(c| \)\Hm ~l/2χn( ) \ V \ l / 2 ] *s a bounded operator so that it is sufficient
to prove that \Hm\~1 exp( — c\ |) is compact. Now the compactness of \Hm\~l

- exp( — c\ - 1) follows from elementary properties of double scale of weighted I2

spaces [15, property (4)]. Π

Let

rCfV(x) = (v/|x|)l v^O (5.7)

the Coulomb potential. The inequality [9, p. 307]

(Φ, I - Γ1Φ)^(π/2)(Φ, |HJΦ), Φe®(H J (5.8)

shows that Vc>v is form bounded for all 0<v<oo and that for 0<v<2/π, AVc v is
a small perturbation of Hm.

Let us remark that

1 (5.9)

which shows that VCtV satisfies the conditions of Lemma 5.1. In the following we
shall denote by fcs, f the operators of multiplication with ks(x) and (x2 +x2

2 -^x^Y12

respectively. The technical result we need about Vc>v is contained in the following.

Lemma 5.2. Let s>0 and

-I- si ^ IT! for
1 / \ I V - V" ' " / I ""l ' V" I ° / 1*^1 J 1*^1 | - ' V I = = V ' " ' " / / V " ' " / /^ ^ /Λ\
ΛsW— ^ ^r ,_,^ Λ_ , ΛW/_2 , ι 2 \ P.IUJ

T/zβn

Remarks. 9. The result contained in Lemma 5.2 is a generalization of Lemma 2
in [7].
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10. We conjecture the more aesthetic inequality

lr-^\\^l. (5.12)

Proof of Lemma 5. 2. Let

®0={Φ|φ feC0-(IR3\{0}. (5.13)

The following operators are symmetric on ̂ 0

pk=-id/dχk

xk= the multiplication with xk

3

L f= Σ είjkxjPk> 1=1,2,3 where εijh=ί if ijk is a circular permutation of
j , f c = i

{1, 2, 3} and zero otherwise
3

Σι = i Σ £ijk<XjXk, /-1, 2, 3

3 3

— V Y T τ2 — V
ζ— 2^ ^k-^k ^ ~ Lu J

k = l k=l
3

The following identities and inequalities hold on ̂ 0 [6].

αr α r = l , (5.15)

(αP)r-r(αP)=-iαr, (5.16)

+ r-1 , (5.17)

(5.18)

(5.19)

Let Φe^o Using (5.15-19) we have

+ (Φ, imβarΦ) + (Φ, sα,.Φ) + (52 + m2) (Φ, rΦ)

^(Φ, {r"1-(s + m) + (52+m2)r}Φ)^||fc1r-1 / 2Φ||2. (5.20)

Obviously /csr"1/2^0-^0, r1/2Jfcs"
1^0 = ̂ o- Let ^e^o Then from (5.20)

l l f c V^^ + ̂ r^fc ^ll^llr^^ + ̂ r1^ (5.21)

which proves the lemma. Π
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Definition 5.1. We shall say that V is dominated by VCtV if

|||K(x)|||gv/|x|, xeR3\{0}. (5.22)

We shall say that V is nonsingular if A\v\ is a tiny perturbation of Hm.

Remarks. 1 1. If Vtj e LP(R3), p > 3 z, 7 = 1 , . . . ,4 then F is nonsingular. Actually
in this case, using (3.4) and Holder and Young inequalities, one can prove that [14]

tim\\ί(Hm + ίsΓl\V\]\\=Q (5.23)

which implies [5, p. 31]

lim||[(|Hw| + 5)-1/2 |y|1/2]HO. (5.24)
s-» oo

We are now ready to state the main result of this section.

Theorem 5.1. Let w>0, w(ί) satisfying (5.1) and Hm, V defined by (3.3-4) and
(4.1—2) respectively.

If either

a) V(x) = w(\x\)W(x) (5.25)

where W is a small form perturbation of Hm. Or

b) V(x)=V1(x)+V2(x) (5.26)

where V1 is dominated by Fc>v for some v< 1 and

V2(x) = w(\x\)W2(x) (5.27)

where W2 is nonsingular.
Then
i) There exists a unique self-adjoint operator H such that

(5.28)

(5.29)

(5.30)

Proof. The first case is a direct consequence of Corrolary 2.1, Lemma 5.1 and
Remark 6. The proof of the second case is somewhat more involved. Let us write

Fi(x) = /c2(x) n(x) + (1 - fcf (x)) Fi(x) (5.31)

where fct(x) is defined by (5.10) and ίelR+ is to be chosen later. Let us remark that

(5.32)

(5.33)

(l-fc(

2(x))F1(x) = 0 for \x\>(m + t)/(m2 + t2). (5.34)

Let

(5.35)
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In view of Corrolary 2.1, Lemma 5.1, and Remark 9 is sufficient to prove that
there exists ίe [0, oo) such that

Vt(x)=T1(x)T2(x)ι |IΉI#J-1 / 2]| |<oo; ί = l,2 (5.36)

and

||[T1(fίIfI + ΐίΓ 1T 2] | |<l. (5.37)

A factorisation satisfying (5.36) is given by

>«χ)=(M*)llir^ (5 38)
where

r(x)=(M*)IIIPιW^
(5.39)

One can easily see that

/ 2y]| |=0 (5.40)

which together with Lemma (5.2) assures the existence of £e[0, oo) such that
(5.37) is true and the theorem is proved. Π
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