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Abstract. It is proved that the 5-matrix satisfies the Bogolubov microcausality
condition in each order in perturbation theory in a quantum field theory with nonlocal
interaction, where the nonlocality is introduced with the help of form factors being entire
analytical functions of the order 1/2.

1. Introduction

It is well known that the principle of causality is the basis of all
approaches in the theory of elementary particles. In quantum field
theory this principle, like the postulates of relativistic covariance and
quantum nature of phenomena in the microworld, is of fundamental
importance (construction of the S-matrix [1], the Wightman axiomatic
approach [2], dispersion relations [3] and so on).

In local quantum field theory causality is manifested as a requirement
for the Heisenberg fields φ{x) to be locally commutable

ίφ{x),φ(y)]-=0 for x~y (1.1)

or as the microcausality condition for the S-matrix:

=0 for x<y. (1.2)
δφ(x)\δφ(y)

The both conditions are of a formal mathematical nature and are the
postulates describing the mathematical structure of the fields φ(x)
in (1.1) and of the S-matrix in (1.2) rather than requirements of physical
causality. This is explained by the fact that the concept of point-like
nature of events suggested in (1.1) and (1.2) is incompatible with the
ideas of relativistic quantum mechanics.

Over the last time numerous attempts have been made to formulate
the so-called physical condition of causality [4], i.e. to find minimal
requirements on the amplitudes of physical processes which would
guarantee the absence of any obviously noncausal phenomena in the
macroworld. However, this problem remains still open and the conditions
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(1.1) and (1.2) are actually the only working formulations of causality
ensuring the well-known results in different approaches of local quantum
field theory.

It should be noted that the predictions of the local theory are in
satisfactory agreement with experiment up to the presently reachable
distances ( « 1 0 ~ 1 5 cm). This appears to indicate that, firstly, the mathe-
matical condition of causality guarantees undoubtedly the fulfilment
of the physical condition if the latter will successfully be formulated.
Secondly, the notion of point-like nature of events is a good approxima-
tion up to presently reachable energies.

However, troubles due to ultraviolet divergences as well as the
fact that the notion of strict localizability of events is only approximate,
stimulated many attempts to formulate a selfconsistent theory at the
expense of locality and, which seems to be quite obvious, at the expense
of microcausality. However, in so doing, we may consider the theory
as valid only if the violation of microcausality is localized in sufficiently
small space-time regions. The investigation of the causal S-matrix
properties in this kind of theories is of predominant importance.

In the present paper we show that the quantum field theory with
nonlocal interaction proposed by one of the authors [5] satisfies the
microcausality condition (1.2) in each perturbation order.

2. The Lagrangian and the 5-Matrix

We consider the theory of an one-component scalar field with the
Lagrangian:

JS?(x) = J2>o(x) + 0 ^ / ( x ) ,

^o(x) = I : \βμφ(x) dμφ(x) - m2φ2(x)]:, (2.1)

Here N is an integer,

Φ(x)=\ dx'K{x - x') φ{x') = K{12 Π) φ{x) (2.2)
where

K(x - xf) = K(l2 •) δ{*\x - x') (2.3)

is a nonlocal distribution (see [6]). The parameter / implies the dimension
of the interaction region.

Generally speaking, we may consider a more general case (non-
polynomial Lagrangians and different methods of introducing non-
locality), as we did when proving the unitarity of the S-matrix in [7].
However we are not going to do this here in order not to make our
presentation cumbersome. The methods proposed below can easily be
applies to the general case.
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The introduction of nonlocality into the interaction Lagrangian
in this way leads to the fact that in the perturbation series for the S-matrix
the propagator of our scalar particle changes in the following way:

1 LK(l2k2)f

m2 — k2 — iε m2 — k2 — iε
(2.4)

We suppose that the function V(z)= [K( — z)~]2 satisfies the proper-
ties (£):

1) V(z) is an entire analytical function of the order ρ = \, i.e. 3C>0,
lx > 0 so that

2) V(z) = 0(|z|~x ~a) when Rez-+ + oo(0 < a < 1);
3) V(-l2m2)=ί
4) lV(z)]*=V(z*).

For example,

The following representation is valid for the functions satisfying
the conditions

V(-l2k2)= f d4ρa(ρ2)ekoρo+ikβ (2.5)
ρ2k/2

where the integration is performed over the Euclidean globe

The function a(ρ2) is supposed to be integrable for ρ2 :g I2.
The space of the test functions Z consists of all entire functions of an

arbitrary order f(z1,..., zn) of n complex variables Zj = xj-\-iyj(j=i,2,...i ή)
such that

00 00

f dx1... f dxn\f{x1 + ίyu...,xn + ίyn)\<co
— 00 — 00

foranyy 1 ?...,yM.
The space Z, which is the space of the Fourier transforms of / e Z ,

consists of the differentiable functions /(p!,...,£„) which satisfy the
condition: there always exists positive C{N.}, such that

for any positive Nί9..., Nn.
Let us note that D c Z but DcZ, where D is the space of the infinitely

differentiable functions with a finite support. We define the variational
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derivative of a functional

over fix) e Z as

*!/] = \dpe~ipx—-
DfJ ^

Making use of the standard methods of quantum field theory [1]
one obtains that the S-matrix is formally representable as

(2.6)00 in

= Σ —r^dxί...jdxng{x1)...g(xn)Sn(xu:..,xn).
n

Here g(x) is the interaction switching on function. The operator
Sπ(x l9 ...,xn) can be expanded in the normal products of the quantized
field φ(x):

The coefficient functions K^J W n(x 1 ?..., xw) are expressed in terms of
the products of the nonlocal propagators of the field φ{x):

D { X l

d4'kV(—l2k2)e~ik{

m2-k2-iε

Xί~X2)

As far as in virtue of the conditions (E) this function exists as a
distribution on Z the products of the nonlocal propagators are not
defined mathematically. The definition of the products of the type

is the main problem to be solved in the construction of the finite S-matrix.
The coefficient functions K^J m n (x 1 ? . . . ,xJ are constructed as a

limit of the locally integrable functions K^\δ

 rtln(x1, ...,xn) by means of
an intermediate regularization procedure given by the parameter δ,
so that in the improper sense there exists a limit

lim K£\'..„,„(*!,..., *„) = KJL.-Jxi. •> *«)e Z'

or, otherwise,

S[flf] = l i m S ^ ] (2.9)
where g(x)eZ.

In paper [7] the regularization procedure is formulated in a such
way that the limit (2.9) exists and the iS[#]-matrix is unitary in each
order of perturbation theory.



Causality in Quantum Field Theory 15

A somewhat other regularization which allows performing canonical
quantization of the nonlocal Lagrangian (2.1) and possesses the same
properties is formulated in [8].

3. The Condition of Causality

In what follows we verify the following condition of causality

when x<y. Let us put y = 0, then we have to prove that for M(x)
= <α|jR(x, 0)|/?> (|α> and \β} are arbitrary physical states) the integral

μ*xM(x)fG(x) = 0 (3.2)

for any functions fG{x) which differs from zero only in space-time regions
GcR4 lying outside the future cone:

G c V+ = {x : x0 ^ 0, x2 ^ 0} . (3.3)

Thus, in order to verify the causality condition (3.2) it is enough to
have in the space of test functions on which the theory under consideration
is constructed, some subspaces of the functions with finite supports.
Moreover, the fact of the presence of the functions with finite supports
in the space of test functions was taken as a principle of strict locality
in quantum field theory (see [9,10]).

The main trouble of formulating and verifying the causality condition
in nonlocal quantum field theory is the fact that the functions with
finite supports are absent in the space of the test functions Z. Therefore
the causality condition formulated above cannot be verified directly.
Thus the problem we encounter in investigating the causal properties
of the S-matrix in our nonlocal theory is to find a method which would
permit studying the space-time properties of the distributions defined
on the spaces of analytical functions.

We shall consider that the space-time properties of the distributions
defined on Z can be determined with the help of projecting sequences
of functions {fGfλ{x)} The main properties of these sequences are the
following:

i r / , ίO, X 6 G, V}/,

2. t ? / > + i y ) = |
A detailed consideration of the properties of the projecting sequences
will be given below (see also [11]).
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We suggest that the 5-matrix satisfies the microcausality condition if

hmJd4xM(x)fGίλ(x) = O (3.4)

for any projecting sequences {/G,A(X)} f°r which the region G satisfies
the condition (3.3).

It is easy to see that in the case of localizable theories the definition
(3.4) coincides with the usual formulation of the microcausality.

4. The Projecting Sequences of Functions

The projecting sequences of functions are defined in the following
mariner (see [11]).

Definition. Let 3 be a space of all entire functions f(zo,zί9z29z3)
of four complex variables in C4 = R4 4- iR4. The sequence of functions
{fr,x(x)} is called projecting, if

1. the region ΓcR4;

2. frΛz)=fr,Λzo,Zi,z2,Z3)e3,λ>0;

3. J d4xfΓiλ{x + iy) = const Γ, λ> 0, \fy;

1

6. limfΓλ(x + iy) = ψ(x + iy\xeΓcR4,Vy.

ψ(z) is analytic in Γ -f i £ 4 .

The region Γ CR4 is called the support of the projecting sequence.
Let us denote the space of all projecting sequences for any arbitrary

support Γ by Π and the space of the projecting sequences, the supports
of which are contained in a region G C R4, by Π(G).

It is essential to note that the functions belonging to Π have an
infinite order of growth, i.e.

lim ^ = 0 , VΛΓ>0
r-oo max f>log+ |/Λλ(z)|

if / Γ A G 17. Therefore

The space Π is not empty. The functions of this space can be con-
structed in the following way, for example. In Z C 3 there exists functions
g(z) of one complex variable which satisfy the following conditions:
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1. There exist a number d>0 depending on g(z) such that

when Z-+00 outside the region |Rez| ^d.
2. ^oΰdxg(x)=ί.
We give an example of such a function

n _ 1 ? dueiuz _ 1 <? duCoszu

~ ~ϊπ Λ Γ(]/l + w2) " 7 J Γ(γί + zi2) '

The following estimates are valid for this function

- o o

θ(exp{eW}),|Rez|<f, z->oo.

Let us construct a sequence of functions:

flfΓiA(z)= j i * ^ M Π T ^ ί ^ ^ ) -

Here ψ(x) is an arbitrary function which is analytic in (Γ + ίR4). For
example, φ(x) = eiqx where ^ is a four-vector,

Γλ=\x :min

Γ is a bounded region in JR4.
The sequence (4.3) possesses the following properties.

(I) \imgΓ>λ(z) = ψ(z)ΘΓ(x)

where , , ^
ί l , x e Γ ,

In other words, the sequence {gr,x(z)} converges uniformly__to the
analytical functions ψ(z) and 0 in the regions Γ + iR4 and (R4'\Γ) + iR4'
correspondingly.

(II) Let a function of four variables F(x) be locally integrable and

for VgΓλ(z)eΠ(G). Then

for Vx e G.
(Ill) Let us consider the functional
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where L is a surface of integration in C4. Let the surface of integration L
be deformed continuously in the region of analyticity of the function
F(z) to a surface Lx such that either

or
I

Then

\πn$d*zF(z)gΓJz) = $d*zF(z) In
0

d4zF(z)ψ(z), L^Γ + ίR4;

Γ1

10 , L 4

5. The Principle of Physical Locality

As is well known [1], when constructing the perturbation series
for the S-matrix in local quantum field theory one finds that the expression

Sn(x1,...,xn)=T(J?I(x1)...J?I(xn)) (5.1)

is not the most general one that satisfies the requirements of Lorentz
covariance, unitarity and causality. These conditions completely
determine Sn(x1,..., xn) up to a certain quasilocal operator Λ.n(xl5..., xn),
the coefficient functions of which have the form

1-xκ). (5.2)

Here B is independent of Xj due to considerations of translation invariance
and contains derivatives of a finite order only.

This conclusion is based, firstly, on the causality condition which
completely determines the operator function Sn(xu ...,xn) in terms
of the preceding functions S l 5 S2,..., Sr

n_1 within the domain of definition
of its arguments in which xι > Xj (for at least one of j= 2, 3,... ή) and,
secondly, on the postulate that the coefficient functions of the operator
Sn(xu ...,xj in (5.2) are tempered distributions.

Thus the causality condition (3.1) in the Bogolubov and Shirkov [1]
formulation gives rise to the requirement for the quasilocal operator
Λn(x1,..., xn) to be located at the point xί=x2 = - = xn. This requirement
guarantees undoubtedly the fulfilment of the causality condition but it is
too strong and can be weakened. How is it possible to do this?

The action of the local and quasilocal distributions is usually thought
of as follows:
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Definition 1. The Lorentz invariant distribution K(x1 — x2) is called
local and located at the point xx = x2 if

f d4x, J d*x2fGι(xx) K(Xl - x2) fG2(x2) = 0

for

if
GίnG2=0.

Here D(G) is the space of infinitely differentiable functions with a finite
support located in G.

The general form of the local distribution satisfying the Definition 1 is

a) K{x1-x2)= £ C π Π"δ ( 4 ) (x i-x 2 ) (5.3)
n = 0

for a certain iV < oo in the case of tempered distributions and

oo

b) K(x 1 -x 2 )= £ CnΠ
nδ{*\x1-x2) (5-4)

in the case of the Jaffe space [8, 9] if

? dulog+\K(u2)\
— ^ < G 0

o i + ιr
where

\K(u2)\= £ |C> 2".
As was noted above, the use of these local functions or distributions

for constructing the quasilocal operators guarantees the validity of the
microcausality condition (3.1) or (3.2). However, from the point of view
of causality our restriction to considering the distributions located at a
point seems to be too strong. In fact, when verifying causality and
local commutativity conditions or studying propagation of wave
packets we have to consider only the regions separated by space-like
surfaces rather than any space-time regions, for we always wonder how
one or another event develops in time.

Thus, the problem of the causal influence of one space-time region
on another can be formulated correctly if and only if the both regions
are separated by a space-like surface. Otherwise in each region there will
exist points located in the causal cones of some other region, and the
events occuring in these regions can mutually affect one another.
Therefore it is impossible to see how changes of the events in one region
affect the changes in another. Thus we are led to

Definition 2 (the principle of physical locality).
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The Lorentz invariant distribution K(xx — x2) is called physically
local, or satisfies the principle of physical locality if

VfGj(x)eD(Gj) O'=U)

for any regions G1 and G2 between which a space-like surface can be
located.

It is easy to show that in the case of the tempered distributions and
the Jaffe strict locality the Definition 2 is equivalent to the Definition 1,
i.e. the local distributions obeying Definition 2 and invariant under
Lorentz transformations are given in the general form by (5.3) and (5.4).
Therefore the Definition 2 gives nothing new. However in the case of the
distributions defined on the spaces of analytical functions there arise
new nontrivial distributions different from (5.2)-(5.4) which obey the
principle of physical locality.

Let us consider the space of test functions Z. In this space there
is no functions with finite supports as far as it consists of entire analytical
functions. Therefore we have to suggest a method with the help of which
we shall investigate the space-time properties of analytical functional
in the real space R4.

Our definition is that the space-time properties of functionals on Z
in the real x-space R4 are determined by means of projecting sequences.
Therefore the Definition 2 should be formulated in the following way.

Definition 2'. The Lorentz invariant distribution K(x1 — x2) defined
on Z is called physically local or satisfies the principle of physical
locality if

lim lim \ d*x1\d4x2fGuλι{x1)K{x1-x2)fG2tλ2(x2) = 0
λi-> ooλ2-^ooι * (5.5)

( / 1 2 )

for any regions Gί and G2 between which a space-like surface can be
located.

It is more convenient to use the Definition 2' in a somewhat different
form:

Definition 2". The Lorentz invariant distribution K(x) defined on Z
is called physically local if

l imfd 4 xX(x) f f Λ λ (x) = O,
λ-»o (5.6)

VgΓfλ(x)eΠ{G).
In this case the region G is such that there always exists a possibility
of locating through the point x = 0 a space-like surface which does not
cross the region G.
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Fig. 1

It should be noted that all local distributions (5.3) and (5.4) satisfy
the principle of physical locality. Therefore the investigation of the space-
time properties of the local quantum field theory with the help of
projecting sequences leads to the usual results.

Now we show that the distributions K(xx — x2) obeying the conditions
(E) are physically local.

Let us consider the functional (K,gΓλ). Making use of (2.5) we can
obtain

(5.7)
d*ρa(ρ2)gΓ>λ(ίρ0,ρ)

where gΓλ(z)eΠ(G). Let Σ be a space-like surface satisfying the
conditions of the Definition 2".

Without loss of generality the region G may be considered to be in
the past with respect to the surface Σ as is shown in Fig. 1. Since the
region G is bounded there always exists such a space-like cone

that the region G lies in the past with respect to this cone. The constant
ΛG is strictly smaller than unity and depends on the region G.

Let us rewrite the integral (5.7) in spherical coordinates

(K,0 Γ i A )=f dρρ3 f dαSin2 αf dθSinθ \ dφ a(ρ2)
b b b b

ί,5:8'• gΓ>λ(ίρ Cos α, ρ Sin α Cos θ, ρ Sin α Sin θ Cos φ, ρ Sin a Sin θ Sin φ

The integration over α is carried out along the segment [0, π] in the
plane of the complex variable a + iβ. Because the integrand is an entire
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0

L+2

Li

'L$

if ^.

»L3

Fig. 2

function when λ > 0 the contour of integration can be displaced as is
shown in Fig. 2. Here 5 is an arbitrary positive number. It is easy to
verify that the real parts of the arguments Zj(j = 0,ί, 2, 3) of the function
gΓ,λ(zo> zi>Z2> Z3) i n (5-8) behave like:

(1) on the contours L\ = [0, is] and L% = [π + is, π]

^ x ^ O (7 = 0,1,2,3);

(2) on the contour L\ = [is, is + π]

x2 = ρChs - SinαSinθCosφ

x3 = ρChs - SinαSinθSinφ

i.e. these points are on the cone

Con s = {x : x0 ^ 0, xg = (ώs) 2 x2}.

If s is chosen large enough so that

, 4 G < t h s < 1,

which can always be done, Cons lies inside ConG (see Fig. 1).
Thus, the integration region is outside G + ίR4 and on it any projecting

sequence from Π(G) converges uniformly to zero. Therefore the con-
dition (5.6) is valid.

If G lies in the future with respect to the surface Σ then to prove (5.6)
it is necessary to pass in (5.8) to an integration over the contours
LΓ = {L[ = [0, — is], L~2 = [ — is, π — is~]9 L^ = [π — is, π]} (see Fig. 2).

Finally the distributions satisfying the conditions (E) are physically
local but are not local because they do not obey the Definition 1.
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6. Causality of Retarded Functions

In order to demonstrate the mechanism of the fulfilment of the
causality condition we consider a nonlocal retarded function Dret(x)
the Fourier transform of which has the form

Here W(p2) satisfies the conditions (£).
The function Drtt(x) is a distribution defined on the space Z. The

following representation is valid:

y±S~Q*) J J — 1 \A U IΛ\U j I (A, A ZJ r e + l »»ί, A- J J \ A - Q |~ ί M Q , Λ |~ {/) I U . A )

where
£)/v \ ί t/./i Ί

X2 = χg-χ2.(6.3)

Our problem is to prove that

gΓJ = 0 (6.4)(

C V+for any projecting sequences gΓ λ e Π(G) if G C V+.
As in the previous section the proof consists in the following. In the

representation (6.2) the surface of integration can be chosen for any
bounded G outside the future cone V+ in such a way that any projecting
sequence from Π(G) converges uniformly to zero.

Thus, we consider

(J>ret, 0 Γ . A ) = ί d*ρa(Q2)fΓ-tλ(iρ0,Q) (6.5)

fr- M = ί ά ^ 4et(™, x''2)gr.Az + *) ( 6 6 )

The functions fΓ-,λ(z) converge uniformly to zero outside the region

V~ = {x:xo<O,x2>O}

for all Γ C G. For any bounded G C V+ there exists such a cone

that the region G~ and, consequently, any Γ~ C G~ lies outside this
cone. As far as the cone ConG is a space-like surface with respect to
which the region G~ lies in the past all the statements of the Section 5
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are valid and, consequently, the condition (6.4) is valid too. This means
that the retarded function (6.1) satisfies the microcausality condition.

Now let us consider the general case. Let a retarded function Dret(x)
allows the Jost-Lehman-Dyson representation [12] in the momentum
space:

π ^ Γ Λ4 1 7 dm2widu - P)2) Φ(u> ™2) ^ w / t
[U2 W1(m2)(m2--(p--u)2--ιε(p*-u)0)

(6.7)

It is assumed that all integrals in this representation converge well.
The function Wγ{z) satisfies the conditions (E) and have no zeros for
R e z > 0 . The function W2{u,z) satisfies the conditions (E) with respect
to the second variable z uniformly relative to the first variable u. The
integration over u is performed over a bounded region. The functional
(6.7) is a distribution defined on Z, i.e. the functional

exists. After simple manipulations one obtains easily

(6.8)

dm2 φ(u, m2) 2 δ{4)(x)a (u 2)\

It is easy to see that the structure of this expression comes to (6.5) and
(5.7). As far as we suppose that all integrations in (6.8) converge well the
calculations performed above are valid in this case too. Thus we obtain

if GCV+.

Now the problem is to prove that in the nonlocal theory the S-matrix
elements responsible for the fulfilment of causality permit the represen-
tation (6.7).

7. The Representation of a Retarded Product
in the n-th Perturbation Order

The retarded function M(x) in (3.2) can be represented in the form

, (7.1)

(7.2)
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In (7.2) the summation is performed over all connected diagrams Dn

in the n-th perturbation order.
Let us show that the representation (6.7) is valid for any matrix

elements MDn(x) = <α | RDn(x, 0) | β>, i.e.

MDn(x) = jd^pe^xMDn(p) (7.3)

Here Wx{z) and W2(u,z) satisfy the conditions (£) and

|z|->oo;

(7.4)

where Lπ is a constant which depends on I and the perturbation order.
The proof follows from the following statements (see [5-8]).
1. The function MD (p) is the limit of the regularized expression

Mδ

Dn(pl i e

lim M^(p) = MDπ(p).
σ—•O

This limit exists, as was shown in [7].
2. The analytical properties of the limiting amplitudes MDn(p)

are the same as in local theory (see [5], [7]) in any finite domain of the
complex momentum plane for the exception of the infinity.

3. M D »
,\P2

4. M D » = O(exp [(n - 1) (/ + ε) Re\/p*-\), \p2\ - oo ,

-π<argp2 <π.

5. The S^-matrix for δ > 0 corresponds to the local theory (see [7, 8])
so that

., - τ / + A^n(x) = 0

6. Mδ

D (p) = ( τ 4 τ 2 |
V |p I /

Making use of the Properties 5 and 6 and following papers [12,13]
one obtains the representation
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where the function φδ(u, κ2) vanishes outside the region

Q + K

s=l

2

Q + K

— u

u)eV+

K γ
— - u

Here β and X are the momenta of states |α> and |j8>. The analytic
structure of M^n(p) with respect to p is singled out explicitly in the
representation (7.5).

The Property 2 requires that

\ιm Mδ

Dn{p) =

d*2wΛ*-P)2)Φ(«>"2)

W2(u,(p-u)2)

where Wx(z) and W2{u,z) are entire functions of z, and the integrals
in (7.6) converge.

From the Properties 3 and 4 it follows that the order of growth
of Wλ(z) and W2(u, z) is ρ = ^ and for z~> — oo

From the Property 1 it follows

Φ(M, κ2) = lim Φδ(u, κ2)
d+0

and
κ->oo.

The representation (7.6) can be obtained from (7.5) with the help
of the transition to the limit <5->0. In order to perform this transition we
should write down a certain representation for M^n(p) equivalent to (7.5)
which permits the transition to the limit δ ~ 0̂ in the integrand. According
to the Property 1, the limiting expression is just the described represen-
tation for MDn(p).

As far as the representation (7.6) is valid for any connected diagram
in perturbation theory the condition of microcausality (3.2) turns out
to be valid in the n-th perturbation order.
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8. Conclusion

Thus it turned out that the nonlocal S-matrix constructed with
the help of entire analytical functions of the order 1/2 satisfies the
condition of microcausality. Now it is still difficult to estimate the value
of this fact and understand more deeply the reasons underlying this
result.

It is quite possible that we have a generalization of the Schrodinger
equation of the following type. In the local case we have

where
gHI(t) = g$dx:φN(x,t):.

This equation leads formally to the microcausal S-matrix at least
because the interaction is local.

Formally our introduction of nonlocality can be represented as

φ(x,t)-* f d4ρα(ρ2)φ(Λ: + ρ,ί + Jρ0)

i.e.

ffj(ί)-* J dτHj(t + iτ). (8.1)
- i

It should be noted that these formulas are completely formal because
there are no any operator realization of nonlocal theory without using
a regularization procedure. Though the Hamiltonian (8.1) corresponds
to the nonlocal theory the solution of the equation

may have the main properties of the microcausal theory.
These problems deserve further study.

Acknowledgments. The authors wish to thank Professors D. I. Blokhintsev,
B. M. Barbashov, N. A. Chernikov, and V. Ja. Fainberg for useful discussions.

References

1. Bogolubov,N.N., Shirkov,D.V.: Introduction to the theory of quantized fields.
New York: Interscience 1959

2. Streater,R.F., Wightman,A.S.: PCT, spin and statistics and all that. New York-
Amsterdam: W.A.Benjamin, Inc. 1964

3. Bogolubov,N.N., Medvedev, B. V., Polivanov, M. K.: Problems in the theory of
dispersion relations. Institute for Advanced Studies, Princeton, 1958



28 V. A. Alebastrov and G. V. Efimov

4. Blokhintsev,D.L: Space and time in the microworld. Dordrecht: D. Reidel, Publishing
Company, 1973
Wanders,G.: Nuovo Cim. 14, 168 (1959)
Eden,R.J., Landshoff,P.V.: Ann. Phys. 31, 370 (1965)
Stapp,H.P.: Phys. Rev. 139, 257 (1965)
Kirznits,D. A.: Proceedings of the I. International Seminar on Nonlocal Quantum
Field Theory, JINR, P2-3590, Dubna, 1967

5. Efimov, G.V.: Preprints ITF, Kiev, N. 52, 54, 55 (1968)
Problems of Physics, E. Ch. A. Ja. 1,1, Atomizdat, 1970
Proceedings of the II. and III. International Seminars on Nonlocal Quantum Field
Theory, JINR, 2-5400, Dubna, 1970
D2-7161, Dubna, 1973

6. Efimov,G.V.: Preprint ITF-68-52, Kiev, 1968, Commun. math. Phys. 7, 138, 1968
7. Alebastrov, V. A., Efimov, G.V.: JINR P2-6586, Dubna, 1972, Commun. math. Phys.

31, 1 (1973)
8. Efimov,G.V.: JINR P2-6864, Dubna, 1972
9. Jaffe,A.M.: Phys. Rev. Letters 17, 661 (1966); Phys. Rev. 158, 1454 (1967)

10. Jost,R.: The general theory of quantized fields. Lectures in Applied Mathematics,
American Mathematical Society, Providence, Rhode Island, 1965

11. Efimov,G.V.: JINR, P2-6756, Dubna, 1972
12. Schweber,S.: An introduction to relativistic quantum field theory, part one. New York:

Harper and Row, 1961
Dyson,F. J.: Phys. Rev. 110, 1460 (1958)
Jost,R., Lehmann,H.: Nuovo Cim. 5, 1598 (1957)

13. Fainberg,V. J.: JETP (sov.) 36, 1503 (1959)

Communicated by K. Hepp V. A. Alebastrov
G. V. Efimov
Joint Institute for Nuclear Research
Laboratory of Theoretical Physics
Head Post Office
P. O. Box 79
Moscow, USSR




